
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 1

Structural and Role-Oriented Web Service
Discovery with Taxonomies in OWL-S

Georgios Meditskos and Nick Bassiliades, Member, IEEE,

Abstract—In this paper, we describe and evaluate a Web service discovery framework using OWL-S advertisements, combined with
the distinction between service and Web service of the WSMO Discovery Framework. More specifically, we follow the Web service
discovery model, which is based on abstract and lightweight semantic Web service descriptions, using the Service Profile ontology
of OWL-S. Our goal is to determine fast an initial set of candidate Web services for a specific request. This set can then be used in
more fine-grained discovery approaches, based on richer Web service descriptions. Our Web service matchmaking algorithm extends
object-based matching techniques used in Structural Case-based Reasoning, allowing (a) the retrieval of Web services not only based
on subsumption relationships, but exploiting also the structural information of OWL ontologies, and (b) the exploitation of Web services
classification in Profile taxonomies, performing domain-dependent discovery. Furthermore, we describe how the typical paradigm of
Profile input/output annotation with ontology concepts can be extended, allowing ontology roles to be considered as well. We have
implemented our framework in the OWLS-SLR system, which we extensively evaluate and compare to the OWLS-MX matchmaker.

Index Terms—Web service discovery, abstract descriptions, OWL-S Profile, structural information, role-oriented matchmaking.

F

1 INTRODUCTION

W EB services have brought a communication revo-
lution in heterogeneous domains where the effi-

cient collaboration among different parties is important,
such as in e-commerce and e-business. However, the
increasing use of Web services has raised new chal-
lenges, such as the automated Web service discovery.
Web is continuously enriched with Web services and it
is transformed from a Web of documents into a Web of
documents and services. The problem that arises is how
a human or an agent could be assisted during service se-
lection. The XML representation of Web services (WSDL
[1]) guarantees syntactic interoperability but it is unable
to semantically describe services.

Semantic Web services (SWSs) [2] aim at making Web
services machine-understandable and use-apparent, uti-
lizing Semantic Web technologies for Web service anno-
tation and processing. The idea is to provide ontology-
based descriptions of Web services that could be pro-
cessed by ontology reasoning tools. In that way, intelli-
gent agents would be able to automatically understand
what a Web service does and what it needs in order to
perform a task.

In this paper, we adopt a conceptual model for seman-
tic Web services [3] and we follow the WSMO Discovery
Framework [4] (WSMO-DF) for Web service discovery,
using descriptions that are expressed as instances of
the Profile concept of the Service Profile (SP) of the

• The authors are with the Department of Informatics, Aristotle University
of Thessaloniki, 54124, Greece.
E-mail: {gmeditsk, nbassili}@csd.auth.gr

Manuscript received xx; revised xx; accepted xx; published online xx.
For information on obtaining reprints of this article, please send e-mail
to: tkde@computer.org, and reference IEEECS Log Number TKDE-2008-09-
0507. Digital Object Identifier no. xx.

OWL-S ontology [5]. The rationale is to use lightweight
Web service descriptions based on inputs, outputs and
non-functional properties, in order to determine fast an
initial set of candidate Web services for a request. Our
framework can be considered as a prephase of more
complex discovery frameworks that make use of richer
Web service descriptions, for example, precondition, ef-
fects or state transitions, narrowing the space where they
should be applied on. Our approach has been realized
in the OWLS-SLR system, which we extensively describe
and evaluate.

The contributions of our work can be summarized in
the following:

• We combine object-based structural matching tech-
niques that are used in the domain of Structural
Case-based Reasoning (SCBR) [6], with Description
Logic (DL) reasoning [7] over Profile instances, en-
hancing the discovery with services that cannot be
retrieved using only logic-based reasoning.

• We allow the existence of Profile taxonomies, in-
corporating domain knowledge through Profile in-
stance class membership relationships.

• We enhance the discovery procedure of our frame-
work by considering also ontology roles, exploiting
the excellent classification capabilities of DL reason-
ing. In that way, we combine the strong points of the
WSMO-DF and OWL-S SP modeling paradigms.

The rest of the paper is structured as follows: in section
2 we present the basic background and our motivation.
In section 3 we present the matching techniques used in
SCBR frameworks. In section 4 we extend the SCBR met-
rics to the SP model for SWS discovery and we describe
implementation aspects of OWLS-SLR. In section 5 we
analyze experimental results and we compare OWLS-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 2

SLR to the OWLS-MX [8] matchmaker. In section 6 we
introduce ontology roles as annotation concepts in the
SP model. Finally, in sections 7 and 8, we review related
work and we conclude, respectively.

2 BACKGROUND AND MOTIVATION

2.1 Semantic Annotation of Web Services
Web service discovery can be defined as the problem
of locating suitable Web services to fulfill a given objec-
tive. In the SWS paradigm, discovery is performed over
semantic descriptions of Web services. WSMO-DF and
OWL-S SP are two frameworks that regulate the way
descriptions should be defined (see also section 7).

2.1.1 The WSMO Discovery Framework
WSMO-DF is based on the WSMO framework [9] for
Web service discovery. In WSMO-DF, a Web service is
a computational entity which is able, by invocation, to
achieve a goal. A service, in contrast, is the actual value
provided by this invocation [3]. Therefore, there are ab-
stract Web service and concrete service descriptions. The
former describe Web services in terms of their abstract
functionality, whereas the latter contain a more detailed
information about the service. For example, a hotel offers
an abstract service for booking rooms, and requesters
provide concrete descriptions of their requirements, for
example, number of rooms, date, etc.

In accordance to the distinction between Web service
and service, WSMO-DF follows two levels of abstraction
during Web service discovery, based on Light or Rich
semantic descriptions. In the former, Web services are
represented as Complex Concepts (CCs), mapping them
in domain ontologies as a whole, and the matchmaking
examines the subsumption relationships of CCs. The
latter is the most fine-grained level, where Web services
are modeled in terms of state transitions, obligations of
requesters, etc.

2.1.2 The OWL-S Service Profile Ontology
OWL-S is an OWL ontology [10] that offers the concep-
tual model for semantically annotating Web services. The
modeling is performed based on four upper ontologies,
namely Service, Service Profile (SP), Service Process and
Service Grounding. In brief, the SP provides the informa-
tion needed for an agent to discover a service (advertise-
ment). An advertisement contains descriptive informa-
tion, such as the service name, and information about
the provider. It describes also the functional properties
of the service, that is, inputs, outputs, preconditions and
effects, and non-functional properties, such as quality.
The Service Process and Service Grounding provide
information for an agent to make use of a service.

Each advertisement can be either a direct instance
of the OWL-S Profile concept or it can be defined
based on a Profile subclass hierarchy [11]. The Profile-
based Web service discovery involves the procedure
of matchmaking service requests and advertisements,

TABLE 1
Web Service Description Examples (DL syntax)

Domain Ontology Axioms

Order v Economy u ∃title.> u ∃account.> u ∃item.> u ∃to.>,
Search v Education u ∃title.> u ∃item.>,
Economy v Profile, Education v Profile, Book v Item,
Magazine v Item, gr : Country, uk : Country

Complex Concepts

1) a1 ≡ Order u ∀title.Title u ∀item.Book u ∀account.User u ∃to.{gr}
2) a2 ≡ Order u ∀title.Title u ∀item.Magazine u

∀account.User u ∃to.{gr}
3) a3 ≡ Order u ∀title.Title u ∀item.Magazine u

∀account.User u ∃to.{uk}
4) a4 ≡ Search u ∀title.Title u ∀item.Book

OWL-S Service Profile Instances

1) a1 : Order, 〈a1, Title〉 : hasInput, 〈a1, User〉 : hasInput,
〈a1, Book〉 : hasOutput, 〈a1, gr〉 : to

2) a2 : Order, 〈a2, Title〉 : hasInput, 〈a2, User〉 : hasInput,
〈a2, Magazine〉 : hasOutput, 〈a2, gr〉 : to

3) a3 : Order, 〈a3, Title〉 : hasInput, 〈a3, User〉 : hasInput,
〈a3, Magazine〉 : hasOutput, 〈a3, uk〉 : to

4) a4 : Search, 〈a4, Title〉 : hasInput, 〈a4, Book〉 : hasOutput

both represented as Profile instances. Inputs and outputs
(I/Os) are annotated with ontology concepts (signature
[12]), and preconditions and effects (specification) are
described using a rule formalism.

Example. Table 1 depicts four Web services adver-
tisements using the CC and the OWL-S SP approaches.
The a1 advertisement is classified in the Order class and
requires a title and an account as inputs in order to
return a book that can be sent to Greece. Similarly, the a2
advertisement is classified in the Order class and requires
a title and an account in order to return a magazine
that can be sent to Greece. The a3 advertisement is also
classified in the Order class and requires a title and
an account in order to return a magazine that can be
sent to UK. Finally, the a4 advertisement is classified in
the Search class and returns a book based on the title.
The above characteristics are expressed in the CC model
by defining appropriate complex classes that describe
services as a whole, whereas in the OWL-S SP model
each advertisement is expressed as an instance of the
appropriate Profile subclass.

2.2 Motivation
We define our motivation in terms of our decision to
follow the SP model instead of the CC model, and to
incorporate structural ontology information and roles.

2.2.1 Complex Concepts and Profile Instances
Our decision to use the SP model for describing Web
services targets at the usability of the framework. We
argue that it is more intuitive for providers and for
average users to advertise Web services following the SP
model, annotating I/O parameters. The CC approach, al-
though it offers more expressive power, it requires more
elaborate skill of the people creating the descriptions.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 3

Furthermore, it is difficult to consider CCs in reposi-
tories, for example, in UDDI [13], in contrast to OWL-S
Profile instances. The difficulty relies on the fact that a
CC does not follow a standard description pattern, since
all the properties are considered equal during concept
definition (see Table 1). On the other hand, in the SP
model, the functional properties are distinguished from
the non-functional parameters and they can be mapped
on UDDI following a standardized approach [14].

The CC model has increased capabilities in describing
the class of objects where a Web service can be categorized
in terms of subsumption relationships, existential and
universal quantifiers. The SP model lacks the ability to
incorporate such universal and existential quantifiers,
since it defines instances and not concepts. Any role
information stems only from values for the roles that the
instances inherit from the Profile taxonomy. Moreover,
in the case where Web services are described as direct
instances of the Profile concept, the domain knowledge
can only be captured through special roles, since all the
instances belong to the same concept. In our framework,
we allow advertisements to be defined in terms of
Profile taxonomies, such as the Profile instances of Table
1, capturing domain knowledge through instance class
memberships (DL ABox reasoning).

2.2.2 Structural Ontological Knowledge
The matchmaking that is based only on logic-based
reasoning, such as the CC approach, computes only the
subsumption relationships among the annotation con-
cepts. Therefore, any structural information is ignored,
for example, sibling relationships that may enhance the
discovery, especially in cases where few or no results are
initially returned for a request.

We are motivated by the usefulness of the structural
information and we introduce in our matchmaking al-
gorithm matching techniques that are used in Structural
Case-based Reasoning (SCBR), a specialized approach
to Case-based Reasoning. In SCBR, the idea is to rep-
resent cases according to a domain model [6] that is
structured in an object-oriented manner, including IS-
A relationships and inheritance. Each case and query
is modeled as an object and the additional knowledge
that stems from the model is used during matching.
The object relevance is determined using the interclass
and intraclass metrics. The former is defined over the
common attributes, whereas the latter is defined upon
the class types of two objects.

In our work, we extend the intraclass and interclass
notions to the domain of SWS discovery. The idea is to
perform matchmaking on Profile instances represented
as objects, considering the domain ontologies and any
Profile taxonomy as the domain models.

2.2.3 Web Service Descriptions and Ontology Roles
The semantic tagging of I/O parameters with predefined
concepts has limited expressive power. For example,
consider a Web service advertisement whose one of its

inputs is annotated with the concept Person that has three
roles: SSN, address and name. In this case, we cannot
determine what the Web service really requires: SSN,
name, address or all of them? On the other hand, the CC
approach takes into account roles through restrictions.

In order to overcome this limitation of the SP
paradigm, we enhance our framework with the ability
of a role-based Web service functional annotation based
on the open-world assumption and the classification
capabilities of the DL reasoning paradigm. In that way,
we are able to extend the annotation and discovery
procedures of our SP-oriented framework with ontology
roles. Actually, our approach is an effort to leverage the
modeling differences between the CC and SP paradigms,
where the former is concept-oriented, allowing the full
exploitation of the logical formalism that is used to
define concepts, whereas the latter is instance-oriented,
treating Web service descriptions as Profile instances.

3 SCBR SIMILARITY METRICS
In SCBR, both cases and queries are represented as
objects, enhancing the typical attribute-value represen-
tation of the traditional CBR with domain knowledge.

Definition 1. An Object O is a triple 〈ID , C, P 〉, where ID
is the unique identifier of the object, C is the object class type,
and P is a set that contains attribute-value pairs of the form
〈p, V 〉, where p is an attribute and V a set of values.

The domain model is represented as a class hierarchy
and the objects are initialized with a single class type
and property-value definitions. For example, let A ¹ B
denote that class A is subclass of class B, p ∈ Att(A)
denote that the attribute p is defined in class A, o.p
denote the set of values of object o for property p, that
is, the set V , and o ½ A denote the class type of object
o. Let three classes A, B and D, where A ¹ B and
B ¹ D. If o ½ A, then o is also an object of B and
D, due to inheritance. Furthermore, let pA and pB be
two attributes, where pA ∈ Att(A) and pB ∈ Att(B). If
o ½ A, then both expressions o.pA and o.pB are valid,
since attributes are inherited to subclasses.

In that way, every object encapsulates domain knowl-
edge, regarding class relationships and property-value
definitions, which is used for matching cases and queries
through the interclass and intraclass similarity metrics.

3.1 Intraclass Similarity
The intraclass metric defines the similarity of two objects
in terms of the values in their common attributes, based
on two value matching functions: the Vs function for
simple values, for example, integers, strings, etc., and
the Vr function for relational values, that is, objects.

Let two objects OA = 〈IDA, CA, PA〉 and OB =
〈IDB , CB , PB〉 and their common attribute p. The partial
intraclass similarity Sp for the property p is defined as

Sp(OA, OB) =

{
Vs(IDA.p, IDB .p), if p is simple
Vr(IDA.p, IDB .p), if p is relational.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 4

The overall intraclass similarity of two objects OA and
OB is defined by aggregating their partial similarities.

Definition 2. Let two objects OA = 〈IDA, CA, PA〉 and
OB = 〈IDB , CB , PB〉 and the set T of their common at-
tributes, that is, ∀p ∈ T, ∃〈p, V 〉 ∈ PA ∧ ∃〈p, V ′〉 ∈ PB . The
intraclass similarity is defined, with respect to an aggregation
function Θ, as

Sintra(OA, OB) = Θ
∀p∈T

Sp(OA, OB).

3.2 Interclass Similarity
The interclass metric captures the hierarchical relation-
ship of two object class types, based on a hierarchical
matching function H that denotes the similarity of two
objects in terms of their class types.

Definition 3. Let two objects OA = 〈IDA, CA, PA〉 and
OB = 〈IDB , CB , PB〉. Their interclass similarity is defined,
with respect to a hierarchical matching function H , as

Sinter (OA, OB) = H(CA, CB).

The overall similarity of two objects is defined by
aggregating their intraclass and interclass similarities.

Definition 4. Let two objects OA and OB . Their similarity
S is defined, with respect to an aggregation function Φ, as

S(OA, OB) = Φ [Sintra(OA, OB), Sinter(OA, OB)] .

4 OWL-S PROFILE METRICS

In this section, we describe the DLH and DLR Profile-
aware similarity metrics, extending the intraclass and
interclass SCBR metrics to an ontology environment, and
enhancing them with DL reasoning. Firstly, we introduce
the notion of the object specification for representing ad-
vertisement and query instances in our framework.

Definition 5. An object specification is a quintuple
〈ID, C, I,O,NF〉, where ID is the Profile instance identifier,
C is the set of the most specific concepts to where ID belongs,
I and O are the sets of I/O annotation concepts, respectively,
and NF is the set of non-functional property-value pairs.

We refer to an advertisement instance as an A
specification and to a query instance as a Q specification.
In that way, the Profile instances of Table 1, which are
used as examples in the rest of the paper using the a1
advertisement as a query, are represented as

Q = 〈a1, {Order}, {Title, User}, {Book}, {〈to, gr〉}〉
A2 = 〈a2, {Order}, {Title, User}, {Magazine}, {〈to, gr〉}〉
A3 = 〈a3, {Order}, {Title, User}, {Magazine}, {〈to, uk〉}〉
A4 = 〈a4, {Search}, {Title}, {Book}, {}〉.

We approach the SWS discovery problem as the
procedure of determining the similarity of an A
(〈IDa, Ca, Ia, Oa,NFa〉) and Q (〈IDq, Cq, Iq,Oq,NFq〉)
specification, based on three levels of similarity:

1) Taxonomical Similarity (TS). It is computed over the
Ca and Cq sets of an A and Q specification and de-
notes their similarity in terms of their taxonomical
categorization in a Profile subclass hierarchy.

2) Functional Similarity (FS). It is computed over the
input (Ia and Iq) and output (Oa and Oq) sets of
an A and Q specification (signature similarity).

3) Non-Functional Similarity (NFS). It is computed over
the values of the common non-functional proper-
ties of an A and Q specification.

4.1 The DLH Metric
The DLH metric represents the similarity of two ontol-
ogy concepts in terms of their hierarchical position. It
depends on a concept similarity function S, and on a set
F of hierarchical filters. In the following, we assume that
S(A,B) denotes the similarity of two concepts A and B,
with respect to the function S, and that S(A,B) ∈ [0..1],
with 1 denoting absolute match.

The DLH metric incorporates four hierarchical filters
between two ontology concepts. We use the notation A

f∼
B to denote that A matches to B, with respect to one of
the following hierarchical filters f .

1) exact (e). The two concepts should have either the
same URI, or they should be equivalent concepts,
that is, A

e∼ B ⇔ A = B ∨A ≡ B.
2) plugin (p). The concept B should subsume concept

A, that is, A
p∼ B ⇔ A v B.

3) subsume (su). The concept A should subsume con-
cept B, that is, A

su∼ B ⇔ B v A.
4) sibling (si). The concepts should be subsumed by a

concept T and they should not be disjoint, that is,
A

si∼ B ⇔ ∃T : A v T ∧B v T ∧A uB v >.
We generalize the A

f∼ B relation to a set of filters F
and we define that the concept A matches the concept
B, with respect to a filter set F , if and only if there is at
least one filter f in F , such that A

f∼ B, that is:

A
F∼ B ⇔ ∃f ∈ F : A

f∼ B.

Definition 6. Let two concepts X and Y . Their DLH
similarity is the normalized value to [0..1] that is defined, with
respect to a concept similarity function S and a hierarchical
filter set F , as

DLH(X, Y, F) =

{
S(X,Y) if X

F∼ Y

0 otherwise.
(1)

We generalize (1) on two sets SA, SB of concepts as

DLHset(SA, SB , F) =

∑

∀B∈SB

max
∀A∈SA

[DLH(B,A, F)
]

|SB | (2)

Intuitively, for each concept B ∈ SB there should be at
least one concept A ∈ SA relevant to B, with respect to
the filter set F . Otherwise, DLHset returns 0 (absolute
mismatch). The overall DLHset similarity is computed

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 5

as the mean value of the sum of the maximum DLHs
for each concept B, since each B may have more than
one relevant concepts in SA.

The Taxonomical Similarity denotes the similarity of two
specifications in terms of their concept membership sets
Ci and therefore, it is equal to their DLHset similarity.

Definition 7. The taxonomical Similarity between A and Q
specifications is defined as the DLHset similarity of their Ca

and Cq sets, that is,

TS (A,Q, FT) = DLHset(Cq, Ca, FT), (3)

where FT is the set of the hierarchical relationships that we
allow to exists among the concepts of the Ca and Cq sets.

4.1.1 DLH Distance Measures

The DLH implementation incorporates two concept dis-
tance measures D, and therefore, we have that S(A,B) =
1 − D(A,B) in (1). More specifically, we have imple-
mented a variation of (a) the edge-counting distance (EC),
an intuitive measure that computes the distance of two
concepts based on the number of edges found on the
shortest path between them, and (b) the upwards cotopic
(UC) measure [15] that measures the ratio of the common
superclasses of two concepts. We have chosen these two
measures for their intuitiveness and the simplicity of the
implementation.

4.1.1.1 Edge-counting distance: The edge counting
distance (EC) is implemented over the subsumption
hierarchy that is computed by the Pellet DL reasoner
[16]. An edge exists between two concepts A and B if
A vd B ∨ B vd A, where A vd B denotes that A is a
direct subclass of B, ignoring the mutual subsumption
edges between equivalent concepts. The implementation
of the EC distance between two concepts can be sum-
marized in the following five priorities rules ri, where
r1 > r2 > r3 > r4 > r5.

r1: if A = B ∨A ≡ B, then EC (A, B) = 0.
r2: if A uB v⊥, then EC (A,B) = 1.
r3: if A v B ∨B v A, then EC (A, B) = e/emax.
r4: if LCA(A,B) 6= ∅, then EC (A,B) =

min∀T∈LCA(A,B)

[
EC (A, T) + EC (B, T)].

r5: EC (A,B) = 1.

More specifically, if there is a hierarchical relationship
between two concepts A and B (r3), then the EC distance
is equal to the number of edges that exist in their shortest
path (e) normalized to [0..1] using the maximum EC dis-
tance (emax) found in the ontology. In order to compute
fast the emax, we approximate it as emax = 2·h−1, where
h is the maximum edge distance from a leaf concept to
owl :Thing (>).

The LCA set (r4) denotes the set of the Least Common
Ancestors of two hierarchically unrelated concepts, ig-
noring owl :Thing . Pellet computes the ontology classi-
fication results as a Directed Acyclic Graph, and thus,
more than one least common ancestors might exist for

Thing

Economy Magazine

ItemCountry Title

Education Book

Order

User Profile

Search

Fig. 1. The hierarchical relationships of Table 1

a concept pair. To this end, the EC distance is deter-
mined by the concept T that results in the minimum
EC distance. We do not consider the owl :Thing concept
in sibling relationships, since ∀A,B : A v > ∧ B v >,
and thus, no special structural knowledge is provided.

Example. We exemplify on the calculation of the TS
for the specifications in Table 1 based on the EC dis-
tance. Fig. 1 depicts the hierarchical relationships of
the named domain ontology concepts of Table 1, with
emax = 2 · 3 − 1 = 5. The A2 and A3 specifications of
Table 1 have the same taxonomical concept to Q, and
therefore, TS (A2,Q, FT) = TS (A3,Q, FT), with

TS (A3,Q, FT)
(3)
= DLHset({Order}, {Order}, FT)
(2)
=

DLH(Order, Order, FT)
|{Order}|

(1)
=

e∈FT

1− EC(Order, Order)
(r1)= 1,

only if e ∈ FT , since only the exact filter satisfies the
concept relationship in (1). If e /∈ FT then TS (A2,Q, FT)
= TS (A3,Q, FT) = 0.

The A4 specification has the Search taxonomical con-
cept. The EC distance of Order and Search is EC(Search,

Order)
(r4)= EC(Search, Profile) + EC(Order, Profile) = 2

5
+ 2

5 = 4
5 , since the minimum path of each concept from

the most specific superclass is e = 2. In that way,

TS (A4,Q, FT)
(3)
= DLHset({Order}, {Search}, FT)
(2)
=

DLH(Search, Order, FT)
|{Search}|

(1)
=

si∈FT

1− EC(Search, Order)

(r4)= 1− 4
5

=
1
5
,

only if si ∈ FT , since the two concepts satisfy only the
sibling filter in (1). If si /∈ FT then TS (A4,Q, FT) = 0.

4.1.1.2 Upwards cotopic: The upwards cotopic
(UC) measure takes into account the position of a class
C in a hierarchy H . It is defined as

UC (C,H) = {A ∈ H | C v A ∨ C = A},
that is, the set of the superclasses of a class C, including
C itself. In that way, the distance of two classes A and
B in a hierarchy H is defined, in terms of the UC, as

δ(A,B) = 1−
∣∣UC (A,H) ∩UC (B, H)

∣∣
∣∣UC (A,H) ∪UC (B, H)

∣∣ .

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 6

We adjust δ in order to handle ontological concepts
and to ignore owl :Thing , and we define the distance δ̃
of two concepts A and B of an ontology H as

δ̃(A,B) = 1−
∣∣UC (A,H) ∩̃ UC (B, H)

∣∣− 1∣∣UC (A,H) ∪̃ UC (B, H)
∣∣− 1

, (4)

where ∩̃ denotes semantic concept set intersection and ∪̃
semantic concept set union, that is,

SA ∩̃ SB = {x | x ∈̃ SA ∧ y ∈̃ SB}
SA ∪̃ SB = {x | x ∈̃ SA ∨ x ∈̃ SB}.

The ∈̃ notation denotes semantic set membership, that is,
a concept C semantically belongs to a concept set S,
denoted as C ∈̃ S, if C ∈ S ∨ ∃A ∈ S : C ≡ A. Finally,
two priority rules are defined in δ̃ (r1 > r2) in order to
consider the semantics of class disjointness.

r1: if A uB v⊥, then δ̃(A, B) = 1.
r2: δ̃(A,B) ∈ [0..1).

Example. The TS of the specifications in Table 1 using
the UC distance is computed as follows: based on the hi-
erarchy H of Fig. 1 we have that UC(Order,H) = {Order,
Economy, Profile, >} and UC(Search, H) = {Search, Educa-
tion, Profile,>}. Therefore, from (4) we have that δ̃(Search,
Order) = 1− 2−1

6−1 = 4
5 and finally,

TS (A4,Q, FT)
(3)
= DLHset({Order}, {Search}, FT)
(2)
= DLH(Search, Order, FT)
(1)
=

si∈FT

1− δ̃(Search, Order)

= 1− 4
5

=
1
5
.

For the other two specifications A2 and A3, we have
that TS (A2,Q, FT) = TS (A3,Q, FT) = 1, only if e ∈
FT , since both specifications have the same taxonomical
concepts to the Q specification.

Note that both the EC and UC distances result in
the same TS values for the example, since they are
applied to the simple ontology of Table 1. In the general
case, the effectiveness of each measure depends on the
characteristics of each ontology.

4.2 The DLR Metric

The DLR metric denotes the similarity between A and
Q specifications in terms of the values in their common
properties. It is defined in terms of the Functional (FS)
and Non-Functional (NFS) similarities and of a Web ser-
vice filter Wf that we analyze in the following sections.

Definition 8. Let two specifications A and Q. Their DLR
similarity is the pair 〈FS ,NFS 〉 of their Functional and Non-
Functional similarities, with respect to the Web service filter
Wf , that is,

DLR(A,Q,Wf) = 〈FS (A,Q, Wf),NFS (A,Q)〉.

4.2.1 Functional Similarity

The FS is based on the DLHset similarity of the I/O
sets of two specifications, so as to ensure that (a) all the
advertisement inputs are satisfied by the query inputs,
and (b) all the query outputs are satisfied by the adver-
tisement outputs (signature matching).

Definition 9. The Functional Similarity between A and Q
specifications is the normalized value to [0..1] that is defined
with respect to the Web service filter Wf , as

FS (A,Q,Wf) =√
DLHset(Iq, Ia, FI) · DLHset(Oa,Oq, Fo) (5)

We use the geometric mean, instead of the arithmetic
mean, because a Web service should be excluded if either
of its input or output similarity is zero.

In order to control the different degrees of relaxation
during I/O matching, the FS makes use of a Web service
filter Wf that defines the values of the hierarchical filter
sets FI and FO in (5). More specifically, we define the
Exact (We), Plugin (Wp), Subsume (Wsu) and Sibling
(Wsi) Web service filters with the following relationships
to the FI and FO filter sets.

• We → FI = FO = {e}. This is the strictest filter that
allows two specifications to match only if they refer
to the same or to equivalent concepts in their I/Os.

• Wp → FI = {e, p} ∧ FO = {e, su}. This is a
more relaxed filter and intuitively denotes an A
specification that could be used instead of a Q spec-
ification. The rationale is that all the inputs of the
advertisement should be equivalent or subclasses
of the query inputs, and all the outputs of the
query should be equivalent or superclasses of the
advertisement outputs.

• Wsu → FI = FO = {e, p, su}. This filter relaxes even
more the matching criterion and the advertisement
is allowed to have (a) more general inputs than the
query and (b) more general outputs than the query.

• Wsi → FI = FO = {e, p, su, si}. This is the most
relaxed filter, allowing also the existence of sibling
relationships among I/O concepts.

The order of Web service filter relaxation is We <
Wp < Wsu < Wsi. Moreover, for each Wf filter we
define three additional levels of granularity based on the
number of the I/Os of the query and an advertisement.
More specifically, we define the exclusive (x), exclusive-
input (xi) and exclusive-output (xo) grouping filters. The
x filter is satisfied for the matched advertisements that
have the same number of I/O parameters to the query.
The xi filter is satisfied for the advertisements that
have the same number of input parameters only to the
query. Similarly, the xo filter deals with the number of
output parameters. For example, the xWe filter matches
advertisements that pass the We Web service filter and
have the same number of I/O parameters to the query.
The xiWsi filter matches advertisements that pass the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 7

Wsi Web service filter and have the same number of
input only parameters to the query input parameters.

The grouping filtering is motivated by the fact that
an advertisement that satisfies, for example, the We

filter and has the same number of I/Os to the query,
should be considered as a more ”exact” result than an
advertisement with different number of I/O parameters.
Based on this assumption, the matched advertisements
are returned in groups (see Algorithm 1 in section 4.3),
according to the Wf and grouping filter that satisfy. For
each Wf , the order of relaxation is xWf < xiWf < xoWf

< Wf . Therefore, xWe < xiWe < xoWe < We < xWp <
xiWp < · · · < xoWsi < Wsi (16 grouping filters in total).
The decision to define xiWf < xoWf is arbitrary.

Example. We exemplify on the computation of the
FS of our example, using the EC distance. Both Q and
A2 specifications have the same input sets Iq = Ia =
{Title, USER} with DLHset(Iq, Ia, FI) = 1, only if e ∈ FI .
For the output sets, we have that Oq = {Book} and Oa

= {Magazine} with

DLHset(Oa,Oq, FO)
(2)
= DLH(Book, Magazine, FO)
(1)
=

si∈FO

1− [EC(Book, Item)+

EC(Magazine, Item)]

= 1−
(

1
5

+
1
5

)
=

3
5
,

only if si ∈ FO, since the two concepts have a sibling
relationship and each concept is a direct subclass (e = 1)
of the Item class. Therefore, from (5), we have that
FS (A2, Q, Wf) =

√
1 · 3

5 = 0.774, only if we select the
Wsi Web service filter that satisfies the hierarchical filter
requirements we have mentioned, that is, e ∈ FI and
si ∈ FO. Otherwise, FS (A2, Q, Wf) = 0. The same
holds for the A3 specification. Furthermore, the A2 and
A3 specifications satisfy the xWsi grouping filter, since
they both have the same number of input and output
parameters to the Q specification.

The A4 specification has the {Title} input set and
therefore, its input DLH similarity to Q is DLHset({Title,
User}, {Title}, FI) = 1, only if e ∈ FI . Furthermore, both
Q and A4 have the same output sets ({Book}) and their
output DLH similarity is DLHset({Book}, {Book}, FO)
= 1, only if e ∈ FO. Therefore, from (5), we have that
FS (A4, Q, Wf) =

√
1 · 1 = 1 that holds for each Web

service filter Wf , since ∀Wf : e ∈ FI ∧ e ∈ FO. Moreover,
the A4 specification satisfies the xoWe grouping filter,
since it has only the same number of output parameters
to the Q specification.

4.2.2 Non-Functional Similarity

The NFS is defined in terms of two functions; the dt
function for computing the similarity of two datatype
values and the ob function for computing the similarity
of two object values, where dt(a, b) and ob(a, b) ∈ [0..1].
The overall NFS similarity of two specifications is the

mean value of the dt and ob functions over the common
properties of the two specifications.

Definition 10. Let the sets Td and To of the common datatype
and object properties, respectively, of A and Q specifications
with Td ∪ To 6= ∅. The Non-Functional Similarity is the
normalized value to [0..1] that is defined, with respect to the
functions dt and ob, as

NFS (A,Q) =∑

∀d∈Td
∀o∈To

[
dt (IDa.d, IDq.d) + ob (IDa.o, IDq.o)

]

|Td ∪ To| (6)

If Td ∪ To = ∅, then we define that NFS (A,Q) = 1.
The Td and To sets ignore the properties that have a
value in an A but not in a Q specification, assuming
that requesters are not interested in properties that do
not annotate in queries.

4.2.2.1 NFS functions: The dt function computes
the similarity of two datatype value sets VA and VQ

by comparing straightforwardly the values. In the case
of xsd :string ranges we use the Jaro-Winkler similarity
measure [17] (str function), a normalized to [0..1] metric
that calculates the similarity of two strings as

dt(VA, VQ) = max
∀va∈VA
∀vq∈VQ

[
str(va, vq)

]
,

obtaining the most similar matching combination. In
any other case, we compare directly the two value
sets, returning a value between 0 and 1 that denotes
the similarity of the sets in terms of the ratio of their
common values, that is:

dt(VA, VQ) =
|VA ∩ VQ|
|VA ∪ VQ| . (7)

The ob function computes the similarity of two sets VA

and VQ of instances in the same way to (7).
Example. For the non-functional object property to of

Table 1, the Q specification has the a1.to = {gr} value
set and the A3 specification the a3.to = {uk} value set.
Therefore, we have that To = {to}, Td = ∅ and

NFS (A3, Q) =
ob({uk}, {gr})

1
=

∣∣{uk} ∩ {gr}
∣∣

∣∣{uk} ∪ {gr}
∣∣ = 0.

For the A2 specification, we have that NFS (A2, Q) = 1,
since they have the same value set for the object property
to, that is, a1.to = a2.to = {gr}. Finally, for the A4

specification, we have that a1.to = {gr} 6= a4.to = ∅.
In that way, NFS (A4, Q) = 0. Note that if we use the
A4 specification as a query, then all the NFS similarities
would be equal to 1, since A4 does not define any non-
functional property, and therefore, Td ∪ To = ∅ for each
A specification in (6).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 8

4.3 Overall Specification Similarity
The overall similarity sim of A and Q specifications is
defined in terms of their TS, FS and NFS similarities.

Definition 11. Let two specifications A and Q. Their simi-
larity sim is the triple 〈TS ,FS ,NFS 〉 of their Taxonomical,
Functional and Non-Functional similarities, that is,

sim(A,Q, FT ,Wf) =
〈TS (A,Q, FT),FS (A,Q,Wf),NFS (A,Q)〉.

The aggregation of the triple similarity into a single
value is computed as the weighted mean sim of the three
similarities according to user requirements, that is,

sim =
a · TS + b · FS + c ·NFS

a + b + c

where a, b and c are normalized weights in [0..1]. The
overall matchmaking algorithm of a Q specification with
a set of A specifications is depicted in Algorithm 1.
The algorithm examines the complete set of the adver-
tisements, applying a two-phase filtering based on the
taxonomical and functional requirements. The rationale
is to prune firstly the advertisements that do not taxo-
nomically match with the query, in order for the more
costly functional similarity procedure to be applied on a
smaller set of advertisements.

More specifically, for each advertisement Ai of the SA
set (line 2), the algorithm computes firstly the TS (line 3).
If the TS equals to 0 or it is less than the threshold lt (line
4), then the Ai is ignored and the algorithm continues
with the next specification. The lt defines the minimum
acceptable similarity between the taxonomical concepts,
allowing to incorporate different degrees of relaxation.
The algorithm continues by computing the FS (line 7)
using the Web service filter Wf that is given as input to
the algorithm. Similarly to the TS, if the functional sim-
ilarity equals to 0 or it is less than the threshold lf (line
8), the algorithm continues with the next specification.
The lf threshold has similar role to the lt threshold and
defines the minimum acceptable functional similarity. If
the computed FS value is acceptable then the algorithm
retrieves the Web service filter wf that the Q and A
specifications satisfy (line 11). The algorithm continues
with the computation of the NFS (line 12) and finally, the
sim value is computed (line 15) and the result is added to
the set matches of the matched specifications as a triple
of the matched specification, the sim value and the Web
service filter wf (line 16).

The matched advertisements are returned according to
the grouping filter that satisfy (line 20). More specifically,
each triple of the matches set is added to the G array
(lines 20 and 21) that contains 16 sets, one set for each
of the 16 grouping filters we have described in section
4.2.1 (xWe, xiWe, etc.). Finally, each set is ordered by the
sim value of the triples (line 24) and G is returned.

Example. We exemplify on Algorithm 1, using the EC
distance, setting a = 0.8, b = 1 and c = 0.1, and ignoring
the lt and lf parameters for simplicity. If we select FT =

Algorithm 1 The specification matchmaking algorithm
Require: a query advertisement Q, the set SA of the

advertised services, the taxonomical filter set FT , the
Web service filter Wf , the weights a, b, c ∈ [0..1] and
two threshold filters lt, lf ∈ [0..1]

Ensure: an array of sets that contains the matched ser-
vices grouped in each of the 16 grouping filters

1: matches ← ∅
2: for all Ai ∈ SA do
3: ts ← TS (Ai,Q, FT)
4: if ts = 0 ∨ ts < lt then
5: continue
6: else
7: fs ← FS (Ai,Q,Wf)
8: if fs = 0 ∨ fs < lf then
9: continue

10: else
11: wf ← getWf (Ai,Q)
12: nfs ← NFS (Ai,Q)
13: end if
14: end if

15: sim ← a · ts + b · fs + c · nfs
a + b + c

16: matches ← matches ∪ {〈Ai, sim,wf 〉}
17: end for
18: G[16] ← [∅, · · · ,∅] . An array of 16 sets
19: for all t ← 〈Ak, sim,wf 〉 ∈ matches do
20: y wf ← getGroupingF ilter(Q,Ak)
21: G[y wf] ← G[y wf] ∪ {t}
22: end for
23: for i ← 1, 16 do
24: G[i] ← binarySortsim,desc(G[i])
25: end for
26: return G

{e} and Wf = We, then none of the advertisements will
be matched, since the A2 and A3 specifications will be
pruned during the computation of the FS (Book si∼ Maga-
zine) and the A4 specification will be pruned during the
computation of the TS (Search si∼ Order). By setting Wf =
Wsi, we are able to retrieve the A2 and A3 specifications
with simA2 = a·1+b·0.774+c·1

a+b+c = 0.881 and simA3 =
a·1+b·0.774+c·0

a+b+c = 0.828 (see the examples of sections 4.1.1,
4.2.1 and 4.2.2 for the computation of the similarity
values). Furthermore, both specifications satisfy the xWsi

grouping filter (same number of I/Os to Q), and there-
fore, G[xWsi] = {〈A2, 0.881, xWsi〉, 〈A3, 0.828, xWsi〉}.

Moreover, by setting FT = {e, si}, we are able
to retrieve also the A4 specification with simA4 =
a· 15+b·1+c·0

a+b+c = 0.61 and G[xoWe] = {〈A4, 0.61, xoWe〉}.
Note that, even if the sim value of A4 is less than
the sim values of the other two specifications, A4 will
be returned as a more relevant match, followed by
A2 and A3, since the order of relaxation defines that
xoWe < xWsi (see section 4.2.1). In other words, the sim

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 9

0,1

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Query ID

T
im

e
 (

s
e
c
)

OWLS-SLR (Upw ards cotopic) OWLS-SLR (Edge distance) OWLS-M4

Fig. 2. Query response times

values are used to order the triples of the same grouping
set G[i], whereas the total ordering of the matches are
defined based on the relaxation of the 16 grouping filters.
We argue that such an approach results in a better Top-k
precision (section 5.2), than of following a total ordering
based on the sim values.

5 EXPERIMENTAL RESULTS

We tested OWLS-SLR and compared it to the OWLS-
MX [8] matchmaker (v1.1c), using the OWLS-TC version
2.2 revision 2 collection [18] with 1007 OWL-S advertise-
ments and 29 queries. We have chosen OWLS-MX since
it is a well-known matchmaker, having been extensively
tested on the OWLS-TC collection. Furthermore, it uses
lightweight OWL-S SP descriptions like OWLS-SLR, it
is able to incorporate the structural information of the
domain ontologies through concept unfolding (nearest
neighbors - NN), and it is defined upon Pellet, the same
reasoner we also use. We used the M4 configuration
of OWLS-MX as the best configuration according to
[8]. The OWLS-SLR configuration involved FT = {e},
a = 0.8, b = 1, c = 0.1 and lt = lf = 0.5. We have
chosen this configuration as the best one, after a number
of experiments on the collection. The experiments ran
on a Windows XP PC with 3.2 GHz processor, setting
maximum JAVA heap size of 800 Mbytes.

5.1 Loading and Query Response Time
The loading time involves the time needed to parse
and process the advertisements and queries, whereas
the query time involves the time needed to apply the
matchmaking algorithm. OWLS-SLR depicts a consid-
erably better loading and query response performance
compared to OWLS-M4. OWLS-SLR loaded the dataset
in about 30 seconds, whereas OWLS-M4 needed more
than 30 minutes. Fig. 2 depicts the query response times
of OWLS-SLR and OWLS-M4. In OWLS-SLR, the UC-
related distance is computed faster than the EC, since the
latter requires the traverse of all the paths between the
concepts. However, both configurations perform faster
than OWLS-M4 that depicts a constant query response
performance.

5.2 Precision and Recall

We used the relevance sets of the collection in order
to perform precision and recall tests. Due to the fact
that the collection defines only direct Profile instances,
we created also a taxonomy-based collection in order to
test the performance taking into account the TS. Note
that OWLS-MX can handle only direct Profile instances.
Fig. 3 depicts the average precision and Fig. 4 the
average recall of all queries for OWLS-M4 and OWLS-
SLR, according to the Web service filter that was used.
We have omitted the subsumed-by filter of OWLS-MX for
presentation purposes.

OWLS-M4 has in general better precision than OWLS-

0.5

0.55

0.6

0.65

0.7

0.75

Exact Plugin Subsumes NN/Sibling

P
r
e
c
is

io
n

OWLS-SLR (Edge distance)

OWLS-SLR (Edge distance/Taxonomy)

OWLS-SLR (Upwards cotopic)

OWLS-SLR (Upwards cotopic/Taxonomy)

OWLS-M4

Fig. 3. Average precision.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exact Plugin Subsumes NN/Sibling

R
e
c
a
ll

OWLS-SLR (Edge distance)

OWLS-SLR (Edge distance)/Taxonomy

OWLS-SLR (Upwards cotopic)

OWLS-SLR (Upwards cotopic/Taxonomy)

OWLS-M4

Fig. 4. Average recall.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 10

SLR in the collection without a Profile taxonomy, show-
ing that the filter definitions that it follows, which are
based on [12], fit better to the specific collection. How-
ever, by performing domain-oriented discovery, OWLS-
SLR outperforms OWLS-M4, justifying the advantage of
a domain-oriented approach to SWS discovery. The recall
of OWLS-SLR using the Profile taxonomy is a little bit
lower than the one without taxonomy, since some results
do not pass the FT = {e} filter set.

In most cases, we are interested in the first k results of
a query. Fig. 5 depicts the average precision of all queries
for OWLS-SLR and OWLS-M4 at the Top-k places. The
precision at Top-k for a query q is computed as

Relevantq ∩Returnedq,k

Returnedq,k

where Relevantq is the relevance set of q, and
Returnedq,k is the Top-k results of the returned adver-
tisements. The experiments have shown that OWLS-SLR
has a considerably better precision than OWLS-M4 on
the results that are returned first.

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
Top-K

A
v

e
ra

g
e

 P
re

c
is

io
n

 a
t

K

OWLS-SLR (Edge distance)

OWLS-SLR (Edge distance/Taxonomy)

OWLS-SLR (Upwards cotopic)

OWLS-SLR (Upwards cotopic/Taxonomy)

OWLS-M4

Fig. 5. The average precision at Top-k places.

5.2.1 Scalability
In order to test the scalability of OWLS-SLR, we gen-
erated synthetic datasets by altering the base URI of
advertisements. Fig. 6 depicts the scalability of OWLS-
SLR in terms of loading and Fig. 7 depicts the scalability
in terms of query response time. For the legibility of
the presentation, Fig. 7 depicts only the query response
times up to 4028 advertisements, using the UC-related
distance. OWLS-SLR scales very well (almost linearly)
both on loading and query response time.

5.2.2 Discussion
We believe that the approach of OWLS-MX to maintain
and modify a local ontology imposes an extra overhead
on the loading performance. OWLS-SLR loads directly
the Profile instances as well as the domain ontologies
into the reasoner and therefore, any loading overhead
is only related to the capabilities of the underlying
reasoner. Furthermore, OWLS-MX performs a concept
unfolding for determining concept similarities in the
case of nearest neighbor (sibling) matches, generating
vectors on which the IR techniques are applied. The
determination of the sibling relationships in OWLS-SLR

0

20

40

60

80

100

120

1007 2014 3021 4028 5035 6042

#advertisements

T
im

e
 (

s
)

Fig. 6. OWLS-SLR scalability in terms of loading time.

is performed directly on the reasoner’s graph that seems
to be a more efficient and scalable approach.

Regarding precision and recall, the strong point of
OWLS-SLR is that it allows the existence of a Profile
taxonomy in contrast to OWLS-MX that handles only
direct Profile instances. To demonstrate the effectiveness
of the TS in matchmaking, we present an example taken
from OWLS-TC. EBookOrder1 is a query of the collection
with the object specification 〈q, {Economy}, {Title, User},
{Book},{}〉. Without taking into account the Profile tax-
onomy, the EBookOrder1 query matches the BookFinder
advertisement, which is defined as 〈adv, {Education},
{Title}, {Book},{}〉, in both OWLS-SLR and OWLS-MX.
However, these two specifications belong to different
domains (Economy and Education) and the relevance set
of EBookOrder1 does not contain the BookFinder adver-
tisement. By considering the Profile taxonomy in OWLS-
SLR, the BookFinder advertisement is not returned in our
experiments, since FT = {e}.

Furthermore, OWLS-SLR orders the results based on
grouping filters (section 4.2.1). OWLS-MX does not per-
form grouping, returning the results based on a total
similarity ordering. In that way, OWLS-SLR has better
Top-k precision since some matches are considered more
relevant to some others, even if they satisfy the same
Web service filter.

6 ROLE-DRIVEN WEB SERVICE DISCOVERY

The OWL-S SP paradigm uses predefined ontology con-
cepts to annotate the Web service I/O parameters. How-
ever, it is impractical and not realistic to assume that
there will always be an ontology concept suitable for our
needs. The ontology roles are also important modeling
constructs that encapsulate domain knowledge. Bear in
mind that the CC approach makes extensive use of
ontology roles. We exploit the classification capabilities
of DL reasoning, and we enhance our framework with
the ability to perform SWS discovery using also ontology
roles as annotation constructs.

6.1 Role-oriented Annotation Concepts
We introduce the notion of the Role-oriented Annotation
Concept (RAC), a specially defined concept that derives
from cardinality restrictions on ontology roles.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 11

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Query ID

T
im

e
 (

m
s
)

1007 2014 3021 4028

Fig. 7. Query response times according to the number of the loaded advertisements.

Definition 12. Let R be a set of ontology roles. The Role-
oriented Annotation Concept for the set R is the equivalent
concept to the intersection of minimum cardinality restrictions
of the form

RACR ≡ ≥ 1ri.> u · · · u ≥ 1rn.>, ∀ri ∈ R. (9)

We extend (9) in order to incorporate named classes
as

RACR ≡ C1 u · · · u Cmu ≥ 1ri.> u · · · u ≥ 1rn.>, (10)

where Cm are domain concepts. Practically, a RAC is an
ontology concept that is defined using roles and con-
cepts. In fact, our RAC-based approach tries to incorpo-
rate the CC modeling capabilities into the SP paradigm.
However, instead of considering a Web service as a
whole, we give the opportunity to treat a particular input
or output parameter as a whole.

6.2 Example and Experiments

The RAC-oriented discovery requires the runtime clas-
sification of RACs in domain ontologies. To this end,
we enhanced OWLS-SLR with the ability of altering at
runtime the domain ontologies. However, all the query
RACs are removed from the domain ontologies after the
application of the matchmaking algorithm, preserving
the initial ontology structure.

We extended the OWL-S Process concept so as
to allow OWLS-SLR to handle Web service Pro-
file instances that contain either RACs or ordi-
nary ontology concepts. More specifically, we de-
fined the rac:Input and rac:Output concepts as spe-
cializations to the process:Input and process:Output
concepts. We defined also the roles rac:concept and
rac:minCardinalityRestriction in order to enable the def-
inition of Cm’s and role restrictions in (10).

We exemplify on the way ontology roles can be used
as annotation constructs, using the (input) RAC-oriented
advertisements of Table 2 that describe Web services
that return the price of books. For simplicity, all the
outputs have been annotated with the Price concept. In
A1, the input is annotated using the equivalent RAC to
the Book concept. This is similar to the SP paradigm,
using directly an ontology concept. In A2, the input is

annotated with a RAC based on the role title, and A3

defines a RAC using the role isbn. Finally, A4 defines an
input RAC using both the title and the isbn roles.

TABLE 2
RAC-oriented Specifications

Domain Ontology Axioms

Book v title.> u isbn.>, BookService v >, Price v >
A and Q Specifications

A1 = 〈adv1, {BookService}, {RACA}, {Price}, {}〉
A2 = 〈adv2, {BookService}, {RACB}, {Price}, {}〉
A3 = 〈adv3, {BookService}, {RACC}, {Price}, {}〉
A4 = 〈adv4, {BookService}, {RACD}, {Price}, {}〉
Q = 〈q, {BookService}, {RACE}, {Price}, {}〉

RAC Definitions

RACA ≡ Book, RACB ≡≥ 1title.>, RACC ≡≥ 1isbn.>,
RACD ≡≥ 1title.>u ≥ 1isbn.>, RACE ≡ RACB

owl:Thing
RACA

Book

RACB

RACD

RACC

Price

BookService

Fig. 9. The TBox relationships among the RACs.

By classifying the RACs into the domain ontology of
Table 2, we obtain the TBox relationships of Fig. 9.

Let the Q specification of Table 2. By classifying RACE

in the domain ontology, we get that RACE ≡ RACB .
Therefore, if we use the We filter during matchmak-
ing, only the A2 specification will be returned, since it
matches exactly all the I/Os of Q. By relaxing the Web
service filter, we retrieve the other three A specifications,
as well. More specifically, the Wp filter returns A4,
since RACD

p∼ RACE , the Wsu filter returns A1, since
RACA

su∼ RACE , and the Wsi filter returns A3, since
RACA

si∼ RACE . In that way, ontology roles can be used
as annotation concepts in matchmaking.

In order to test the performance of the RAC-based
SWS matchmaking, we used the OWLS-TC collection

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 12

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Query ID

T
im

e
 (

s
)

OWLS-SLR (RAC) OWLS-SLR (Typical) OWLS-M4

Fig. 8. The RAC-based against the typical query response time of OWLS-SLR and OWLS-MX.

and for each I/O query concept C we defined the
equivalent RAC, that is, RAC ≡ C, in a similar way to
the A1 RAC-oriented advertisement of Table 2. In that
way, we were able to use the same relevance set to the
initial collection, as well as to test the performance of
the runtime concept classification.

As far as precision and recall are concerned, the
experiments resulted in the same performance that we
achieved in OWLS-SLR using the typical query collection
(Fig. 3 and 4). This fact justifies the soundness of the
RAC-based implementation of OWLS-SLR.

Regarding query response time, OWLS-SLR requires
more time to answer the RAC-based queries than in
the typical collection, as it is depicted in Fig. 8. This
happens since the computation of the FS similarity in-
volves also the time Pellet requires to classify and delete
the RAC concepts, in contrast to the typical OWLS-SLR
functionality, where the TBox reasoning is performed
in advance. However, we believe that the role-driven
SWS discovery offers more capabilities than the typical
OWL-S SP-oriented paradigm, allowing both concepts
and roles to be considered in the annotation process. It is
worth mentioning that the RAC-based query answering
performance of OWLS-SLR is better than of OWLS-MX.

7 RELATED WORK

OWL-S [5], SAWSDL [19], WSDL-S [20] and WSMO
[9] constitute the major standards for semantic Web
service annotation. Apart from the Light approach we
described in section 2.1.1, WSMO-DF allows the defi-
nition of descriptions with higher level of detail. The
WSMO capability element is able to encapsulate goals,
mediators, preconditions and assumptions. It is argued
that a similar level of detail can also be used in OWL-S
[21], [22] through, for example, the Process model [23]
or preconditions and effects [24], [25]. A lightweight
approach, such as ours, can be used as an initial step to
retrieve a set of candidate Web services on where more
complex and sophisticated algorithms can be applied.

In [26], Web services are annotated in terms of state
transitions. Actually, the Rich Web service representa-
tion of WSMO-DF is followed, using an environmental
ontology. In contrast to [26], we follow the SP model,
exploiting the structural ontology information.

IRS-III [27] extends the WSMO conceptual model and
uses the OCML language for internal representation and
an OCML reasoner. In contrast to our framework, IRS-III
follows the Rich WSMO model and a frame-based rule
language for representing ontologies.

A search engine for grid service discovery is presented
in [28], using the Rough sets theory. The novelty is in
its capability to deal with uncertain properties, that is,
properties that are explicitly used by one advertisement
but do not appear in another service of the same cate-
gory. In our framework, we examine only the common
properties of an advertisement and query.

In [29], an approach based on context-aware ratings
and context-aware experiences is proposed in order to
select services. Consumers use ontologies to express the
context of their interactions with service providers as a
whole, instead of using the SP. It targets mainly at rating
environments without exploiting structural knowledge,
but it may be used in Web service discovery.

In [30], Web service descriptions are defined as CCs
in OWL and the matchmaking procedure examines the
subsumption relationships. FC-MATCH [31] follows the
same approach, performing also text similarity matching
using WordNet. In [32], a framework for annotating
Web services using DLs is presented. Similar to ours,
it follows the abstract Web service model. However, it
treats Web services as a whole.

In the DAML-S/UDDI Matchmaker [33], OWL-S SP
advertisements and requests refer to DAML concepts
and the matching process performs inferences on the
subsumption hierarchy. It uses a different definition of
Web service filters from ours and it does not consider
Profile taxonomies, roles or grouping filtering.

LARKS [34] uses both syntactic and semantic match-
ing. It uses five matchmaking filters, namely context
matching, profile comparison, similarity matching, sig-
nature matching and constant matching. LARKS uses its
own capability description and DL language in contrast
to our OWL-based approach.

OWLS-MX [8] utilizes both logic-based reasoning and
content-based IR techniques for Web services in OWL-
S. As we have already mentioned, it cannot handle
Profile taxonomies and it follows the static SP paradigm,
unable to use dynamically ontology roles. iMatcher2 [35]
follows the OWLS-MX approach, applying also learning

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 13

algorithms in order to predict similarities. Like OWLS-
MX, it uses a DL reasoner in order to unfold the anno-
tation concepts, creating a vector on which the IR tech-
niques are applied. iMatcher2 does not follow a standard
matchmaking algorithm, which is defined through an
iSPARQL strategy. WSMO-MX [36] is a hybrid approach
based on Rich WSMO service descriptions.

There are plenty of other approaches that are based
on I/Os, for example [37], [38], [25]. To the best of
our knowledge, these approaches do not perform ABox
reasoning on Profile instances in order to exploit the
domain knowledge of Profile instances. Instead, they
retrieve directly the I/O annotations and any taxonom-
ical knowledge stems from special properties, such as
service categorization. Furthermore, they do not consider
roles, using static annotation concepts, and do not apply
further filtering on results (grouping filtering). METEOR-
S [39] follows the WSDL-S approach, where WSDL con-
structs point to ontology concepts.

Our work has been motivated by a previous work
of ours [40] that implements Object-Oriented similarity
measures for SWS discovery, using a production rule en-
gine [41]. In the present work, (a) we use a DL reasoner
to handle SWS descriptions and to apply an extended
matchmaking algorithm, (b) we define two new OWL-
S Profile-aware and DL-based similarity measures and
(c) we propose a framework for the incorporation of
ontology roles in the SP SWS discovery paradigm.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an OWL-S SP-aware frame-
work for SWS discovery, using abstract and lightweight
Web service descriptions. Our intention is to define a
framework that can be used as a prephase in more fine-
grained approaches that incorporate rich Web service
descriptions, such as preconditions, effects or state tran-
sitions. In that way, the complex and sophisticated algo-
rithms would be applied on a smaller set of candidate
Web service descriptions than the complete initial set.

In an effort to enhance the instance-oriented SP dis-
covery paradigm with the domain modeling capabilities
found on CC approaches, (a) we allow the existence of
Profile taxonomies, and (b) we enable the annotation of
I/Os with ontology roles. Moreover, we defined a match-
making algorithm that exploits the structural knowledge
of ontologies, for example, sibling concept relationships,
by considering advertisements and requests as objects
and by implementing concept (dis-) similarity measures.

We presented also a comparison of OWLS-SLR to
OWLS-MX. The experiments have shown a consider-
ably better performance on loading and querying of
OWLS-SLR than of OWLS-MX. Furthermore, we were
able to increase precision and recall using grouping
filters (Top-k experiments) and performing taxonomy-
based discovery. The results seem very promising, as
far as the requirement for a fast filtering of Web service
advertisements is concerned.

OWLS-SLR is available at [42], together with the ex-
perimental collections we have used. For the future, we
plan to enhance our framework with more structural
[43] and information-content similarity measures [44],
[45], [46]. Currently, we are working on enhancing our
framework with composition capabilities in order to
return not only single Web services, but also Web service
compositions [47] based on abstract descriptions.

ACKNOWLEDGMENTS

This work was partially supported by a PENED program
(EPAN M.8.3.1, No. 03∆73), jointly funded by EU and
the General Secretariat of Research and Technology.

REFERENCES

[1] WSDL 1.1, http://www.w3.org/TR/wsdl, 2001.
[2] M. Burstein, C. Bussler, M. Zaremba, T. Finin, M. N. Huhns,

M. Paolucci, A. P. Sheth, and S. Williams, “A Semantic Web
Services Architecture,” IEEE Internet Comput., vol. 9, no. 5, pp.
72–81, 2005.

[3] C. Preist, “A Conceptual Architecture for Semantic Web Services,”
in Int’l Semantic Web Conf., 2004, pp. 395–409.

[4] U. Keller, R. Lara, H. Lausen, and D. Fensel, Semantic Web Service
Discovery in the WSMO Framework. Idea Publishing Group, 2006.

[5] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci,
K. Sycara, D. L. Mcguinness, E. Sirin, and N. Srinivasan, “Bringing
Semantics to Web Services with OWL-S,” World Wide Web, vol. 10,
no. 3, pp. 243–277, September 2007.

[6] R. Bergmann and M. Schaaf, “Structural Case-Based Reasoning
and Ontology-Based Knowledge Management: A Perfect Match?”
J. Universal Computer Science (UCS), vol. 9, no. 7, pp. 608–626, 2003.

[7] F. Baader, The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, January 2003.

[8] M. Klusch, B. Fries, and K. Sycara, “”OWLS-MX: A Hybrid
Semantic Web Service Matchmaker for OWL-S Services”,” J. Web
Sem., vol. In Press, Corrected Proof, 2008.

[9] D. Fensel, H. Lausen, A. Polleres, J. D. Bruijn, M. Stollberg,
D. Roman, and J. Domingue, Eds., Enabling Semantic Web Services:
The Web Service Modeling Ontology. Springer-Verlag, 2006.

[10] OWL, http://www.w3.org/2004/OWL/, 2004.
[11] OWL-S 1.1 Release: Examples, http://www.daml.org/services/

owl-s/1.1/examples.html, 2004.
[12] A. M. Zaremski and J. M. Wing, “Specification Matching of

Software Components,” in 3rd ACM SIGSOFT Symposium on
Foundations of Softw. Eng., 1995, pp. 6–17.

[13] UDDI, www.oasis-open.org/committees/uddi-spec, 2005.
[14] N. Srinivasan, M. Paolucci, and K. P. Sycara, “An Efficient Algo-

rithm for OWL-S Based Semantic Search in UDDI,” in Semantic
Web Services and Web Process Composition, 2004, pp. 96–110.

[15] A. Maedche and V. Zacharias, “Clustering Ontology-Based Meta-
data in the Semantic Web,” in European Conf. Principles of Data
Mining and Knowledge Discovery, London, 2002, pp. 348–360.

[16] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A Practical OWL-DL Reasoner,” J. Web Sem., vol. 5, no. 2, pp.
51–53, 2007.

[17] W. Winkler, “The State of Record Linkage and Current Research
Problems,” in Survey Methods Section, Statistical Society of Canada,
1999, pp. 73–80.

[18] OWLS-TC version 2.2 revision 2, http://projects.semwebcentral.
org/projects/owls-tc/, 2008.

[19] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL:
Semantic Annotations for WSDL and XML Schema,” IEEE Internet
Comput., vol. 11, no. 6, pp. 60–67, 2007.

[20] WSDL-S, http://www.w3.org/Submission/WSDL-S/, 2005.
[21] M. Paolucci, N. Srinivasan, and K. Sycara, “Expressing WSMO

Mediators in OWL-S,” in Semantic Web Services: Preparing to Meet
the World of Business Applications, 3rd Int’l Semantic Web Conf., 2004.

[22] R. Lara, D. Roman, A. Polleres, and D. Fensel, “A Conceptual
Comparison of WSMO and OWL-S,” in European Conf. Web Ser-
vices, 2004, pp. 254–269.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X 200X 14

[23] M. Klein and A. Bernstein, “Toward High-Precision Service Re-
trieval,” IEEE Internet Comput., vol. 8, no. 1, pp. 30–36, 2004.

[24] M. Klein and B. König-Ries, “Coupled Signature and Specification
Matching for Automatic Service Binding,” in European Conf. Web
Servcices, 2004, pp. 183–197.

[25] D. Skoutas, A. Simitsis, and T. Sellis, “A Ranking Mechanism for
Semantic Web Service Discovery,” in IEEE Congress on Services,
2007, pp. 41–48.

[26] P. Wang, Z. Jin, L. Liu, and G. Cai, “Building Toward Capability
Specifications of Web Services Based on an Environment Ontol-
ogy,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 4, pp. 547–561,
2008.

[27] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta,
B. Norton, and C. Pedrinaci, “IRS-III: A Broker-based Approach
to Semantic Web Services,” J. Web Sem., vol. 6, no. 2, pp. 109–132,
2008.

[28] M. Li, B. Yu, O. F. Rana, and Z. Wang, “Grid Service Discovery
with Rough Sets,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 6, pp.
851–862, 2008.

[29] M. Şensoy and P. Yolum, “Ontology-Based Service Representation
and Selection,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 8, pp.
1102–1115, 2007.

[30] L. Li and I. Horrocks, “A Software Framework for Matchmaking
Based on Semantic Web Technology,” in Int’l Conf. World Wide
Web, 2003, pp. 331–339.

[31] D. Bianchini, V. D. Antonellis, M. Melchiori, and D. Salvi,
“Semantic-Enriched Service Discovery,” in Int’l Conf. Data Eng.
Workshops, 2006, p. 38.

[32] S. Grimm, B. Motik, and C. Preist, “Matching Semantic Service
Descriptions with Local Closed-World Reasoning,” in European
Semantic Web Conf., 2006, pp. 575–589.

[33] K. P. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan,
“Automated Discovery, Interaction and Composition of Semantic
Web Services,” J. Web Sem., vol. 1, no. 1, pp. 27–46, 2003.

[34] K. Sycara, S. Widoff, M. Klusch, and J. Lu, “LARKS: Dynamic
Matchmaking Among Heterogeneous Software Agents in Cy-
berspace,” Autonomous Agents and Multi-Agent Systems, vol. 5,
no. 2, pp. 173–203, 2002.

[35] C. Kiefer and A. Bernstein, “The Creation and Evaluation of
iSPARQL Strategies for Matchmaking,” in European Semantic Web
Conf., 2008, pp. 463–477.

[36] F. Kaufer and M. Klusch, “WSMO-MX: A Logic Programming
Based Hybrid Service Matchmaker,” in European Conf. Web Serv-
cices, 2006, pp. 161–170.

[37] J. Cardoso, “Discovering Semantic Web Services with and without
a Common Ontology Commitment,” in IEEE Services Comput.
Workshops, 2006, pp. 183–190.

[38] J. Pathak, N. Koul, D. Caragea, and V. G. Honavar, “A Framework
for Semantic Web Services Discovery,” in ACM Int’l Workshop on
Web Information and Data Management, 2005, pp. 45–50.

[39] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar,
and J. Miller, “METEOR-S WSDI: A Scalable P2P Infrastructure
of Registries for Semantic Publication and Discovery of Web
Services,” Inf. Technol. and Management, vol. 6, no. 1, pp. 17–39,
2005.

[40] G. Meditskos and N. Bassiliades, “Object-Oriented Similarity
Measures for Semantic Web Service Matchmaking,” in European
Conf. Web Services, 2007, pp. 57–66.

[41] G. Meditskos and N. Bassiliades, “A Rule-Based Object-Oriented
OWL Reasoner,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 3, pp.
397–410, 2008.

[42] OWLS-SLR, http://lpis.csd.auth.gr/systems/OWLS-SLR, 2008.
[43] V. Schickel-Zuber and B. Faltings, “OSS: A Semantic Similarity

Function based on Hierarchical Ontologies,” in Int’l Joint Conf. of
Artificial Intell., 2007, pp. 551–556.

[44] P. Resnik, “Using Information Content to Evaluate Semantic
Similarity in a Taxonomy,” in Int’l Joint Conf. of Artificial Intell.,
1995, pp. 448–453.

[45] D. Lin, “An Information-theoretic Definition of Similarity,” in Int’l
Conf. Machine Learning, 1998, pp. 296–304.

[46] P. M. Schwarz, Y. Deng, and J. E. Rice, “Finding Similar Ob-
jects Using a Taxonomy: A Pragmatic Approach,” in Int’l Conf.
Databases and Applications of Semantics, 2006, pp. 1039–1057.

[47] U. Küster, B. König-Ries, M. Stern, and M. Klein, “DIANE: An
Integrated Approach to Automated Service Discovery, Matchmak-
ing and Composition,” in Int’l Conf. WWW, 2007, pp. 1033–1042.

George Meditskos received the BSc degree in
computer science in 2004 and the MSc degree
in computer science in 2007 from the Aristotle
University of Thessaloniki, Greece. Since 2004,
he has been a PhD student in computer science
at the Aristotle University of Thessaloniki. His
research interests include semantic Web, se-
mantic Web services, and artificial intelligence.

Nick Bassiliades received the PhD degree in
parallel knowledge base systems in 1998 from
the Department of Informatics, Aristotle Univer-
sity of Thessaloniki, Greece. He is currently
an assistant professor in the Department of In-
formatics, Aristotle University of Thessaloniki.
His research interests include knowledge-based
systems, rule systems, and the semantic Web.
He has published more than 100 papers in jour-
nals, conferences, and books and coauthored an
international book on parallel, object-oriented,

and active knowledge-based systems and a Greek book on artificial
intelligence. He is a member of the Board of the Greek Artificial Intel-
ligence Society, a director of RuleML Inc., and also a member of the
Greek Computer Society, the IEEE, and the ACM.

