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Reinforcement Learning comprises an attractive solution to the problem of coordinating
a group of agents in a Multiagent System, due to its robustness for learning in uncertain
and unknown environments. This paper proposes a multiagent Reinforcement Learning
approach, that uses coordinated actions, which we call strategies and a fusing process

to guide the agents. To evaluate the proposed approach, we conduct experiments in
the Predator-Prey domain and compare it with other learning techniques. The results
demonstrate the efficiency of the proposed approach.

1. Introduction

A Multiagent System (MAS) is composed by a set of agents that interact with

each other 19,23,21,17. The agents may share a common goal or have contradictory

goals. This work deals only with MASs, where the agents try to achieve a common

goal. In this case, the main problem is how to coordinate the agents, in order to

accomplish their task in an optimal way. Reinforcement Learning comprises an

attractive solution to the problem of multiagent learning, due to its robustness for

learning in uncertain and unstable environments.

Reinforcement Learning (RL) negotiates the problem of how an agent can learn

a behaviour through trial and error interactions with a dynamic environment 18.

RL is inspired by the reward and punishment process encountered in the learning

model of most living creatures. RL is an important technique for automatic learning

in uncertain environments. Though it has been applied to many domains widely, the

multiagent case has not been investigated thoroughly. This is due to the difficulty



of applying the theory of the single-agent RL to the case of multiagent. Addition-

ally, other issues, like knowledge sharing and transfer among the agents, make the

problem harder.

The approaches that exist in the field of multi-agent RL can be divided in

two main categories 3. The first category contains approaches in which the agents

(or learners) learn independently from each other without taking into account the

behaviour of the other agents 20,14. These agents are called Independent Learners

(ILs). In the second category the agents learn joint actions and they are called Joint

Learners (JLs) 3. Recently, a number of hybrid approaches have been presented
6,9,10,12, in which the agents act as JLs, in a part of the state space and in the rest

they act as ILs.

This work presents a hybrid approach, where a number of strategies are defined

as the coordinated actions that must be learned by the agents. Then, through a

process of fusing, the decisions of the agents are combined in order to follow a

common strategy. The proposed approach is compared with other multi-agent RL

methods using the known predator-prey domain. The results are promising as the

proposed approach achieves good performance without spending a large amount of

time.

This paper extends our previous work 12. We improved the proposed method in

order to be more effective. Also, we extended the related work and conducted more

detailed experiments varying in several parameters.

The rest of the paper is structured as follows. In Section 2 we give background

information on RL. Section 3 presents our approach and Section 4 describes the

experiments we conducted. In Section 5 we discuss the experimental results and

in Section 6 we review related work on multi-agent RL. Finally, in Section 7 we

conclude and give some directions for future work.

2. Reinforcement Learning

In this section we briefly provide background information for both single-agent and

multi-agent RL.

2.1. Single-Agent Case

Usually, an RL problem is formulated as a Markov Decision Process (MDP). An

MDP is a tuple 〈S, A, R, T 〉 where S is the finite set of possible states, A is the finite

set of possible actions, R : S×A→ ℜ is a reward function that returns a real value

r that is received from the agent as an outcome of taking an action a ∈ A in a state

s ∈ S. Finally, T : S × A × S → [0, 1] is the state transition probability function

which denotes the probability of moving to a state s′ after executing action a in

state s.

The objective of the agent is to maximize the cumulative reward received over

time. More specifically, the agent selects actions that maximize the expected dis-

counted return:
∑

∞

k=0
γkrk+1, where γ, 0 ≤ γ < 1, is the discount factor and



expresses the importance of future rewards.

A policy π specifies that in state s the probability of taking action a is π(s, a).

For any policy π, the action-value function, Qπ(s, a), can be defined as the expected

discounted return for executing a in state s and following π thereafter, Qπ(s, a) =

Eπ

{

∑

∞

k=0
γkrk+1

∣

∣

∣
s, a

}

.

An optimal policy, π∗, is one that maximizes the action-value, Qπ(s, a), for

all state-action pairs. In order to learn the optimal policy, the agent learns the

the optimal action-value function, Q∗ which is defined as the expected return of

taking action a in state s and following an optimal policy π∗ thereafter: Q∗(s, a) =

E
{

r + γ maxa′ Q∗(s′, a′)
∣

∣

∣
s, a

}

.

An optimal policy can now be defined as π∗ = argmaxa Q∗(s, a). The most

widely used algorithm for finding an optimal policy is the Q-learning algorithm 22

which approximates the Q function with the following form:

Q(s, a) = Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)).

2.2. Multi-Agent Case

In this work we only consider the case where the agents share a common goal

which means that they act in a fully cooperative environment. Another case could

be a competitive environment in which the agents have contradictory goals. In the

cooperative case the agents share the same reward function. The multiagent Markov

Decision Process is an extension of MDP and is a tuple 〈Ag, S, A, R, T 〉 where Ag,

|Ag| = n, is the set of the agents and A = ×i∈AgAi is the set of joint actions. The

transition function T expresses the probability of moving to state s′ after taking the

joint action a in state s. Finally, the reward function R is the same for all agents.

Alternatively, the reward function can be global, R(s, a) =
∑n

i=1
Ri(s, a), where

Ri(s, a) denotes the reward that agent i receives after taking the joint action a in

state s. In the second case the framework is called collaborative multiagent MDP

(CMMDP) 7.

3. Our Approach

The main idea of the proposed approach, is to use a set of joint actions and through

a combination method that fuses the decision of the agents to select the appropriate

subset of joint actions to follow.

The following description of the proposed method assumes that the agents share

a common goal and they are able to communicate with each other. Also, we must

note that in this work we don’t consider cases where multiple goals exist in the

environment. In this cases several issues are raised, as for example how a group of

coordinated agents must break or how the several groups of agents will update their

common knowledge.

In the remaining section we will use the predator-prey domain to give some

concrete examples concerning the fundamental concepts of the proposed approach.



In this domain a number of predators (two for the following examples) try to catch

a prey.

3.1. Strategies

A key concept of the proposed approach is strategies. Let A = {al|l = 1 . . . |A|}

be a set of basic actions that a set of n agents are capable to execute. We assume

that all the agents can execute the same actions. For example, in the predator-prey

domain the basic actions are the following: move north, move south, move east,

move west, move none. Then we define high level actions that are synthesis of the

basic actions in successive time steps, that is Ahigh = {ahigh
m |m = 1 . . . |Ahigh|},

where ahigh = {al,t|l = 1 . . . |A|, t = 1 . . . T s}, where t represents the time steps

that are required to execute the high level action ahigh and Ts is the number of

these time steps. For example, a high level action could be stay in a small distance

relative to the prey which requires several basic actions that must be executed at

each time step. Note that the basic actions that must be executed in each time

step are selected dynamically from the agents during the execution of the high level

action. In other words, a high level action may be executed using different basic

actions in different situations.

A strategy σk = {ahigh
m,i |m = 1 . . . |Ahigh|, i = 1 . . . n} is composed of a number

of high level actions is single of which is assigned to a specific agent. For example,

a strategy could be the following: one predator stays in a small distance relative

to the prey and the other predator moves towards the prey. Finally, we define as

σ= ∪j
k=1

σk to be the set of strategies that the agents can select to follow. This set

of strategies will form the action set for the RL agents.

The feature of strategies allows us to combine the individual actions of the agents

in a straightforward manner and to concentrate only on the high level actions.

What is important to note is that the strategies are predefined and that it is

up to the user to construct good strategies. We expect the quality of the strategies

to affect the learning procedure and thus the overall performance of the system.

A way to alleviate the problem of defining good strategies is to have numerous

strategies and let the agents decide which of them are good to keep. The rest can

be discarded, as they harm the overall performance. Alternatively, we could have a

number of initial strategies, which evolve through the learning process.

3.2. Multi-Agent Fusion

Each agent i in our approach maintains a separate table Qi. Similarly to 10 we

distinguish the states in uncoordinated and coordinated states. In uncoordinated

states there is no need for the agents to cooperate, so they act independently.

In these states the agents can follow a random or a predefined policy and they

don’t update their Q-values. In the coordinated states the agents must fuse their

knowledge in order to take a common decision. Contrary to 10, where the authors

maintain a common Q-table, we don’t use a shareable table but instead we use



a method that fuses the different decisions of the agents that are based on the

individual tables.

In 12, we use methods from the area of Multiple Classifier Systems or Ensem-

ble Methods 5. More specifically, each agent selects (votes for) the strategy which

believes that is the most appropriate to be followed in the current situation and com-

municates the vote. Then the votes are combined using the majority voting scheme.

The main disadvantage of this approach is that when few agents participate to the

voting procedure, the possibility of reaching to a majority is very low.

In this work we use an alternative approach for conflating the decisions of the

agents, which is based on a simple ranking procedure. Each agent ranks the strate-

gies based on their Q-values. The strategy with the highest Q-value gets rank 1.0,

the one with the second highest Q-value gets rank 2.0 and so on. In case two or

more strategies tie, they all receive the average of the rank that corresponds to them.

Then, in order to fuse the different decisions we just average the ranks from all the

agents that took part to the ranking procedure. The strategy with the lower rank

is the one proposed by the ensemble. In case of ties a general to rule to break them

is to follow the strategy that is proposed by the most accurate or reliable agent.

Alternatively, we could assign weights to the decisions of the agents according to

their distance from the goal. Generally speaking, the way that the ties are broken

must be defined according to the domain that the agents act.

The motivation of bringing this feature to the reinforcement learning algorithm

is due to the fact that each agent has a partial perception of the environment and

a partial knowledge of how to accomplish the common goal. So, it’s better to fuse

the partial knowledge to coordinate the agents and obtain better results.

Proceeding with the learning course, when the agents enter a coordinated state,

each of them ranks the strategies according to their Q-values. Then the decisions are

combined using the method described above. Finally, the reward function is defined

only for the coordinated situation. The reward is the same for all the coordinated

agents and is expressed as follows:

Ri(s, a) = R(s, a), ∀ i,

The non-coordinated agents do not receive any reward. Algorithm 1 depicts the

proposed algorithm in pseudocode. Note that the procedure of selecting a strategy

(steps 5-13) is performed at every time step. This means that the coordinated agents

may select a different strategy to follow at any time step.

At this point we must focus on two important issues: when an agent is regarded

to be in a coordinated state; and in what way the procedure of conflating the

decisions of the agents is achieved.

Firstly, me must mention that a coordinated team can be consisted of one or

more agents. Regarding the first issue, an agent enters into a coordinated state or

into an already coordinated team, if it is close enough to another agent or to that

team. Another possibility is to assume that the agents are coordinated, if they are

close to their goal. The closeness of the agents is defined according to the domain



Algorithm 1 The proposed algorithm in pseudocode.

Require: A set of strategies, an initial state s0

1: s← s0

2: while true do

3: if s is coordinated state then

4: p← RandomReal(0, 1)

5: if p < ǫ then

6: select a strategy randomly // the same for all agents

7: else

8: rank strategies

9: communicate ranks

10: receive ranks from other agents

11: average ranks

12: select corresponding strategy

13: end if

14: execute selected strategy

15: receive reward

16: transit to a new state s’

17: update Q-value

18: else

19: act with a predefined or random policy

20: end if

21: end while

in which they act. For example, in a real world robotic system the agents may

coordinate their actions if the relative distance between them is smaller than a

predefined threshold.

As for the issue of conflating the decisions of the agents, two alternative ways

can be considered. We can assume that there is an agent that plays the role of the

leader of the team. This leader collects the ranks from the agents, outputs the final

decision and sends it back to the agents. The other way is to circulate all the ranks

among the coordinated agents, so that each one of them can calculate the output

locally. In this work we use the second approach for performing the procedure of

conflation. We must mention that the agents communicate with each other only

when they are in a coordinated state.

There are two situations where the synthesis of a coordinated team of agents may

change. The first case is when an agent meets the requirements to be coordinated

and joins a team. The second is when an agent does not satisfy the conditions to

be in a coordinated state any more. Each time that these two situations arise, the

coordinated agents repeat the fusion procedure in order to select a new strategy as

the synthesis of the team has changed.



4. Experiments

In order to evaluate the proposed method we experimented with the predator-prey

domain and more specifically we used the package developed by Kok and Vlassis 8.

The domain is a discrete grid-world where exist two types of agents: the predators

and the preys. The goal of the predators is to capture the prey as quickly as possible.

The grid is toroidal and the agents are able to move from one side of the grid to the

other side. Additionally, the grid is fully observable, which means that the predators

receive accurate information about the state of the environment. Figure 1 shows a

screenshot of the predator-prey domain. The predators are represented as circles

and the prey as a triangle.

Fig. 1. A screenshot of the predator-prey domain.

We conducted a number of different experiments varying in two parameters: a)

in the number of the predators and b) in the size of the grid; we did this in order

to explore the robustness of the algorithm regarding the plurality of the agents and

its scalability to the size of the problem. More specifically, for the first group of

experiments we fix the size of the grid to 12 and we use 3, 4 and 5 predators to

run the corresponding experiments. Regarding the second group of experiments we

instantiate the number of the predators to 3 and we use three different cases for the

grid size: 10, 12 and 14.

4.1. Competing Algorithms

Regarding the settings of the proposed approach, the state is defined as the x and

y distance from the prey, to the x-axis and y-axis respectively, the number of the

agents that constitute the coordinated team and the average distance of all the



coordinated agents from the prey. We use the feature of the team’s size, in order to

distinguish the different cases that appear when the number of the agents varies.

The average distance of the coordinated agents from the prey, is an indication of

how tight is the coordinated team. In such cases the agent must avoid strategies

that are likely to lead to collisions.

One or more predators enter a coordinate state when the prey is in their visual

field (3 cells around them). This means that the coordinated predators are in a

small distance around the prey. Also, we set a default state when an agent is not in

a coordinated state. In non-coordinated states the predators act randomly.

As described in the previous section, each of the agents communicates its ranks

to the coordinated agents in order to perform the fusing procedure. Along with the

ranks the message that is sent from each agent includes the x and the y distance

from the prey so that each of the coordinated agents knows the relative positions

of the others, but only with respect to the prey.

In order to define the actions of the agents we use five different fixed strategies

(we make use of the Manhattan distance):

σ1 all predators go straight up to the prey

σ2 the nearest predator moves along to the prey and the rest stay at a distance of

2 from the prey

σ3 all the predators go at distance of 3 from the prey

σ4 the nearest predator remains still and the others move along to the prey

σ5 all predators go at distance of 2 from the prey

We must mention that in case of ties in the fusing procedure, the winning strategy

is the one that proposed by the closest to the prey predator.

In case of success each of the coordinated predators receives a positive reward of

40, while in case of collision with another predator, they receive a negative reward

of -20. We penalize all the coordinated predators because they all contributed to

the decision of following the strategy that led to the collision. In all the other cases

they receive a reward of -0.001. The uncoordinated predators receive no reward.

During the training phase, the agents must stochastically select actions (strate-

gies) in order to explore the state space. To achieve this aim we make use of the

ǫ− greedy action selection method, where an action a is selected according to the

following rule:

a =
{ a random action with probability ǫ

argmaxa′ Q(s, a′) with probability 1− ǫ

with ǫ = 0.4 which is discounted at a factor of 10−4 per episode. Also, we set the

discount factor γ to 0.9.

We compare the performance of our approach (RL-Fusing) against a pure IL

approach and a hybrid approach. In the IL approach each of the agents maintains a

Q-table and learns an independent policy without taking into account the behavior

of the others. The state is defined as the x and the y distance from the prey, to



the x-axis and y-axis respectively. Additionally, the actions are the following: go

straight up to the prey, stay still, stay at distance 2 (Manhattan) from the prey,

stay at distance 3 from the prey. We choose to define abstract actions for the IL

approach, in order to provide fair comparisons between the competing algorithms.

The predator that captures the prey receives a positive reward of 40, while the rest

receive no reward. When a collision happens, the agents that participated receive

a negative reward of −20. In all other cases they receive a small negative reward

of −0.001. Additionally, we set the discount factor γ to 0.9 and ǫ to 0.4 in order

to have a high exploration degree (discounted during the learning process as in our

approach). In both RL-Fusing and IL we used the Q-learning algorithm.

The hybrid approach we implemented, is the Sparse Tabular Q-learning (STQ)
9. As mentioned in our approach, the states are distinguished in coordinated and

uncoordinated. Each agent maintains a local Q-table for the uncoordinated states

and one shared table for storing the Q-values of the joint state-action pairs. Two

and more agents are regarded to be in a coordinated state if the prey is in their

visual field. The state is defined as x and y distance of the coordinated agents from

the prey and the possible actions are: go straight up to the prey, stay still, stay at

distance (Manhattan) 2 from the prey. Finally, the rewards and the parameters are

set to the same values as in the RL-Fusing and IL approaches.

The prey follows a predefined policy. It remains still with a probability of 0.2 and

with the remaining probability it moves to one of the four free cells. The predators

receive visual information within a distance of three cells around them. The prey is

captured when it occupies the same cell with a predator.

4.2. Evaluation

The results are obtained, for each algorithm, by running 200 test episodes with the

current learned policy after 200 training episodes, without performing exploratory

actions. We must mention that the fusion procedure takes place in both training

and evaluation episodes. We run the proposed approach, as well as the IL and STQ

methods, 10 times each and then we average the results.

5. Results and Discussion

This section discusses the results of the two groups of experiments as mentioned

previously.

5.1. Number of Agents

Figures 2, 3 and 4 present the average capture time (in number of cycles) of each

algorithm against the number of the episodes, for 3, 4 and 5 predators respectively.

The curves are presented for the first 30000 episodes.

We first notice that the proposed approach obtains the best performance in all

cases. Additionally, RL-Fusing learns quite fast and shows a stable behaviour, which
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Fig. 3. Average capture times of the algorithms for 4 predators.

indicates that it converges to a single policy. The IL method presents important

variations in its behaviour, that clearly show the weakness of the method. That is

the lack of taking under consideration the behaviour of the other agents. As for

the STQ algorithm, although it performs better than IL, it shows an oscillating

behaviour. In Figure 2, which shows the curves for the case of the 3 predators,

we observe that STQ shows a rather stable behaviour but in the cases of 4 and 5

predators (Figures 3 and 4 respectively) STQ oscillates. These findings shows that

STQ does not scale sufficiently well, with regard to the number of the predators.

The insertion of more agents increases the joint actions that must be learned by the

agents, and thus the ability to converge on a single policy.

Regarding the proposed approach, we notice that it achieves a good perfor-

mance in a small number of episodes. This is due to the fact that the use of strate-

gies reduces the state-action space, which offers a great advantage to the proposed
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approach over its competitors. Additionally, we can notice that RL-Fusing is not af-

fected importantly when more agents are added to the domain. It converges quickly

and improves its performance, which indicates that the addition of agents makes

the process of fusion more powerful, as more agents can contribute, from their per-

spective to the decision of the whole ensemble. However, adding a great amount of

agents does not necessarily leads the ensemble to take a correct decision. In this

case a good practice is to assign weights to the decisions of the agents proportional

to its distance from the prey.

In order to detect if significant differences exist among the performances of

the competing methods, we performed the one-tailed t-test, at various points of

the learning curve (per 1000 episodes). At α = 0.05 the test shows that the pro-

posed approach performs significantly better than IL and STQ, except the case of

5 predators where the test does not detects significant differences only in the first

1000 episodes.

After the 30000 episodes the competing algorithms did not show any change in

their behaviour.

Table 1 presents the average capture times of all algorithms, for the different

number of predators. These results were derived from running 2000 episodes each

of the learned policies. We observe that RL-Fusing achieves the best capture time

in all cases and improves its performance by about 23% from 3 to 4 predators, and

about 14% from 4 to 5 predators.

Table 1. Average capture times for the dif-
ferent values of the predators parameter.

Predators RL-Fusing IL STQ

3 10.17 17.26 13.49
4 7.81 13.24 13.01
5 6.7 10.77 10.16



Figures 5(a), 5(b) and 5(c) show the average selection percentage for each strat-

egy for the different number of predators. We averaged the results for the 30000

first test episodes. We notice that in the case of 3 predators the dominant strategy

is σ1, while in the case of 4 predators the most selected strategies are σ1 and σ2. In

the case of 5 predators the agents select equally strategies σ1 and σ2.

These findings show that a greedy strategy like σ1 (all predators go straight up

to the prey) is not adequate to coordinate in an optimal way the agents. The use

of less greedy strategies can enhance the overall performance of the whole group of

agents.
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Fig. 5. Percentage of selection for each strategy.

5.2. Size of Grid

Figures 6, 7 and 8 show the average capture time of each algorithm against the

number of the episodes, for the different values of the grid size, 10, 12 and 14

respectively.

We again notice that RL-Fusing is the best performing algorithm in all cases

and that it quickly converges to a single policy. This shows the robustness of the

proposed approach, as it obtains high performance in all cases, and that the problem

size does not affect substantially the overall performance. This characteristic offers a

great advantage to the proposed approach, which can be used in large problems and



obtain a good solution while spending little time. This conclusion can be derived

by the fact that the curves in all cases decrease quickly. On the other hand, both IL

and STQ show a rather unstable behaviour, as they alter their policies very often.

At α = 0.05 the t-test shows that RL-Fusing performs significantly better than

its competitors. In the case of grid size 12, RL-Fusing does not perform significantly

better than STQ between 28000 and 30000 episodes, while in the case of grid size

14, the test does not detects significant differences at 13000 and 14000 episodes,

and at 25000 episodes.
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Table 2 shows the average capture times of each algorithm, for each of the

different values of the grid size. We notice that the proposed approach has the best

performance in the three cases of the grid size. Additionally, we must note that
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RL-Fusing obtains considerably low average capture times in contrast with IL and

STQ.

Table 2. Average capture times for the
different values of the grid size.

Grid size RL-Fusing IL STQ

10 7.28 11.62 10.5
12 10.17 17.26 13.49
14 14.05 22.79 22.04

Figures 9(a), 9(b) and 9(c) depict the average percentage selection for each

strategy for the different values of the grid size, 10, 12 and 14 respectively. Strategy

σ1 is the most selected strategy and follow strategies σ2 and σ5.

6. Related Work

The IL approach has been used successfully in the past, despite the lack of a con-

vergence proof, as each agent ignores the existence of the other agents yielding to

a non-stationary environment (the transition model depends on the behaviour of

the other agents). Tan 20 proposed the use of agents that learn independently of

each other and communicate in order to share information like sensations, policies

or episodes. IL was also used in 14 where the agents did not share or exchange any

information.

In 3 the authors proposed a joint learning approach where they introduce sev-

eral heuristics for selecting actions. The experiments showed that the agents can

converge to a single policy. Additionally, the authors have shown that independent

learners, which apply an RL technique, under some conditions can converge.

In 13, Scheneider et al. presented an approach, in which each agent updated its

value function, based on the values of the vicinal agents. Each value was associated
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Fig. 9. Percentage of selection for each strategy.

with a weight, proportional to the distance between the agents.

Stone and Veloso 16 presented a multiagent learning algorithm called team-

partitioned, opaque-transition reinforcement learning (TPOT-RL). The proposed

method was breaking the state space into smaller regions, one for each agent in the

team. Then, they were reducing the state-action space under the assumption that

the expected value for taking an action was depending only on the feature value of

that action.

Lauer and Riedmiller 11 proposed a distributed reinforcement learning algorithm

on the basis of Q-learning, and showed that it cannot be based only on the compu-

tation of the value functions. The authors concluded that extra coordination tech-

niques are necessary. Chalkiadakis and Boutilier 2, introduced a Bayesian approach

to model the multiagent RL problem. The authors developed several exploration

strategies to enhance the overall performance of the agents.

In the case of JL the multi-agent system is treated as a large single agent system

and each individual agent models this system 21, 10. The disadvantage of this ap-

proach is that the number of the joint state-action space grows exponentially to the

number of the agents. For this reason methods that reduce the joint state-action

space have been developed.

More specifically, Guestrin et al. 6 proposed an approach in which the agents

coordinate their actions only in a part of the state space, while they were acting

independently in the rest. This was accomplished, by letting the agents interact



with a number of other agents and using coordination graphs to specify the depen-

dencies among the coordinated agents. In 9,10 the authors presented an extension

of the above idea using a sparse representation of the value function by specifying

the coordinated states beforehand. The authors applied different update equations

when moving from coordinated to uncoordinated states and vice versa, from co-

ordinated to coordinated states and finally from uncoordinated to uncoordinated

states. This approach displays similarities with our approach as we distinguish the

states in coordinated and uncoordinated. The main difference is that the agents in

our method do not maintain a common Q-table but only local Q-tables, and thus

there is no need to use several update equations.

Multiagent reinforcement learning has been used successfully in the past, on

several domains. More specifically, in 1 Boyan and Littman proposed a Q-learning

based algorithm for packet routing, in which each node of a switching network rep-

resents an agent. Additionally, TPOT-RL 15 was applied to the network routing

problem. Crites and Barto 4 used a number of RL agents, each of which was asso-

ciated with an elevator, to control a group of agents. Finally, in 13 multiple agents

were used in order to control a power network.

7. Conclusions and Future Work

This paper presented a multiagent RL approach for the problem of coordinating a

group of agents. In the proposed approach we used strategies as the coordinated

actions that must be learned from the agents, and we imported the feature of fusion

in the RL technique. Fusion is used as the mechanism to combine the individual

decisions of the agents and to output a global decision (or strategy) that the agents

as a team must follow. We compared our approach with two multiagent RL tech-

niques. The results demonstrated the efficiency and the robustness of the proposed

approach.

For future work we intend to investigate the applicability of our approach in

real world domains, where the environments are highly dynamic and noisy. In such

environments we must alleviate the problem of communication, as it may not be

feasible to have any type of communication between the agents. Additionally, when

the agents have limited resources, in robotic systems for example, the communica-

tion may be a power consuming process. In these cases, an alternative way must be

followed in order to hand down the decisions among the agents. Also, an interesting

extension is to automatically learn the strategies as in this work they are prede-

fined and fixed. Having a number of basic strategies during the learning process,

these strategies could be modified automatically via an evolutionary methodology

in order to be improved.
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