

Object-Oriented Similarity Measures for Semantic Web Service Matchmaking

Georgios Meditskos and Nick Bassiliades
Aristotle University of Thessaloniki, Greece

{gmeditsk,nbassili}@csd.auth.gr

Abstract

The semantic annotation of Web services capabilities

with ontological information aims at providing the neces-
sary infrastructure for facilitating efficient and accurate
service discovery. The main idea is to apply reasoning
techniques over semantically enhanced Web service re-
quests and advertisements in order to determine Web ser-
vices that meet certain requirements. In this paper we
present our work for introducing similarity measures in-
spired from the domain of Object-Oriented paradigm for
ontology concept matching. Our work focuses on the utili-
zation of such measures over an Object-Oriented schema
that is created through mapping rules of OWL constructs
and semantics into the Object-Oriented model. The goal
of the approach is to combine the Object-Oriented repre-
sentation of the information and the reasoning over OWL
semantics in order to enhance the retrieval of semanti-
cally relevant, to some criteria, Web services.

1. Introduction

While the number of the deployed Web services on the

Internet increases, the ability of automatically and accu-
rately discovering one with a specific functionality be-
comes more and more important. The Web service dis-
covery process incorporates not only the location of a
single Web service that satisfies specific user’s require-
ments but also it is a vital procedure during composition,
i.e. the combination of more than one Web services in
order to create a new service with enhanced functionality.
In this case, the discovery process is performed in each
step of the composition plan in order to determine candi-
date Web services that meet sub-requirements.

The combination of Semantic Web techniques with
Web services seems the best way to give the appropriate
semantic notion to Web services in order to achieve the
desirable level of automation, leading to the notion of the
semantic Web services. Languages and frameworks such
as the OWL-S [15], WSMO [22] and WSDL-S [21] use
ontologies for the description of Web services capabili-
ties, enabling the utilization of ontology reasoning en-
gines to process this information and to derive conclu-
sions. In that way, queries for a specific functionality are

semantically matched with Web services capabilities
based on the language semantics, e.g. OWL [14], leading
to semantically accurate results.

However, the matchmaking procedure based only on
logic-based reasoning is restricted to the determination of
the subsumption relationships among the concepts of the
ontology. Thus, although the matchmaking results capture
semantic information stemming from the ontology, ignore
structural information of the schema which may enhance
the retrieval of relevant concepts, unable to be captured
by the reasoning process.

In this paper we define a methodology for the discov-
ery of Web services by utilizing similarity measures in-
spired from the domain of the Object-Oriented (OO) pa-
radigm. The main idea is to introduce techniques which
are able not only to handle the subsumption relationships
that derive from reasoning on OWL ontologies but also to
capture useful hierarchical relationships, such as the indi-
rect relationship between two sibling classes, in order to
augment the matchmaking process.

The rest of the paper is organized as follows: in section
2 we describe the notion of similarity in the OO para-
digm. In section 3 we present shortly the methodology of
transforming OWL ontologies into the OO model. In sec-
tion 4 we analyze the potential utilization of OO similar-
ity measures during Web services matchmaking and we
describe in detail our methodology. In sections 5 and 6 we
give a feeling of the application of our methodology in
simple use cases. In section 7 we give related work on the
field of semantic Web service matchmaking and finally in
section 8 we conclude giving future directions.

2. Similarity in the OO Paradigm

The notion of similarity in the OO paradigm is used

mainly for determining fragments of duplicated code
(clone detection), emphasizing on the reuse that is respon-
sible for the increase in software quality and development
productivity [8][13][18]. The algorithms are based on the
definition of similarity measures that characterize class
definitions at the level of source code, such as properties,
packages, methods, lines of code (LOC) etc. and by using
clustering or tree algorithms they manage to identify simi-
lar classes. Such measures have been also used in the do-

main of the case-based reasoning for determining similar
solutions to similar problems [1][3][10].

To the best of our knowledge, only [1] defines object
similarity measures that are stemmed directly from the
class hierarchy. The goal is to determine the similarity
between two objects, i.e. one object representing the case
and one object representing the query, a paradigm very
similar to the discovery of a Web service, where the
“query object” is the query for a service with a specific
functionality and the “case objects” are the advertise-
ments of Web services. In their approach, they introduce
the notion of the intra-class and inter-class similarity.
The first is based on the common properties of the two
objects whereas the latter on the positions of the object
classes in the hierarchy. The overall similarity between a
query object and a case object can be computed by defin-
ing an equation over the inter- and intra-class similarity.

Generally, the intra-class similarity between two ob-
jects is defined over the values of their common proper-
ties, i.e. it is computed over the properties of the most
specific common superclass of the examined objects. This
ensures that the properties being examined are inherited to
both objects. During this procedure, a matching algorithm
is applied in both simple attributes, i.e. integers or strings,
and relational attributes, i.e. attributes that take objects as
values. The overall intra-class similarity for two objects is
derived from the aggregation of both similarities. Let k be
the number of properties of the common class of two ob-
jects a and b with Sn and Rm being the simple and rela-
tional properties respectively (n + m = k), fs the simple
and fr the relational property matching algorithm and A an
aggregation function. Then, the intra-class similarity
Simintra of the two objects can be defined as:

() (), , , ,
1 1

(,) , , ,
mn

intra s n a n b r m a m bSim a b A f S S f R R =  
 ΘΗ (1)

where H and Θ are aggregation functions for each match-
ing function fs and fr respectively.

Contrary to the intra-class similarity, the inter-class
similarity is defined upon the class hierarchy of the OO
schema, without taking into account class properties. The
idea is to define a similarity value that represents the hier-
archical relationship between the classes of two objects,
independently of the property values of the objects. The
proposed method for defining the inter-class similarity in
[1] distinguishes inner from leaf nodes. More specifically,
it assigns a weight Si to each inner class Ci such that
∀Ci,Ck | Ck Ci : Si ≤ Sk and the inter-class similarity for
two objects of leaf classes is defined as:

1 , if
(,)

, otherwise
i k

inter i k
c

C C
Sim C C

S
=

= 


 (2)

where Sc is the S weight for the most specific common
superclass of Ci and Ck. If one (or both) of the examined
object classes is an inner class, then there are different
cases, concerning class similarity. To give an example, if

the query object belongs to a leaf class C and the case
object to an inner class I, then the similarity is defined as:

1 , if
(,)

, otherwiseinter
c

Q I
Sim Q I

S


= 


 (3)

where Sc is the weight S for the most specific common
superclass of the Q and I classes.

In that way, the overall similarity of two objects a and
b can be defined by an aggregation function Φ over the
intra- and inter-class similarities:

()(,) (,), ((), ())intra interSim a b Sim a b Sim class a class b= Φ (4)

3. Transforming OWL to Object Model

The idea of applying OO similarity measures in the
domain of Web service matchmaking is motivated by the
OO OWL reasoning methodology we define in [12]. We
have developed O-DEVICE1, an extension of the well
known CLIPS production rule engine [2] that handles a
superset of OWL Lite ontologies close to OWL DL, fol-
lowing the OO model (as realized by the CLIPS OO Lan-
guage COOL). In that way (a) we enable the implementa-
tion of OO rule programs over OWL, allowing complex
systems to be modeled as modular components and (b) we
use the resulting OO model as a simplistic form of index-
ing; we can have hierarchical relationships and property
values of an object in one step by exploiting the functions
and the message passing mechanism of CLIPS.

In an OWL ontology, classes and properties are de-
fined as instances of appropriate built-in classes, e.g.
owl:Class or owl:ObjectProperty. The system cre-
ates the objects that correspond to these OWL instances,
which we call meta-objects, and it uses the information
stored in their slots in order to create the classes and the
properties in the OO model.

Each concept C of an ontology is mapped into a class
in the OO model and each TBOX assertion C D is
mapped into a subclass relationship. A class with no ex-
plicit superclasses is defined as subclass of the
owl:Thing class, the superclasses of all classes accord-
ing to the OWL axioms. In that way we can use the OO
environment’s inheritance mechanisms in order to deter-
mine subsumption relationships.

The owl:intersectionOf construct is treated by de-
fining multiple concurrent subclass relationships. If there
is a class C defined as C ≡ A1 A2 ... An, then we define
C Ak, where 1≤k≤n, i.e. each Ak class becomes a direct
superclass of class C and every object of class C is simul-
taneously an object of all Ak classes (Fig. 1 (b)). The
owl:unionOf construct is also treated by defining sub-
class relationships. If there is a class C defined as C ≡ A1

 A2 ... An, then we define Ak C, where 1 ≤ k ≤ n, i.e.
each Ak class becomes a direct subclass of class C (Fig. 1

1 http://lpis.csd.auth.gr/systems/o-device/o-device.html

(c)). Moreover, let there be a set of n equivalent classes
Cn (n>1). The system selects randomly one of the n
classes, e.g. class Cd to become the delegator class and
defines it as a subclass of the rest of the classes, i.e. Cd
Cn where n ≠ d (Fig. 1 (a)). The complete semantics of
these transformations can be found in [12].

Fig. 1. Class equivalence (a), intersection (b) and union (c).

4. Applicability of OO Similarity Measures in

the Domain of Web Service Discovery

In order to exploit the level of the object similarity

knowledge that derives from the OO representation of the
ontology information, we have investigated the possibility
of applying the similarity measures defined in [1] in the
domain of Web service discovery based on the OWL-S
descriptions of services inputs and outputs.

Based on the transformation methodology we men-
tioned in the previous section, we create a native OO
model of classes, properties and instances that reflects the
class and property hierarchy that stems from the seman-
tics of the OWL language. In the case of OWL-S Web
service descriptions, both Web service advertisements and
queries are defined as OWL instances of the Profile class,
an OWL-S class that is used for defining Web services
advertisements (Fig. 2). Thus, each Profile instance is
mapped into an object of the corresponding OO Profile
class and the matchmaking process can be performed by
checking the similarity of the input and output property
values of the profile objects. The goal is to perform mat-
chmaking not based only on the subsumption relation-
ships that are derived from the underlying rule reasoner
but also to exploit the knowledge of similarity that stems
from the OO representation.

One distinctive characteristic of the values of the I/O
properties of the Profile class is that they denote the types
of the I/O values of a query or a Web service and not the
values themselves. This is realized by giving a URI that
denotes an ontology class or a datatype (although the lat-
ter is not recommended since it does not give semantic
information). Thus, the process of determining the simi-
larity between two profile objects requires matching algo-
rithms between datatypes or classes and not between ac-
tual values, e.g. numeric or object values, as the intra-
class measure defines.

Moreover, since all the objects of our interest belong
always to the same class (Profile), the inter-class measure
cannot give useful information about class similarity.

From equation (2), the inter-class similarity of two profile
objects would always be 1, since ∀Ci ,Ck : Ci = Ck and
therefore the equation (4) would only be based on the
intra-class similarity of the objects.

Having identified the differences that restrict the direct
application of the OO similarity measures in the domain
of Web service discovery based on direct objects of the
profile class, we change the definition of the intra- and
inter-class similarity measures to fit our case. In the fol-
lowing, we use the term “simple” to refer to I/Os that de-
note datatypes and the term “relational” to refer to I/Os
that denote class types.

We define the similarity S of two profiles as:
(), , , ,(,) (,), (,)Q W s Q s W s r Q r W rS p p f IO IO f IO IO= Φ (5)

where fs is a function that computes the similarity over
query and Web service simple I/O parameters and fr a
function that computes the similarity between query and
Web service relational I/O parameters.

Equation (5) is analogous to equation (3) that defines
the intra-class similarity. The profile similarity is defined
by checking the I/O property values of a query and a Web
service profile object and according to the referred values,
the simple or relational similarity function is used. How-
ever, in order to take into account hierarchical informa-
tion in the similarity function, we consider as fr the inter-
class similarity of the relational parameters. Intuitively,
the similarity of two profile objects is determined by an
“intra-class” measure that is calculated based also on the
hierarchical information (inter-class) in order to determine
the similarity of the classes referred in the I/Os.

In the following we assume that IQ,s, OQ,s, IW,s and OW,s
are the sets of query and Web service simple I/Os and IQ,r,
OQ,r, IW,r and OW,r are the sets of query and Web service
relational I/Os, respectively.

4.1 Simple Property Similarity

The similarity of I/O parameters that refer to datatypes

can be determined by checking directly the URIs. In our
analysis, we consider only simple numerical datatypes,
i.e. xsd:int, xsd:float, etc., Boolean and string data-
types. We define three levels of similarity:

• exact match: Two datatypes are matched exactly if
they refer to the same type.

Fig. 2. The OWL-S upper ontology.

• numerical type match: Two numerical datatypes
have always a type match, e.g. xsd:int and
xsd:float are type matched.

• mismatch: Two datatypes have a mismatch if there is
not an exact or numerical match, e.g. between the
xsd:int and the xsd:boolean datatypes.

Algorithm 1 describes the fs function that performs da-

tatype checking between a query and an advertisement
simple input parameters. The same function can be used
for simple output values by reversing the order of the pa-
rameters, i.e. fs(OW,s, OQ,s). The fs function determines the
number of matches (exact or numerical) and it gives a
rank value by aggregating the counts of matches giving
different weights to different types.

Algorithm 1: The fs function for simple inputs.
Inputs: The IQ,s and IW,s sets.
Output: A rank value.

function fs(IQ,s, IW,s) {
 var exM := numM := 0
 var N := size(IW,s), A := 1, B := A / 2
 if N = 0 then return 1
 for each d∈IW,s do
 if ∃d′∈ IQ,s ∧ exact(d, d′) then
 exM := exM + 1
 else if ∃d′∈ IQ,s ∧ numerical(d, d′) then
 numM := numM + 1
 else return 0 //mismatch
 return (A * exM + B * numM) / N
}

The algorithm uses a simple aggregation function that

calculates the rank value as the weighted sum of the
matches divided by the number of advertisement inputs. If
there are only exact matches among all inputs, then the
returned value is 1 since exM = N and numM = 0. If there
are only numerical matches then exM = 0 and numM = N /
2 and the similarity equals to 0.5. In any other case, the
rank is a value between 0.5 and 1. The rank value equals
to 0 whenever a mismatch is detected.

4.2 Relational Property Similarity

The similarity of I/O parameters that refer to class

types can be determined using the inter-class similarity
measure. In the OO paradigm, the inter-class measure is
used in order to determine the similarity of two classes
according to their position in the hierarchy. Thus, it is
feasible to use such a measure in order to find the similar-
ity of the classes referred by the I/O profile properties.

In order to realize the inter-class algorithm, each inner
class of the hierarchy should be assigned with an S

weight, as we have mentioned in section 2. However, the
algorithm for weight assignment and for determining the
inter-class similarity proposed in [1] cannot constitute an
absolute measure for defining class similarity. For exam-
ple, consider the class hierarchy of Fig. 3. According to
equation (3), the similarity among a query object of the
class B and a case object of the class C should be SA since
A is the most specific common superclass of B and C.
Furthermore, the similarity between class B and of every
subclass of D should be again SA for the same reason. But
intuitively, the similarity between B and C should be
greater than the similarity between B and, for example, F.
The problem is that the algorithm does not take into ac-
count the level of the examined classes in relation to their
most specific common superclass.

In our approach, we do not assign a weight to each in-
ner class but we implement the notion of the distance d
between two classes Ci and Ck which we define as the
number of classes that exist in the (shortest) path from Ci
to Ck (including also in the sum the Ci and Ck), e.g. the
distance between two classes with a direct subclass rela-
tionship is 2. However, the distance should be carefully
defined, taking into account the semantics of the hierar-
chy, since subclass relationships do not necessarily mean
subsumption relationships in our OO model.

In section 3 we describe the basic principles of the
transformation procedure of an OWL ontology into the
OO model. Subclass relationships of ontology classes are
mapped into subclass relationships in the OO class hierar-
chy, implementing in that way property and class inheri-
tance. We follow the same procedure in the case of class
equivalence, where we define special subclass relation-
ships among the corresponding classes, as Fig. 1 depicts.
However, by considering class equivalence as actual sub-
class relationships, a problem emerges concerning the
accuracy of a distance function. A distance algorithm that
would be based directly on the class hierarchy would lead
in inaccurate results, since the distance between class A
and B or C in Fig. 1 (a) would be equal to 2, denoting
subclass relationships. However, the actual distance is 1,
due to class equivalence.

We define Algorithm 2 which computes the minimal
distance between two classes not only based on the class
hierarchy but also taking into account class equivalence.
The algorithm actually implements the Branch and Bound

Fig. 3. A simple class hierarchy with inner class weights.

search strategy: starting from the most specific class of
the two input classes (subC), expands the frontier set in
each recursion by retrieving the direct superclasses of
each class. The frontier set contains pairs of the form
<class, distance> where class is the current class and dis-
tance is the calculated distance from the beginning. These
pairs are created by the parentList function which de-
creases the distance value by one when a class equiva-
lence relationship is found between a class and its super-
class. The class equivalence between Ci and Ck (Ci ≡ Ck)
can be determined by checking the values of the
owl:equivalentClass property of the corresponding
class meta-objects [Ci] and [Ck]:
Ci ≡ Ck → [Ci]∈ [Ck].owl:equivalentClass ∨
 [Ck]∈ [Ci].owl:equivalentClass

If the two classes Ci and Ck do not have hierarchical re-
lationship, then the algorithm returns -1. It is worth men-
tioning that the determination of subclass relationships,
such as Ci Ck, or the retrieval of the superclasses of a
specific class, i.e. the directSuperClasses function, are
common and optimized procedures in any OO program-
ming environment, including CLIPS and thus, the dist
function can be easily implemented.

Additionally, we define the classSimilarity function
(Algorithm 3) for determining the degree of similarity
between two classes based on their position in the hierar-
chy. If two classes have hierarchical relationship, then
their similarity equals to their distance, as we have de-
fined it in section 4.2. Otherwise, the function returns the
sum of the distances of each class from their most specific
common superclass minus 1. If there is not such a com-
mon superclass, the function returns 0. Moreover, the
function returns 0 if the two examined classes are disjoint.
This can be determined by examining the owl:dis-
jointWith property of class meta-objects:
Ci Ck ⊥ → [Ci] ∈ [Ck].owl:disjointWith ∨
 [Ck] ∈ [Ci].owl:disjointWith

Algorithm 2: Distance between two classes.
Inputs: Two classes Ci and Ck.
Output: Distance value.

function dist(Ci, Ck) {
 var closedSet := ∅, frontier := ∅
 var curD, cur, subC, supC, minD, dist
 if Ci Ck then
 subC := Ci
 supC := Ck
 else if Ck Ci then
 subC := Ck
 supC := Ci
 else return -1 //not hierarchically related classes
 closedSet := ∅

 frontier := {<subC, 1>}
 minD := ∞
 while frontier ≠ ∅ do
 <cur, dist> := first(frontier)
 frontier := rest(frontier)
 curD := dist + 1
 if cur ∉ closedSet then
 if (cur = supC ∨ cur ≡ supC) ∧ curD < minD then
 minD := curD
 else if curD < minD then
 frontier:= parentList(cur, curD) ∪ frontier
 closedSet := closedSet ∪ {cur}
 return minD
}

function parentList(C, currentDist) {
 var list := ∅, superClasses := ∅
 superClasses := directSuperClasses(C)
 for each x ∈ superClasses do
 if x ≡ C then list := list ∪ {<x, currentDist - 1>}
 else list := list ∪ {<x, currentDist>}
 return list
}

Algorithm 3: Similarity between two classes.
Inputs: Two classes Ci and Cj.
Output: Similarity score.

function classSimilarity(Ci, Ck) {
 var distance, comSuperClass, di, dk
 if Ci Ck ⊥ then //disjoint classes
 return ∞
 distance := dist(Ci, Ck)
 if distance = -1 then
 comSuperClass := mostSpecificSuperClass(Ci, Ck)
 if comSuperClass = ∅ then
 return ∞
 else
 di := dist(Ci, comSuperClass)
 dk := dist(Cj, comSuperClass)
 return di + dk - 1
 else return distance
}

function mostSpecificSuperClass(Ci, Cj) {
 var comClasses := ∅, cur
 comClasses := superClasses(Ci) ∩ superClasses(Cj)
 comClasses := comClasses - {owl:Thing}
 for each c ∈ comClasses do
 if c′ ∈ comClasses | c′ c then return c
 return ∅
}

Having defined the distance and the similarity between
two classes, we present Algorithm 4 which computes the
overall similarity between a query profile (IQ,r) and an
advertisement profile relational inputs (IW,r). The algo-
rithm traverses every advertisement relational input and
checks if there is one in the query that matches. The thre-
shold a represents the maximum distance we want to exist
between two sibling classes during the matching proce-
dure. The returned value describes the sum of the weights
for each type match divided by the number of the adver-
tisement inputs. There are four matches: (a) exact with a
standard weight of 4, (b) plug-in with weight 2+2/d, (c)
subsume with weight 1+2/d and (d) sibling with weight
2/d. Notice that these are example weights that can be
configured appropriately. The same algorithm can be used
for matching relational outputs, i.e. fr(OW,r, OQ,r, a).

Algorithm 4: The fr function for relational inputs.
Inputs: The IQ,r and IW,r sets and the threshold a.
Output: The similarity score.

function fr(IQ,r, IW,r, a) {
 var sim := 0, N := size(IW,r)
 if N = 0 then return 1
 for each c ∈ IW,r do
 if ∃c′∈ IQ,r | classSimilarity(c, c′) ≠ ∞ then
 if classSimilarity(c, c′) = 1 then //exact match
 sim := sim + 4
 else if c′ c then //plug-in match
 sim := sim + 2 + (2/classSimilarity(c, c′))
 else if c c′ then //subsume match
 sim := sim + 1 + (2/classSimilarity(c, c′))
 else if classSimilarity(c, c′) ≤ a then
 sim:=sim+2/classSimilarity(c, c′)
 else return 0
 else return 0
 return sim/N
}

4.3 Overall Profile Similarity

Based on the fs and fr functions, we define the similar-

ity S of two profile objects pQ and pA. The returned value
represents the matching score of the two profile objects
and it can be used in order to rank the results of a request
against multiple advertisements. We define also the mat-
chmaking function (Algorithm 6) which examines all the
profile objects of the KB against a query and returns the
results in descending order according to the score of each
match. A threshold N can be used in order to define the
maximum number of the results.

Algorithm 5: Similarity S of two profile objects.
Inputs: Two profile objects pQ and pA and the sibling
distance threshold a.
Output: The similarity score.

function S(pQ, pA, a) {
 var IQ,s, OQ,s, IA,s, OA,s, IQ,r, OQ,r, IA,r, OA,r, Ss, Sr
 for each i ∈ inputs(pQ) do
 if datatype(i) then IQ,s := IQ,s ∪ {i}
 else IQ,r := IQ,r ∪ {i}
 for each o ∈ outputs(pQ) do
 if datatype(i) then OQ,s := OQ,s ∪ {o}
 else OQ,r := OQ,r ∪ {o}
 for each i ∈ inputs(pA) do
 if datatype(i) then IA,s := IA,s ∪ {i}
 else IA,r := IA,r ∪ {i}
 for each o ∈ outputs(pA) do
 if datatype(i) then OA,s := OA,s ∪ {o}
 else OA,r := OA,r ∪ {o}
 Ss := fs(IQ,s, IA,s) * fs(OA,s, OQ,s)
 Sr := fr(IQ,r, IA,r, a) * fr(OA,r, OQ,r, a)
 return Ss * Sr
}

Algorithm 6: Matchmaking results.
Inputs: A query profile object pQ, the sibling class dis-
tance threshold a and the maximum number of results N
Output: Similar advertisement profile objects to a
query in descending order.

function matchmaking(pQ, a, N) {
 var match = ∅, rank, result
 for each p : Profile do
 rank := S(pQ, p, a)
 if rank ≠ 0 then match := match ∪ {<p, rank>}
 sortdesc,rank(match)
 while N >0 do
 result := result ∪ first(match)
 match := rest(match)
 N := N - 1
 return result
}

5. A Simple Use Case

In this section we give a simple example presenting the

rationale of our methodology. Assume the simple ontol-
ogy of Fig. 4 which is already processed by the underly-
ing OWL rule reasoner, generating the corresponding
class hierarchy into the OO KB.

We also assume that there are 4 Web services and a
query with the following characteristics:

• WS1(in:{Title}, out:{Publisher}): takes as input a
book title and returns its publisher.

• WS2(in:{Title}, out:{Person}): takes as input a
book title and returns instances of any person of the
ontology.

• WS3(in:{Title}, out:{Author}): takes as input a
book title and returns its author.

• WS4(in:{Title}, out:{Author}): takes as input an ar-
ticle title and returns its author.

• query(in:{Title}, out:{Author}): find the author
based on the book title.

Fig. 4. A sample ontology

For each Web service there is a profile instance that

corresponds to the semantic description of the I/O pa-
rameters. Moreover, there is a profile object representing
the query for a specific Web service. These instances con-
stitute the profile objects of our OO KB and are presented
in the simplified UML object diagram of Fig. 5.

In this simple example, the input parameters of all
Web services and the input parameter of the query match
exactly, since they refer to the same Title concept of the
ontology. Thus, according to Algorithm 4 we have:
fr(Iquery,r, IWS1,r, a) = fr(Iquery,r, IWS2,r, a) = fr(Iquery,r, IWS3,r, a)
= fr(Iquery,r, IWS4,r, a) = 4, for every value of a since there
are only exact matches. For the output parameters there
are three cases:

• There is an exact match between the output concepts
of the query and WS3 and WS4, thus fr(OW3,r,
Oquery,r, a) = fr(OW4,r, Oquery,r, a) = 4 and S(pquery, pWS3,
a) = S(pquery, pWS4, a) = 4*4 = 16.

• There is a subsume match between the output Au-
thor concept of the query and the output concept
Person of the WS2, thus fr(OW2,r, Oquery,r, a) = 2,
since d = classSimilarity(Author, Person) = 2 and
the weight for the subsume match is 1+2/d = 2.
Thus, S(pquery, pWS2, a) = 4*2 = 8.

• There is a sibling relation between the output con-
cept Author of the query and the output Publisher
concept of WS1, thus fs(OW1,r, Oquery,r, a) = 2/3 since
d = classSimilarity(Author, Publisher) = 3 and the
weight for the sibling match is 2/d = 2/3. Thus,
S(pquery, pWS1, a) = 4*2/3 = 2.66. The algorithm needs
an appropriate a value in order to take into account
the sibling match. For our example, such a value

should be greater or equal to 3 in order to capture
the sibling relation of the example where the dis-
tance between the sibling classes is 3. Intuitively,
this is the minimum value of the threshold a, i.e. the
distance between the direct subclasses of a common
superclass. An a value less than 3 means that we do
not want sibling matches during matchmaking.

In that way, the matchmaking procedure will return the

four services in a descending order: WS4=WS3>
WS2>WS1, assuming that N ≥ 4. In this example, the
sibling class relationship is of minor importance since
there are exact and subsume matches. However, the sib-
ling class relationships could be proved very useful espe-
cially in cases where the matchmaking process does not
return any result (due to the absence of exact, plug in or
subsume matches) and there is a need to relax the match-
making criterion. Furthermore, although WS4 is semanti-
cally irrelevant to the query, it is returned since its I/Os
are satisfied. Such situations can be circumvented by us-
ing a profile taxonomy, as we describe in the next section.

6. Taxonomy-based Profile Matchmaking

So far we have described how object similarity meas-

ures can be applied in the domain of Web service match-
making of profile objects that belong directly to the Pro-
file class. However, Web service profiles can be classified
into taxonomies of profiles according to their functional-
ity [17]. In this case, each profile object belongs to a class
defined as subclass of the Profile class, creating in that
way a profile taxonomy.

Intuitively, hierarchically related profiles denote ser-
vices with potentially the “same” functionality. To this
end, queries could be also classified in the taxonomy ac-
cording to the requested service. In that way, we could
use our inter-class similarity measure in order to filter
profiles during the matchmaking procedure by pruning
WS profiles with no hierarchical relationship with the
query object class or by relaxing the matchmaking crite-
rion in order to take into consideration sibling classes.

The filtering of profile objects during the matchmaking
procedure can be realized with Algorithm 7, where
class(o) is the class of the object o.

Fig. 5. UML object diagram for the profile objects.

Algorithm 7: Relevant profile object to a query
Inputs: The query object q, a profile object p and the
distance threshold b for sibling profile class relations.
Output: Profile is relevant (TRUE) or not (FALSE)

function relevantProfile(q, p, b) {
 var temp = classSimilarity(class(q), class(p))
 if temp = ∞ then return FALSE
 if temp = 1 then return TRUE
 if class(q) class(p) ∨ class(p) class(q) then
 return TRUE
 if temp ≤ b then return TRUE
 return FALSE
}

In that way, Algorithm 6 can be extended in order to

perform matchmaking based on “relevant” profile objects.
We use a threshold b that defines the sibling profile class
distance threshold in order to be able to declare different
relaxing policies between concepts and profiles.

Algorithm 6b: Extended matchmaking algorithm.
Inputs: A query profile object pQ, the sibling concept
distance threshold a, the sibling profile class distance
threshold b and the maximum number of results N.
Output: Similar advertisement profile objects to a
query in descending order.

function matchmaking(pQ, a, b, N) {

 for each p : Profile | relevantProfile (pQ, p, b)=TRUE
 do …
}

To give an example, consider the profile hierarchy of

Fig. 6. Assume that the four Web service profile objects
of section 0 have been classified accordingly to their
functionality. Let also be a variety of Web service profile
objects (WSN) been classified into different classes.

A query object defined to belong directly in the Profile
class would lead to the examination of all the profile ob-
jects of the hierarchy, since ∀p: Profile, class(p)=class(q)
∨ class(p) class(q) (the similar case to section 5) and
thus Algorithm 7 would always return TRUE. However,
by defining the query to be an object of an appropriate
class, according to the requested service, we give the op-
portunity to filter out Web services. Assuming that b<3:

• If q : InformationServices, then the matchmaking
procedure will be performed ∀p∈C | C Informa-
tionServices ∨ InformationServices C. For exam-
ple, profiles that are direct or indirect objects of the
E-commerce class will be pruned.

• If q : BookInformation, then additionally to the pre-
vious case, the profile objects of the ArticleInforma-
tion class will be pruned. In that case, WS4 will not
be returned since it is an irrelevant Web service to
the book domain.

By setting a b value greater or equal to 3, we let profile

objects of sibling classes to participate also in the match-
making procedure in an analogous manner as we have
described in section 0.

7. Related Work

Many research efforts have been focused on the field
of Web service discovery. In this section we briefly pre-
sent some of these approaches.

In [19] the authors propose a prototype for semi-
automating Web service composition. Users create a
workflow of services by presenting the available choices
at each step. Web services descriptions are defined in
DAML-S and through an OWL Prolog reasoner, the sys-
tem inferences and selects matching services based on
subsumption relationships. Services are also filtered based
on constraints which the user may specify.

The authors in [20] describe the implementation of the
DAML-S/UDDI Matchmaker that expands on UDDI by
providing semantic capability matching. They provide an
extensive description on the theoretical framework under-
lying the use of DAML-S for Web service discovery, in-
teraction and composition. Advertisements and requests
refer to DAML concepts and the matching process can
perform inferences on the subsumption hierarchy leading
to the recognition of semantic matches.

In [9] the authors describe a service matchmaking pro-
totype which uses a DAML-S based ontology and the
Racer [4] reasoner. The reasoner checks the satisfiability
of the request with each advertisement by computing the
subsumption relationships between advertisements and
requests.

In [6] the authors present a logical framework for au-
tomated Web service discovery which is based on the

Fig. 6. Example profile hierarchy.

WSMO conceptual model. They have implemented their
approach in the F-Logic reasoning engine Flora2.

The above approaches are based on subsumption rela-
tionships that are derived from ontology descriptions of
Web services. In [7], an approach to hybrid semantic Web
service matching is presented, called OWLS-MX, that
utilizes both logic-based reasoning and content-based
information retrieval techniques for services specified in
OWL-S. The authors show that hybrid approaches to se-
mantic matching that exploit both formal and implicit
semantics may improve the retrieval performance of se-
mantic service matching over purely logic-based ones.
The implementation is based on the combination of syn-
tactic similarity metrics, such as the extended Jacquard
similarity coefficient or the cosine similarity value, and
on the semantic derivations of Pellet DL reasoner.

WSMO-MX [5] is also an approach to hybrid semantic
web service matching based on both logic programming
and syntactic similarity measurement in order to retrieve
WSMO-oriented service descriptions that are semanti-
cally relevant to a given query. They use the notion of the
derivative and perform matching of a goal derivative with
a service description derivative based on type matching,
logical constraint, relation and syntactic matching.

In our approach we introduce a new methodology of
matching ontology concepts: we exploit the OO schema
that emerge after the transformation of OWL ontologies
into a native OO model by customizing appropriately ob-
ject similarity measures inspired from the domain of OO
programming. The resulting methodology is able to match
concepts based not only on the subsumption relationships
that are handled by the inheritance mechanism of the un-
derlying OO rule reasoner (CLIPS) but also on class rela-
tionships stemming from the OO schema, such as rela-
tionships among sibling classes. Such relations can be
proved very useful and should not be totally ignored dur-
ing the discovery of Web services [5][7].

8. Conclusions and Future Work

The efficient discovery of semantic Web services de-

mands sophisticated frameworks and algorithms able to
handle the semantic nature of their description. In this
paper we approach the problem of semantic Web services
matchmaking from an OO perspective.

In O-DEVICE [12], we have shown that the OO char-
acteristics of OWL, such as the classes, properties, in-
stances, class and property inheritance, etc., as well as
OWL semantics can be easily mapped into rules and con-
structs of the OO model. Motivated by the results of this
work, we have extended our OO methodology to the do-
main of the OWL-S profile descriptions of Web services.
Since the profiles and requests in our framework are rep-
resented as objects, we apply object similarity measures
in order to realize the matchmaking procedure. The utili-
zation of such similarity measures, gives us the opportu-

nity to perform Web service discovery based on hierar-
chical relationships that cannot be captured by the logic-
based subsumption relation. The proposed methodology
can be implemented also in a non OO environment by the
utilization of an OWL ontology reasoner for the determi-
nation of hierarchical relationships. However, the genera-
tion of an OO model from OWL ontologies following the
methodology in [12] gives great advantage since hierar-
chical relationships can be determined at once by the OO
environment, without performing runtime inferencing.

In section 4 we explain the reasons for which we are
not able to apply directly object similarity measures on
profile objects and how they can be customized for the
domain of OWL-S Web services matchmaking. However,
with a more sophisticated web Services profile manage-
ment policy, the initial object similarity measures can be
proved very useful.

By assuming that each profile object belongs directly
to the Profile class, we use the inter-class similarity meas-
ure (as we have defined it) in order to determine the simi-
larity of the classes that are referred in the I/O profile pa-
rameters and not the similarity of the profile objects them-
selves. However, Web service profiles can be categorized
into profile taxonomies according to their functionality, as
the OWL-S example of the Congo Web services refers
[16]. In that case, we can use the inter-class similarity in
order to filter a priori profile objects that are not “similar”
to a particular query, according to a minimum distance,
since the profile objects would not necessarily belong
directly to the same (Profile) class.

Such filtering can be performed by examining also
non-functional properties of the profile objects which they
inherit due to their classification into a class hierarchy,
such as price or location. In that case, the profile objects
would contain actual values in these specific non-
functional properties, enabling the direct application of
the intra-class similarity measure, as it is defined in [1],
determining similarities based on actual values and not
based on datatypes or classes.

For the future, we plan to enrich our methodology with
services pre and post conditions. An interesting work
relevant to this field is presented in [23] where the authors
describe a variety of relaxed matches of software compo-
nents based on what a component “requires” and what
“ensures”, in a similar manner to Web services pre and
post conditions. We plan also to use our methodology in
[11] where we perform discovery based only on subsump-
tion relationships that are derived by the underlying OO
rule reasoner. Finally, we investigate the combination of
our methodology with machine learning techniques, such
as text mining or clustering in order to enrich even more
the Web services retrieval process with non-logic based
approaches.

Acknowledgments. This work was partially supported by
a PENED program (EPAN M.8.3.1, No. 03Ε∆73), jointly

funded by the European Union and the Greek Govern-
ment (General Secretariat of Research and Technol-
ogy/GSRT) and by a NON-EUROPE project (GSRT - 05
NON EU 423).

References

[1] Bergmann, R., Stahl, A. “Similarity Measures for Object-

Oriented Case Representations”, In Proc. of the 4th Euro-
pean Workshop on Case-Based Reasoning, 1998.

[2] CLIPS, http://www.ghg.net/clips/CLIPS.html

[3] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P.,
Ferreira, J.L., Bento, C. "Experiments on Case-Based Re-
trieval of Software Designs", In Proc. of the European Con-
ference on Case-Based Reasoning (ECCBR'02)

[4] Haarslev, V., Möller, R. “Racer: A Core Inference Engine
for the Semantic Web”, 2nd Int. Workshop on Evaluation
of Ontology-based Tools (EON2003), Sanibel Island, Flor-
ida, USA, pp. 27–36, 2003

[5] Kaufer, F., Klusch, M. “WSMO-MX: A Logic Program-

ming Based Hybrid Service Matchmaker”, In Proc. of the
4th IEEE ECOWS, IEEE, Zurich, Switzerland, 2006

[6] Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lau-

sen, H., Fensel, D. “A Logical Framework for Web Service
Discovery”, In SWS Workshop at ISWC, Hiroshima, Ja-
pan, November 2004

[7] Klusch, M., Fries, B., Sycara, K. “Automated Semantic

Web Service Discovery with OWLS-MX”, In Proc. of 5th
Int. Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), Hakodate, Japan, 2006

[8] Kontogiannis, K., Mori, R.D., Bernstein, R., Galler, M.,

Merlo, E. “Pattern matching for clone and concept detec-
tion”, Journal of Automated Software Engineering, 1996

[9] Li, L., Horrock, I. “A software framework for matchmak-

ing based on semantic web technology”, In Proc. 12th Int
World Wide Web Conference Workshop on E-Services and
the Semantic Web (ESSW 2003)

[10] Maiden, N., Sutcliffe, A. “Case-based reasoning in soft-

ware engineering”, Case-Based Reasoning, IEE Collo-
quium on, Vol., Iss., 12 Feb 1993

[11] Meditskos G., Bassiliades N. “A Semantic Web Service

Discovery and Composition Prototype Framework Using
Production Rules”, OWL-S: Experiences and Future De-
velopments workshop in conjunction with the 4th ESWC,
Innsbruck, Austria, 6 June, 2007

[12] Meditskos, G., Bassiliades, N. “Towards an Object-

Oriented Reasoning System for OWL”, Proc. Workshop
OWL: Experiences and Directions, Galway, Ireland,
CEUR, 2005.

[13] Merlo, E., Antoniol, G., Di Penta, M., Rollo, V.F. "Linear
Complexity Object-Oriented Similarity for Clone Detection
and Software Evolution Analyses," icsm, pp. 412-416, 20th
IEEE Int. Conference on Software Maintenance

[14] OWL Web Ontology Language Overview,http://www.w3.
org/TR/owl-features/

[15] OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/

[16] OWL-S 1.1 Release: Examples, http://www.daml.org/

services/owl-s/1.1/examples.html

[17] Profile-based class hierarchies, http://www.daml.org

/services/owl-s/1.1/ProfileHierarchy.html

[18] Sager, T., Bernstein, A., Pinzger, M., Kiefer, C. “Detecting
similar Java classes using tree algorithms”, In Proc. of the
2006 international workshop on Mining software reposito-
ries, May 22-23, 2006, Shanghai, China

[19] Sirin, E., Hendler, J., Parsia, B. “Semi-automatic composi-

tion of Web services using semantic descriptions”, In Proc.
of Web Services: Modeling, Architecture and Infrastructure
workshop in conjunction with ICEIS2003

[20] Sycara, K., Paolucci, M., Anolekar, A., Srinivasan, N.

“Automated discovery, interaction and composition of se-
mantic web services”, Web Semantics, 1(1), Elsevier, 2003

[21] WSDL-S, http://www.w3.org/Submission/WSDL-S/

[22] WSMO: http://www.wsmo.org/TR/d2/v1.3/.

[23] Zaremski A.M. and Wing J.M. “Specification matching of

software components”, ACM Transactions on Software
Engineering and Methodology, 6(4), pp 333-369, 1997.

