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Abstract 
 
The semantic annotation of Web services capabilities 

with ontological information aims at providing the neces-
sary infrastructure for facilitating efficient and accurate 
service discovery. The main idea is to apply reasoning 
techniques over semantically enhanced Web service re-
quests and advertisements in order to determine Web ser-
vices that meet certain requirements. In this paper we 
present our work for introducing similarity measures in-
spired from the domain of Object-Oriented paradigm for 
ontology concept matching. Our work focuses on the utili-
zation of such measures over an Object-Oriented schema 
that is created through mapping rules of OWL constructs 
and semantics into the Object-Oriented model. The goal 
of the approach is to combine the Object-Oriented repre-
sentation of the information and the reasoning over OWL 
semantics in order to enhance the retrieval of semanti-
cally relevant, to some criteria, Web services. 

 
1. Introduction 

 
While the number of the deployed Web services on the 

Internet increases, the ability of automatically and accu-
rately discovering one with a specific functionality be-
comes more and more important. The Web service dis-
covery process incorporates not only the location of a 
single Web service that satisfies specific user’s require-
ments but also it is a vital procedure during composition, 
i.e. the combination of more than one Web services in 
order to create a new service with enhanced functionality. 
In this case, the discovery process is performed in each 
step of the composition plan in order to determine candi-
date Web services that meet sub-requirements. 

The combination of Semantic Web techniques with 
Web services seems the best way to give the appropriate 
semantic notion to Web services in order to achieve the 
desirable level of automation, leading to the notion of the 
semantic Web services. Languages and frameworks such 
as the OWL-S [15], WSMO [22] and WSDL-S [21] use 
ontologies for the description of Web services capabili-
ties, enabling the utilization of ontology reasoning en-
gines to process this information and to derive conclu-
sions. In that way, queries for a specific functionality are 

semantically matched with Web services capabilities 
based on the language semantics, e.g. OWL [14], leading 
to semantically accurate results. 

However, the matchmaking procedure based only on 
logic-based reasoning is restricted to the determination of 
the subsumption relationships among the concepts of the 
ontology. Thus, although the matchmaking results capture 
semantic information stemming from the ontology, ignore 
structural information of the schema which may enhance 
the retrieval of relevant concepts, unable to be captured 
by the reasoning process.  

In this paper we define a methodology for the discov-
ery of Web services by utilizing similarity measures in-
spired from the domain of the Object-Oriented (OO) pa-
radigm. The main idea is to introduce techniques which 
are able not only to handle the subsumption relationships 
that derive from reasoning on OWL ontologies but also to 
capture useful hierarchical relationships, such as the indi-
rect relationship between two sibling classes, in order to 
augment the matchmaking process. 

The rest of the paper is organized as follows: in section 
2 we describe the notion of similarity in the OO para-
digm. In section 3 we present shortly the methodology of 
transforming OWL ontologies into the OO model. In sec-
tion 4 we analyze the potential utilization of OO similar-
ity measures during Web services matchmaking and we 
describe in detail our methodology. In sections 5 and 6 we 
give a feeling of the application of our methodology in 
simple use cases. In section 7 we give related work on the 
field of semantic Web service matchmaking and finally in 
section 8 we conclude giving future directions.   
 
2. Similarity in the OO Paradigm 

 
The notion of similarity in the OO paradigm is used 

mainly for determining fragments of duplicated code 
(clone detection), emphasizing on the reuse that is respon-
sible for the increase in software quality and development 
productivity [8][13][18]. The algorithms are based on the 
definition of similarity measures that characterize class 
definitions at the level of source code, such as properties, 
packages, methods, lines of code (LOC) etc. and by using 
clustering or tree algorithms they manage to identify simi-
lar classes. Such measures have been also used in the do-



main of the case-based reasoning for determining similar 
solutions to similar problems [1][3][10]. 

To the best of our knowledge, only [1] defines object 
similarity measures that are stemmed directly from the 
class hierarchy. The goal is to determine the similarity 
between two objects, i.e. one object representing the case 
and one object representing the query, a paradigm very 
similar to the discovery of a Web service, where the 
“query object” is the query for a service with a specific 
functionality and the “case objects” are the advertise-
ments of Web services. In their approach, they introduce 
the notion of the intra-class and inter-class similarity. 
The first is based on the common properties of the two 
objects whereas the latter on the positions of the object 
classes in the hierarchy. The overall similarity between a 
query object and a case object can be computed by defin-
ing an equation over the inter- and intra-class similarity. 

Generally, the intra-class similarity between two ob-
jects is defined over the values of their common proper-
ties, i.e. it is computed over the properties of the most 
specific common superclass of the examined objects. This 
ensures that the properties being examined are inherited to 
both objects. During this procedure, a matching algorithm 
is applied in both simple attributes, i.e. integers or strings, 
and relational attributes, i.e. attributes that take objects as 
values. The overall intra-class similarity for two objects is 
derived from the aggregation of both similarities. Let k be 
the number of properties of the common class of two ob-
jects a and b with Sn and Rm being the simple and rela-
tional properties respectively (n + m = k), fs the simple 
and fr the relational property matching algorithm and A an 
aggregation function. Then, the intra-class similarity 
Simintra of the two objects can be defined as: 
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where H and Θ are aggregation functions for each match-
ing function fs and  fr respectively. 

Contrary to the intra-class similarity, the inter-class 
similarity is defined upon the class hierarchy of the OO 
schema, without taking into account class properties. The 
idea is to define a similarity value that represents the hier-
archical relationship between the classes of two objects, 
independently of the property values of the objects. The 
proposed method for defining the inter-class similarity in 
[1] distinguishes inner from leaf nodes. More specifically, 
it assigns a weight Si to each inner class Ci such that 
∀Ci,Ck | Ck Ci : Si ≤ Sk and the inter-class similarity for 
two objects of leaf classes is defined as: 
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where Sc is the S weight for the most specific common 
superclass of Ci and Ck. If one (or both) of the examined 
object classes is an inner class, then there are different 
cases, concerning class similarity. To give an example, if 

the query object belongs to a leaf class C and the case 
object to an inner class I, then the similarity is defined as: 
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where Sc is the weight S for the most specific common 
superclass of the Q and I classes. 

In that way, the overall similarity of two objects a and 
b can be defined by an aggregation function Φ over the 
intra- and inter-class similarities: 

( )( , ) ( , ), ( ( ), ( ))intra interSim a b Sim a b Sim class a class b= Φ (4)
 
3. Transforming OWL to Object Model 
 

The idea of applying OO similarity measures in the 
domain of Web service matchmaking is motivated by the 
OO OWL reasoning methodology we define in [12]. We 
have developed O-DEVICE1, an extension of the well 
known CLIPS production rule engine [2] that handles a 
superset of OWL Lite ontologies close to OWL DL, fol-
lowing the OO model (as realized by the CLIPS OO Lan-
guage COOL). In that way (a) we enable the implementa-
tion of OO rule programs over OWL, allowing complex 
systems to be modeled as modular components and (b) we 
use the resulting OO model as a simplistic form of index-
ing; we can have hierarchical relationships and property 
values of an object in one step by exploiting the functions 
and the message passing mechanism of CLIPS. 

In an OWL ontology, classes and properties are de-
fined as instances of appropriate built-in classes, e.g. 
owl:Class or owl:ObjectProperty. The system cre-
ates the objects that correspond to these OWL instances, 
which we call meta-objects, and it uses the information 
stored in their slots in order to create the classes and the 
properties in the OO model. 

Each concept C of an ontology is mapped into a class 
in the OO model and each TBOX assertion C  D is 
mapped into a subclass relationship. A class with no ex-
plicit superclasses is defined as subclass of the 
owl:Thing class, the superclasses of all classes accord-
ing to the OWL axioms. In that way we can use the OO 
environment’s inheritance mechanisms in order to deter-
mine subsumption relationships. 

The owl:intersectionOf construct is treated by de-
fining multiple concurrent subclass relationships. If there 
is a class C defined as C ≡ A1  A2  ... An, then we define 
C  Ak, where 1≤k≤n, i.e. each Ak class becomes a direct 
superclass of class C and every object of class C is simul-
taneously an object of all Ak classes (Fig. 1 (b)). The 
owl:unionOf construct is also treated by defining sub-
class relationships. If there is a class C defined as C ≡ A1 

 A2  ... An, then we define Ak  C, where 1 ≤ k ≤ n, i.e. 
each Ak class becomes a direct subclass of class C (Fig. 1 

                                                
1 http://lpis.csd.auth.gr/systems/o-device/o-device.html 



(c)). Moreover, let there be a set of n equivalent classes 
Cn (n>1). The system selects randomly one of the n 
classes, e.g. class Cd to become the delegator class and 
defines it as a subclass of the rest of the classes, i.e. Cd  
Cn where n ≠ d (Fig. 1 (a)). The complete semantics of 
these transformations can be found in [12]. 
 

 
Fig. 1. Class equivalence (a), intersection (b) and union (c). 

 
4. Applicability of OO Similarity Measures in 

the Domain of Web Service Discovery 
 
In order to exploit the level of the object similarity 

knowledge that derives from the OO representation of the 
ontology information, we have investigated the possibility 
of applying the similarity measures defined in [1] in the 
domain of Web service discovery based on the OWL-S 
descriptions of services inputs and outputs. 

Based on the transformation methodology we men-
tioned in the previous section, we create a native OO 
model of classes, properties and instances that reflects the 
class and property hierarchy that stems from the seman-
tics of the OWL language. In the case of OWL-S Web 
service descriptions, both Web service advertisements and 
queries are defined as OWL instances of the Profile class, 
an OWL-S class that is used for defining Web services 
advertisements (Fig. 2). Thus, each Profile instance is 
mapped into an object of the corresponding OO Profile 
class and the matchmaking process can be performed by 
checking the similarity of the input and output property 
values of the profile objects. The goal is to perform mat-
chmaking not based only on the subsumption relation-
ships that are derived from the underlying rule reasoner 
but also to exploit the knowledge of similarity that stems 
from the OO representation. 

One distinctive characteristic of the values of the I/O 
properties of the Profile class is that they denote the types 
of the I/O values of a query or a Web service and not the 
values themselves. This is realized by giving a URI that 
denotes an ontology class or a datatype (although the lat-
ter is not recommended since it does not give semantic 
information). Thus, the process of determining the simi-
larity between two profile objects requires matching algo-
rithms between datatypes or classes and not between ac-
tual values, e.g. numeric or object values, as the intra-
class measure defines. 

Moreover, since all the objects of our interest belong 
always to the same class (Profile), the inter-class measure 
cannot give useful information about class similarity. 

From equation (2), the inter-class similarity of two profile 
objects would always be 1, since ∀Ci ,Ck : Ci = Ck and 
therefore the equation (4) would only be based on the 
intra-class similarity of the objects. 

Having identified the differences that restrict the direct 
application of the OO similarity measures in the domain 
of Web service discovery based on direct objects of the 
profile class, we change the definition of the intra- and 
inter-class similarity measures to fit our case. In the fol-
lowing, we use the term “simple” to refer to I/Os that de-
note datatypes and the term “relational” to refer to I/Os 
that denote class types.  

We define the similarity S of two profiles as: 
( ), , , ,( , ) ( , ), ( , )Q W s Q s W s r Q r W rS p p f IO IO f IO IO= Φ  (5)

where fs is a function that computes the similarity over 
query and Web service simple I/O parameters and fr a 
function that computes the similarity between query and 
Web service relational I/O parameters.  

Equation (5) is analogous to equation (3) that defines 
the intra-class similarity. The profile similarity is defined 
by checking the I/O property values of a query and a Web 
service profile object and according to the referred values, 
the simple or relational similarity function is used. How-
ever, in order to take into account hierarchical informa-
tion in the similarity function, we consider as fr the inter-
class similarity of the relational parameters. Intuitively, 
the similarity of two profile objects is determined by an 
“intra-class” measure that is calculated based also on the 
hierarchical information (inter-class) in order to determine 
the similarity of the classes referred in the I/Os. 

In the following we assume that IQ,s, OQ,s, IW,s and OW,s 
are the sets of query and Web service simple I/Os and IQ,r, 
OQ,r, IW,r and OW,r are the sets of query and Web service 
relational I/Os, respectively. 

 
4.1 Simple Property Similarity 

 
The similarity of I/O parameters that refer to datatypes 

can be determined by checking directly the URIs. In our 
analysis, we consider only simple numerical datatypes, 
i.e. xsd:int, xsd:float, etc., Boolean and string data-
types. We define three levels of similarity: 

• exact match: Two datatypes are matched exactly if 
they refer to the same type.  

 
Fig. 2. The OWL-S upper ontology. 



• numerical type match: Two numerical datatypes 
have always a type match, e.g. xsd:int and 
xsd:float are type matched. 

• mismatch: Two datatypes have a mismatch if there is 
not an exact or numerical match, e.g. between the 
xsd:int and the xsd:boolean datatypes. 

 
Algorithm 1 describes the fs function that performs da-

tatype checking between a query and an advertisement 
simple input parameters. The same function can be used 
for simple output values by reversing the order of the pa-
rameters, i.e. fs(OW,s, OQ,s). The fs function determines the 
number of matches (exact or numerical) and it gives a 
rank value by aggregating the counts of matches giving 
different weights to different types.   

 
Algorithm 1: The fs function for simple inputs. 
Inputs: The IQ,s and IW,s sets. 
Output: A rank value. 
 
function fs(IQ,s, IW,s) { 
   var exM := numM := 0 
   var N := size(IW,s), A := 1, B := A / 2 
   if N = 0 then return 1 
   for each d∈IW,s do 
      if ∃d′∈ IQ,s ∧ exact(d, d′) then 
         exM := exM + 1 
      else if ∃d′∈ IQ,s ∧ numerical(d, d′) then 
               numM := numM + 1 
             else return 0 //mismatch 
   return (A * exM + B * numM) / N 
} 

 
The algorithm uses a simple aggregation function that 

calculates the rank value as the weighted sum of the 
matches divided by the number of advertisement inputs. If 
there are only exact matches among all inputs, then the 
returned value is 1 since exM = N and numM = 0. If there 
are only numerical matches then exM = 0 and numM = N / 
2 and the similarity equals to 0.5. In any other case, the 
rank is a value between 0.5 and 1. The rank value equals 
to 0 whenever a mismatch is detected.  

 
4.2 Relational Property Similarity 

 
The similarity of I/O parameters that refer to class 

types can be determined using the inter-class similarity 
measure. In the OO paradigm, the inter-class measure is 
used in order to determine the similarity of two classes 
according to their position in the hierarchy. Thus, it is 
feasible to use such a measure in order to find the similar-
ity of the classes referred by the I/O profile properties. 

In order to realize the inter-class algorithm, each inner 
class of the hierarchy should be assigned with an S 

weight, as we have mentioned in section 2. However, the 
algorithm for weight assignment and for determining the 
inter-class similarity proposed in [1] cannot constitute an 
absolute measure for defining class similarity. For exam-
ple, consider the class hierarchy of Fig. 3. According to 
equation (3), the similarity among a query object of the 
class B and a case object of the class C should be SA since 
A is the most specific common superclass of B and C. 
Furthermore, the similarity between class B and of every 
subclass of D should be again SA for the same reason. But 
intuitively, the similarity between B and C should be 
greater than the similarity between B and, for example, F. 
The problem is that the algorithm does not take into ac-
count the level of the examined classes in relation to their 
most specific common superclass.  

In our approach, we do not assign a weight to each in-
ner class but we implement the notion of the distance d 
between two classes Ci and Ck which we define as the 
number of classes that exist in the (shortest) path from Ci 
to Ck (including also in the sum the Ci and Ck), e.g. the 
distance between two classes with a direct subclass rela-
tionship is 2. However, the distance should be carefully 
defined, taking into account the semantics of the hierar-
chy, since subclass relationships do not necessarily mean 
subsumption relationships in our OO model.  

In section 3 we describe the basic principles of the 
transformation procedure of an OWL ontology into the 
OO model. Subclass relationships of ontology classes are 
mapped into subclass relationships in the OO class hierar-
chy, implementing in that way property and class inheri-
tance. We follow the same procedure in the case of class 
equivalence, where we define special subclass relation-
ships among the corresponding classes, as Fig. 1 depicts. 
However, by considering class equivalence as actual sub-
class relationships, a problem emerges concerning the 
accuracy of a distance function. A distance algorithm that 
would be based directly on the class hierarchy would lead 
in inaccurate results, since the distance between class A 
and B or C in Fig. 1 (a) would be equal to 2, denoting 
subclass relationships. However, the actual distance is 1, 
due to class equivalence. 

We define Algorithm 2 which computes the minimal 
distance between two classes not only based on the class 
hierarchy but also taking into account class equivalence. 
The algorithm actually implements the Branch and Bound 

 
Fig. 3. A simple class hierarchy with inner class weights. 



search strategy: starting from the most specific class of 
the two input classes (subC), expands the frontier set in 
each recursion by retrieving the direct superclasses of 
each class. The frontier set contains pairs of the form 
<class, distance> where class is the current class and dis-
tance is the calculated distance from the beginning. These 
pairs are created by the parentList function which de-
creases the distance value by one when a class equiva-
lence relationship is found between a class and its super-
class. The class equivalence between Ci and Ck (Ci ≡ Ck) 
can be determined by checking the values of the 
owl:equivalentClass property of the corresponding 
class meta-objects [Ci] and [Ck]: 
Ci ≡ Ck → [Ci]∈ [Ck].owl:equivalentClass ∨  
                                         [Ck]∈ [Ci].owl:equivalentClass 

If the two classes Ci and Ck do not have hierarchical re-
lationship, then the algorithm returns -1. It is worth men-
tioning that the determination of subclass relationships, 
such as Ci  Ck, or the retrieval of the superclasses of a 
specific class, i.e. the directSuperClasses function, are 
common and optimized procedures in any OO program-
ming environment, including CLIPS and thus, the dist 
function can be easily implemented.  

Additionally, we define the classSimilarity function 
(Algorithm 3) for determining the degree of similarity 
between two classes based on their position in the hierar-
chy. If two classes have hierarchical relationship, then 
their similarity equals to their distance, as we have de-
fined it in section 4.2. Otherwise, the function returns the 
sum of the distances of each class from their most specific 
common superclass minus 1. If there is not such a com-
mon superclass, the function returns 0. Moreover, the 
function returns 0 if the two examined classes are disjoint. 
This can be determined by examining the owl:dis-
jointWith property of class meta-objects: 
Ci  Ck  ⊥ → [Ci] ∈ [Ck].owl:disjointWith ∨ 
                                         [Ck] ∈ [Ci].owl:disjointWith 

 
Algorithm 2: Distance between two classes. 
Inputs: Two classes Ci and Ck. 
Output: Distance value. 
 
function dist(Ci, Ck) { 
   var closedSet := ∅, frontier := ∅ 
   var curD, cur, subC, supC, minD, dist  
   if Ci  Ck  then 
      subC := Ci 
      supC := Ck 
   else if Ck  Ci  then 
            subC := Ck 
            supC := Ci 
          else return -1 //not hierarchically related classes 
   closedSet := ∅ 

   frontier := {<subC, 1>} 
   minD := ∞ 
   while frontier ≠ ∅ do 
      <cur, dist> := first(frontier) 
      frontier := rest(frontier) 
      curD := dist + 1 
      if cur ∉ closedSet then 
         if (cur = supC ∨ cur ≡ supC) ∧ curD < minD then
            minD := curD 
         else if curD < minD then 
                   frontier:= parentList(cur, curD) ∪ frontier
                   closedSet := closedSet ∪ {cur} 
   return minD 
} 
 
function parentList(C, currentDist) { 
   var list := ∅, superClasses := ∅    
   superClasses := directSuperClasses(C) 
   for each x ∈ superClasses do 
      if x ≡ C then list := list ∪ {<x, currentDist - 1>} 
      else list := list ∪ {<x, currentDist>} 
   return list 
} 

 
Algorithm 3: Similarity between two classes. 
Inputs: Two classes Ci and Cj. 
Output: Similarity score. 
 
function classSimilarity(Ci, Ck) { 
   var distance, comSuperClass, di, dk    
   if Ci  Ck  ⊥ then //disjoint classes 
      return ∞ 
   distance := dist(Ci, Ck) 
   if distance = -1 then  
      comSuperClass := mostSpecificSuperClass(Ci, Ck) 
      if comSuperClass = ∅ then  
         return ∞ 
      else  
         di := dist(Ci, comSuperClass) 
         dk := dist(Cj, comSuperClass) 
         return di + dk - 1 
   else return distance 
} 
 
function mostSpecificSuperClass(Ci, Cj) { 
   var comClasses := ∅, cur 
   comClasses := superClasses(Ci) ∩ superClasses(Cj)
   comClasses := comClasses - {owl:Thing} 
   for each c ∈ comClasses do 
      if c′ ∈ comClasses | c′  c then return c 
   return ∅ 
} 

 



Having defined the distance and the similarity between 
two classes, we present Algorithm 4 which computes the 
overall similarity between a query profile (IQ,r) and an 
advertisement profile relational inputs (IW,r). The algo-
rithm traverses every advertisement relational input and 
checks if there is one in the query that matches. The thre-
shold a represents the maximum distance we want to exist 
between two sibling classes during the matching proce-
dure. The returned value describes the sum of the weights 
for each type match divided by the number of the adver-
tisement inputs. There are four matches: (a) exact with a 
standard weight of 4, (b) plug-in with weight 2+2/d, (c) 
subsume with weight 1+2/d and (d) sibling with weight 
2/d. Notice that these are example weights that can be 
configured appropriately. The same algorithm can be used 
for matching relational outputs, i.e. fr(OW,r, OQ,r, a). 

 
Algorithm 4: The fr function for relational inputs. 
Inputs: The IQ,r and IW,r sets and the threshold a. 
Output: The similarity score. 
 
function fr(IQ,r, IW,r, a) { 
   var sim := 0, N := size(IW,r) 
   if N = 0 then return 1 
   for each c ∈ IW,r do 
      if ∃c′∈ IQ,r | classSimilarity(c, c′) ≠ ∞ then 
         if classSimilarity(c, c′) = 1 then //exact match 
            sim := sim + 4 
         else if c′  c then //plug-in match 
                  sim := sim + 2 + (2/classSimilarity(c, c′)) 
                else if c  c′ then //subsume match 
                       sim := sim + 1 + (2/classSimilarity(c, c′))
                      else if classSimilarity(c, c′) ≤ a then 
                              sim:=sim+2/classSimilarity(c, c′)  
                            else return 0 
      else return 0 
   return sim/N 
} 
 
4.3 Overall Profile Similarity 

 
Based on the fs and fr functions, we define the similar-

ity S of two profile objects pQ and pA. The returned value 
represents the matching score of the two profile objects 
and it can be used in order to rank the results of a request 
against multiple advertisements. We define also the mat-
chmaking function (Algorithm 6) which examines all the 
profile objects of the KB against a query and returns the 
results in descending order according to the score of each 
match. A threshold N can be used in order to define the 
maximum number of the results. 

 

Algorithm 5: Similarity S of two profile objects. 
Inputs: Two profile objects pQ and pA and the sibling 
distance threshold a. 
Output: The similarity score. 
 
function S(pQ, pA, a) { 
   var IQ,s, OQ,s, IA,s, OA,s, IQ,r, OQ,r, IA,r, OA,r, Ss, Sr 
   for each i ∈ inputs(pQ) do 
      if datatype(i) then IQ,s := IQ,s ∪ {i} 
      else IQ,r := IQ,r ∪ {i} 
   for each o ∈ outputs(pQ) do 
      if datatype(i) then OQ,s := OQ,s ∪ {o} 
      else OQ,r := OQ,r ∪ {o} 
   for each i ∈ inputs(pA) do 
      if datatype(i) then IA,s := IA,s ∪ {i} 
      else IA,r := IA,r ∪ {i} 
   for each o ∈ outputs(pA) do 
      if datatype(i) then OA,s := OA,s ∪ {o} 
      else OA,r := OA,r ∪ {o} 
   Ss := fs(IQ,s, IA,s) * fs(OA,s, OQ,s)  
   Sr := fr(IQ,r, IA,r, a) * fr(OA,r, OQ,r, a) 
   return Ss * Sr 
} 

 
Algorithm 6: Matchmaking results. 
Inputs: A query profile object pQ, the sibling class dis-
tance threshold a and the maximum number of results N
Output: Similar advertisement profile objects to a 
query in descending order. 
 
function matchmaking(pQ, a, N) { 
   var match = ∅, rank, result 
   for each p : Profile do 
      rank := S(pQ, p, a)    
      if rank ≠ 0 then match := match ∪ {<p, rank>}  
   sortdesc,rank(match) 
   while N >0 do 
      result := result ∪ first(match) 
      match := rest(match) 
      N := N - 1 
   return  result 
} 

 
5. A Simple Use Case 

 
In this section we give a simple example presenting the 

rationale of our methodology. Assume the simple ontol-
ogy of Fig. 4 which is already processed by the underly-
ing OWL rule reasoner, generating the corresponding 
class hierarchy into the OO KB. 

We also assume that there are 4 Web services and a 
query with the following characteristics: 



• WS1(in:{Title}, out:{Publisher}): takes as input a 
book title and returns its publisher. 

• WS2(in:{Title}, out:{Person}): takes as input a 
book title and returns instances of any person of the 
ontology. 

• WS3(in:{Title}, out:{Author}): takes as input a 
book title and returns its author. 

• WS4(in:{Title}, out:{Author}): takes as input an ar-
ticle title and returns its author. 

• query(in:{Title}, out:{Author}): find the author 
based on the book title.  

 
Fig. 4. A sample ontology 

 
For each Web service there is a profile instance that 

corresponds to the semantic description of the I/O pa-
rameters. Moreover, there is a profile object representing 
the query for a specific Web service. These instances con-
stitute the profile objects of our OO KB and are presented 
in the simplified UML object diagram of Fig. 5. 

In this simple example, the input parameters of all 
Web services and the input parameter of the query match 
exactly, since they refer to the same Title concept of the 
ontology. Thus, according to Algorithm 4 we have: 
fr(Iquery,r, IWS1,r, a) = fr(Iquery,r, IWS2,r, a) = fr(Iquery,r, IWS3,r, a) 
= fr(Iquery,r, IWS4,r, a) = 4, for every value of a since there 
are only exact matches. For the output parameters there 
are three cases: 

• There is an exact match between the output concepts 
of the query and WS3 and WS4, thus fr(OW3,r, 
Oquery,r, a) = fr(OW4,r, Oquery,r, a) = 4 and S(pquery, pWS3, 
a) = S(pquery, pWS4, a) = 4*4 = 16. 

• There is a subsume match between the output Au-
thor concept of the query and the output concept 
Person of the WS2, thus fr(OW2,r, Oquery,r, a) = 2, 
since d = classSimilarity(Author, Person) = 2 and 
the weight for the subsume match is 1+2/d = 2. 
Thus, S(pquery, pWS2, a) = 4*2 = 8. 

• There is a sibling relation between the output con-
cept Author of the query and the output Publisher 
concept of WS1, thus fs(OW1,r, Oquery,r, a) = 2/3 since 
d = classSimilarity(Author, Publisher) = 3 and the 
weight for the sibling match is 2/d = 2/3. Thus, 
S(pquery, pWS1, a) = 4*2/3 = 2.66. The algorithm needs 
an appropriate a value in order to take into account 
the sibling match. For our example, such a value 

should be greater or equal to 3 in order to capture 
the sibling relation of the example where the dis-
tance between the sibling classes is 3. Intuitively, 
this is the minimum value of the threshold a, i.e. the 
distance between the direct subclasses of a common 
superclass. An a value less than 3 means that we do 
not want sibling matches during matchmaking.  

 
In that way, the matchmaking procedure will return the 

four services in a descending order: WS4=WS3> 
WS2>WS1, assuming that N ≥ 4. In this example, the 
sibling class relationship is of minor importance since 
there are exact and subsume matches. However, the sib-
ling class relationships could be proved very useful espe-
cially in cases where the matchmaking process does not 
return any result (due to the absence of exact, plug in or 
subsume matches) and there is a need to relax the match-
making criterion. Furthermore, although WS4 is semanti-
cally irrelevant to the query, it is returned since its I/Os 
are satisfied. Such situations can be circumvented by us-
ing a profile taxonomy, as we describe in the next section. 

 
6. Taxonomy-based Profile Matchmaking 

 
So far we have described how object similarity meas-

ures can be applied in the domain of Web service match-
making of profile objects that belong directly to the Pro-
file class. However, Web service profiles can be classified 
into taxonomies of profiles according to their functional-
ity [17]. In this case, each profile object belongs to a class 
defined as subclass of the Profile class, creating in that 
way a profile taxonomy.  

Intuitively, hierarchically related profiles denote ser-
vices with potentially the “same” functionality. To this 
end, queries could be also classified in the taxonomy ac-
cording to the requested service. In that way, we could 
use our inter-class similarity measure in order to filter 
profiles during the matchmaking procedure by pruning 
WS profiles with no hierarchical relationship with the 
query object class or by relaxing the matchmaking crite-
rion in order to take into consideration sibling classes.  

The filtering of profile objects during the matchmaking 
procedure can be realized with Algorithm 7, where 
class(o) is the class of the object o. 
 

 
Fig. 5. UML object diagram for the profile objects. 



Algorithm 7: Relevant profile object to a query 
Inputs: The query object q, a profile object p and the 
distance threshold b for sibling profile class relations. 
Output: Profile is relevant (TRUE) or not (FALSE) 
 
function relevantProfile(q, p, b) { 
   var temp = classSimilarity(class(q), class(p)) 
   if temp = ∞ then return FALSE 
   if temp = 1 then return TRUE  
   if class(q)  class(p) ∨ class(p)  class(q) then  
      return TRUE 
   if temp ≤ b then return TRUE 
   return FALSE 
} 

 
In that way, Algorithm 6 can be extended in order to 

perform matchmaking based on “relevant” profile objects. 
We use a threshold b that defines the sibling profile class 
distance threshold in order to be able to declare different 
relaxing policies between concepts and profiles. 

 
Algorithm 6b: Extended matchmaking algorithm. 
Inputs: A query profile object pQ, the sibling concept
distance threshold a, the sibling profile class distance
threshold b and the maximum number of results N. 
Output: Similar advertisement profile objects to a
query in descending order. 
 
function matchmaking(pQ, a, b, N) { 
 
   for each p : Profile | relevantProfile (pQ, p, b)=TRUE
      do … 
} 

 
To give an example, consider the profile hierarchy of 

Fig. 6. Assume that the four Web service profile objects 
of section 0 have been classified accordingly to their 
functionality. Let also be a variety of Web service profile 
objects (WSN) been classified into different classes. 

A query object defined to belong directly in the Profile 
class would lead to the examination of all the profile ob-
jects of the hierarchy, since ∀p: Profile, class(p)=class(q) 
∨ class(p) class(q) (the similar case to section 5) and 
thus Algorithm 7 would always return TRUE. However, 
by defining the query to be an object of an appropriate 
class, according to the requested service, we give the op-
portunity to filter out Web services. Assuming that b<3: 

• If q : InformationServices, then the matchmaking 
procedure will be performed ∀p∈C | C  Informa-
tionServices ∨ InformationServices  C. For exam-
ple, profiles that are direct or indirect objects of the 
E-commerce class will be pruned. 

• If q : BookInformation, then additionally to the pre-
vious case, the profile objects of the ArticleInforma-
tion class will be pruned. In that case, WS4 will not 
be returned since it is an irrelevant Web service to 
the book domain. 

 
By setting a b value greater or equal to 3, we let profile 

objects of sibling classes to participate also in the match-
making procedure in an analogous manner as we have 
described in section 0. 
 
7. Related Work 
 

Many research efforts have been focused on the field 
of Web service discovery. In this section we briefly pre-
sent some of these approaches. 

In [19] the authors propose a prototype for semi-
automating Web service composition. Users create a 
workflow of services by presenting the available choices 
at each step. Web services descriptions are defined in 
DAML-S and through an OWL Prolog reasoner, the sys-
tem inferences and selects matching services based on 
subsumption relationships. Services are also filtered based 
on constraints which the user may specify. 

The authors in [20] describe the implementation of the 
DAML-S/UDDI Matchmaker that expands on UDDI by 
providing semantic capability matching. They provide an 
extensive description on the theoretical framework under-
lying the use of DAML-S for Web service discovery, in-
teraction and composition. Advertisements and requests 
refer to DAML concepts and the matching process can 
perform inferences on the subsumption hierarchy leading 
to the recognition of semantic matches. 

In [9] the authors describe a service matchmaking pro-
totype which uses a DAML-S based ontology and the 
Racer [4] reasoner. The reasoner checks the satisfiability 
of the request with each advertisement by computing the 
subsumption relationships between advertisements and 
requests. 

In [6] the authors present a logical framework for au-
tomated Web service discovery which is based on the 

 
Fig. 6. Example profile hierarchy. 



WSMO conceptual model. They have implemented their 
approach in the F-Logic reasoning engine Flora2.  

The above approaches are based on subsumption rela-
tionships that are derived from ontology descriptions of 
Web services. In [7], an approach to hybrid semantic Web 
service matching is presented, called OWLS-MX, that 
utilizes both logic-based reasoning and content-based 
information retrieval techniques for services specified in 
OWL-S. The authors show that hybrid approaches to se-
mantic matching that exploit both formal and implicit 
semantics may improve the retrieval performance of se-
mantic service matching over purely logic-based ones. 
The implementation is based on the combination of syn-
tactic similarity metrics, such as the extended Jacquard 
similarity coefficient or the cosine similarity value, and 
on the semantic derivations of Pellet DL reasoner. 

WSMO-MX [5] is also an approach to hybrid semantic 
web service matching based on both logic programming 
and syntactic similarity measurement in order to retrieve 
WSMO-oriented service descriptions that are semanti-
cally relevant to a given query. They use the notion of the 
derivative and perform matching of a goal derivative with 
a service description derivative based on type matching, 
logical constraint, relation and syntactic matching. 

In our approach we introduce a new methodology of 
matching ontology concepts: we exploit the OO schema 
that emerge after the transformation of OWL ontologies 
into a native OO model by customizing appropriately ob-
ject similarity measures inspired from the domain of OO 
programming. The resulting methodology is able to match 
concepts based not only on the subsumption relationships 
that are handled by the inheritance mechanism of the un-
derlying OO rule reasoner (CLIPS) but also on class rela-
tionships stemming from the OO schema, such as rela-
tionships among sibling classes. Such relations can be 
proved very useful and should not be totally ignored dur-
ing the discovery of Web services [5][7]. 

 
8. Conclusions and Future Work 

 
The efficient discovery of semantic Web services de-

mands sophisticated frameworks and algorithms able to 
handle the semantic nature of their description. In this 
paper we approach the problem of semantic Web services 
matchmaking from an OO perspective.  

In O-DEVICE [12], we have shown that the OO char-
acteristics of OWL, such as the classes, properties, in-
stances, class and property inheritance, etc., as well as 
OWL semantics can be easily mapped into rules and con-
structs of the OO model. Motivated by the results of this 
work, we have extended our OO methodology to the do-
main of the OWL-S profile descriptions of Web services. 
Since the profiles and requests in our framework are rep-
resented as objects, we apply object similarity measures 
in order to realize the matchmaking procedure. The utili-
zation of such similarity measures, gives us the opportu-

nity to perform Web service discovery based on hierar-
chical relationships that cannot be captured by the logic-
based subsumption relation. The proposed methodology 
can be implemented also in a non OO environment by the 
utilization of an OWL ontology reasoner for the determi-
nation of hierarchical relationships. However, the genera-
tion of an OO model from OWL ontologies following the 
methodology in [12] gives great advantage since hierar-
chical relationships can be determined at once by the OO 
environment, without performing runtime inferencing. 

In section 4 we explain the reasons for which we are 
not able to apply directly object similarity measures on 
profile objects and how they can be customized for the 
domain of OWL-S Web services matchmaking. However, 
with a more sophisticated web Services profile manage-
ment policy, the initial object similarity measures can be 
proved very useful. 

By assuming that each profile object belongs directly 
to the Profile class, we use the inter-class similarity meas-
ure (as we have defined it) in order to determine the simi-
larity of the classes that are referred in the I/O profile pa-
rameters and not the similarity of the profile objects them-
selves. However, Web service profiles can be categorized 
into profile taxonomies according to their functionality, as 
the OWL-S example of the Congo Web services refers 
[16]. In that case, we can use the inter-class similarity in 
order to filter a priori profile objects that are not “similar” 
to a particular query, according to a minimum distance, 
since the profile objects would not necessarily belong 
directly to the same (Profile) class.  

Such filtering can be performed by examining also 
non-functional properties of the profile objects which they 
inherit due to their classification into a class hierarchy, 
such as price or location. In that case, the profile objects 
would contain actual values in these specific non-
functional properties, enabling the direct application of 
the intra-class similarity measure, as it is defined in [1], 
determining similarities based on actual values and not 
based on datatypes or classes. 

For the future, we plan to enrich our methodology with 
services pre and post conditions. An interesting work 
relevant to this field is presented in [23] where the authors 
describe a variety of relaxed matches of software compo-
nents based on what a component “requires” and what 
“ensures”, in a similar manner to Web services pre and 
post conditions. We plan also to use our methodology in 
[11] where we perform discovery based only on subsump-
tion relationships that are derived by the underlying OO 
rule reasoner. Finally, we investigate the combination of 
our methodology with machine learning techniques, such 
as text mining or clustering in order to enrich even more 
the Web services retrieval process with non-logic based 
approaches. 
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