D-WMS: Distributed Workforce Management using CLLP

FoTios KOKKORAS STEVE GREGORY
Department of Informatics Department of Computer Science
Aristrotle University of University of Bristol
Thessaloniki
Thessaloniki, 54006, GREECE Merchant Venturers Building,
Woodland Road
Bristol, BS8 1UB, UK
Tel.: +30 31 998433 Tel.: +44 117 9545142
kokkoras@csd.auth.gr stevelcs.bris.ac.uk
Abstract

We present a distributed CLP-based approach for solving a real workforce
management problem (BT's DT-250-118). The problem consists of a set of
jobs that we want to assign to engineers in order to serve as many of them as
possible at a minimum cost. We first divide the problem into sub-problems
and then assign each of them to a solving agent. Each agent works
independently to solve its own sub-problem and then co-operates with its
peers to optimise further the intermediate results. In the sub-problem solving
stage, our agents use a CLP based approach which has been used in the past
in a centralised, global way. Our method allows naturally distributed
scheduling and resource allocation problems to be solved in a short time
with minimal disruption to the quality of solutions when compared against
global approaches.
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1. Introduction

Discrete optimisation problems, of the kind that arise in many areas of operational research
(OR), can be modelled and solved using integer linear programming (ILP - linear constraints
and integer variables). A fundamental difficulty with linear programming in real world
optimisation problems is to find a compact representation for them. This increases the
complexity of any given solution, particularly when the number of constraints to deal with
grows or when real (or quazi-real) time response of the system is required. Another approach
is to formulate those problems as constraint satisfaction problems (CSPs). A CSP consists of a
set of variables, each with a finite set of possible values, and a set of constraints which the
values assigned to the variables must satisfy. The optimisation part is handled by an additional
variable representing the objective which we want to minimise or maximise.

Unlike ILP, the CSP approach provides greater expressiveness because constraints are
not restricted to linear inequalities as in linear programming. As a result, a CSP representation
requires far fewer constraints and variables than an ILP.

A typical example of a problem that fits the above model is the British Telecom (BT)
Workforce Scheduling Problem (WSP). In similar studies on labour scheduling, an heteroge-
neous workforce model is assumed. That is, the workforce is a mixture of full-time and part-
time employees with different wage rates. The aim is to reduce the wages of employees. In
BT's case, all employees are full-time and the aim is to serve as many jobs as possible within a
fixed time minimising the travel time between job locations. This is a heavily constrained
optimisation problem and like many real world problems of that kind is NP-hard. Even from
the CSP perspective, their huge state space prohibits the use of complete methods such as
branch and bound. Recently, among other techniques [1,2,15,19], Constraint Logic Program-
ming (CLP) coupled with heuristics has been successfully used to tackle with that problem in
a very short time, giving a satisfactory solution without the need to perform a full search [20].

All the approaches so far to solve BT's WSP are global, that is, the whole problem is
handled by a single solving process, although parallel processing methods have been
successfully applied. The drawback of any global approach is that it requires all the problem
related information to be collected in a specific place. This requires certain communication
cost, which could be prohibitively high. In addition, in some cases, gathering all information
to one location is not desirable or impossible for security reasons. In such cases a distributed
approach is more appropriate.

The advances in hardware and networking technologies during the current decade have
led to a very rapid spread of distributed computing environments. Distributed Artificial
Intelligence (DAI) is a subfield of Al that is concerned with the interaction of software agents.
A software agent is a self contained problem solving entity which is able to interact with other
agents in order to complete its own problem solving and to help others with their activities. In
[22], a distributed constraint satisfaction problem (DCSP) is formalised as a CSP in which
variables and constraints are distributed among software agents. Although algorithms for
solving DCSPs seem to be similar to parallel/distributed processing methods for solving CSPs
[25], there is an additional research motivation, apart from the efficiency. In DCSPs there
exists a situation where knowledge about the problem (i.e. variables and constraints) is
logically or geographically distributed. In such cases multiple agents have to co-operate to
solve the problem without centralising all information.

In this paper we show that the BT's problem is highly distributed by nature and we
propose a method to solve it in a distributed way. We introduce two clustering methods for
partitioning the problem into sub-problems and then we assign each of them to an agent that



utilises the CLP method described in [20]. All agents work independently on their own sub-
problem to find a first solution, and then communicate with their peers to further optimise the
global solution. Our aim is to find out how efficient, in terms of execution time and solution
quality, is such an approach.

The rest of this paper is organised as follows. Section 2 gives some background
pertaining to Co-operative Problem Solving (CPS) and Distributed Constraint Satisfaction
Problems (DCSPs). Section 3 states BT's workforce scheduling problem and reviews the
approach used in [20]. Our distributed approach is covered in Section 4. Related work is
presented in section 5. Section 6 concludes the paper and gives suggestions for future work.

2. CPS and Distributed CSPs

2.1 Co-operative Problem Solving

Finding solutions for large problems is sometimes most advantageously carried out as the
joint responsibility of multiple agents. For example, a multiple agent approach can be
essential when the areas of expertise relevant for solving the problem do not reside in any
single agent but are found among multiple heterogeneous agents. Alternatively, a group of
identical or similar agents might be employed for the purpose of finding a solution faster than
it can be accomplished by a single problem-solver. Such a multi-agent system might be one in
which the agents all work in parallel on the entire problem and share hints with each other, or
it might be one in which the problem is subdivided among the agents. In the latter case, each
agent works on solving its part of the entire problem, within some framework of interaction
with the other agents, and eventually the subproblem solutions are recombined in some way to
solve the overall problem.

When a problem is subdivided among multiple agents, the way in which the agents find,
share and use partial results can greatly affect the overall efficiency of the problem solving
effort, either positively or negatively. If all communication of subproblem solutions is
postponed to the termination of problem solving, incompatibilities might force some or all of
the agents to redo work already done. Had the agents communicated their partial results
earlier, they might have used each others' partial solutions to direct their efforts, so that upon
completion the final solutions were globally consistent.

On the other hand, early communication of subproblem solutions or partial solutions can
steer other agents in a counterproductive direction. If a communicated solution that is
ultimately inconsistent with any global solution is incorporated by another agent and used to
guide its problem solving, that agent can spend a lot of time until it discovers that there is no
solution in that direction. Alternatively, a consistent solution might be found, but it might be
of lower overall quality than if the agent had worked more independently earlier.

2.2 Distributed CSPs

A DCSP is the union of a set of constraint networks, plus an additional set of inter-agent
constraints. It consists of both an objective, centralised view, and subjective, agent-level
views. We must represent explicitly what parts of the problem belong to which agents.

A DCSP can be represented as a distributed constraint network CN=(A,V,D,C), where:

e A={a;,a,, .. an} 1S a set of m variables,

e V=UV;, (1€A), where Va; is the set of variables belonging to agent a;,

e D=UD;, (1€A), where Da; is the set of domains belonging to agent a;

o C=UC;U{cilci(Vit,,Vij) CDi1X..XDiy o V(Vik€V1) IVip | vingVi} (1€h)
That is, distributed constraint network (DCN) is the union of the constraint networks of the set
of A agents, plus additional constraints between agents. We further require that the sets of



variables belonging to different agents be disjoint, that is, V (i#j) (Vinv;=C). This is
necessary in order to clarify what constraints are visible to what agents.

We define a subproblem to be a set of one or more variables that "belong together",
either logically in the problem domain or because of the nature of the constraint relationships
among them. All variables in a single subproblem must belong to the same agent, and the
subproblems of a DCN partition the DCN's variables. An agent may be responsible for more
than one subproblem. Problem decomposition, namely the allocation of wvariables to
subproblems and subproblems to agents, is assumed to be predetermined and not subject to
change through negotiation. This does not preclude dynamic creation of new variables or
subproblems, as long it is clear who they belong to.

It is assumed that each agent a; has full knowledge of those constraints c; x where
{Vv;...vx}SVa; and directional knowledge of those constraints c;_, for which some v;eV,;
and some v; ¢V,;. Directional knowledge of constraints means that an agent can evaluate how
assignments made to non-local variables with which it shares one or more constraints affect
the domains of its own variables, but it cannot evaluate how assignments it makes to its own
local variables will affect the domains of non-local variables.

Research efforts in centralised constraint satisfaction [5,6,7,9,13,14,17] have been
extended to a distributed context. Some of them are outlined next.

2.2.1 Constraint Partition and Co-ordinated Reaction
In this methodology problem constraints are partitioned based on their type, clustered based
on their connectivity, and distributed to agents specialised for the type [10,11]. Some heuristic
co-ordination strategies are used to help promote rapid convergence to a solution:

o Least disturbance: change as few variables as possible;

o Island of reliability: these are constraint clusters whose variables have the least

flexibility, and provide an anchor for problem solving;
e Loop prevention: use counting and history to prevent looping behaviour.

2.2.2 Dynamic Value and Variable Ordering Heuristics

Nishibe, Kuwabara and Ishida [16] introduce and evaluate one value and one variable
ordering heuristic for distributed problem solving. The value ordering heuristic has to do with
probability of conflict of an entire local solution, not just of one variable, and is computed as
follows: each agent computes all of its possible local solutions and sends them to all other
agents with whom it shares constraints (neighbours). Each agent then evaluates the conflict
probability between each of its own local solutions and the received partial solutions from all
neighbours, and finds the highest probability of conflict for each local solution. Then each
agents orders its own solutions in reverse order of probability of conflict.

In the case of the variable ordering heuristic, "variable" means a single agent's local
solution. However, many local variables are involved and variable ordering refers to which
agent will produce an alternate solution when a conflict arises. Thus, this heuristic actually
gives rise to an agent ordering through a probability value of conflict. When used in
conjunction with distributed asynchronous backtracking [24], this measure is computed once,
at the start of problem solving, and a static agent order is derived, as necessary to guarantee
completeness of the algorithm. When used in conjunction with hill-climbing the measure is
computed dynamically, at every conflict, based on what local solution is being considered at
the time. In this case it shows how tight an agent's constraints are when it is assigning a
particular local solution. In the hill-climbing method, in the case of a conflict between the
local solution of two agents, the agent with the lower conflict value, which is more loosely
constrained, will select an alternative solution. This method does no backtracking.



Yokoo [23], presents and evaluates one value and one variable ordering heuristics to
increase asynchronous problem-solving efficiency. These are:

o min-conflict: when selecting a value for a variable, select a value that minimises the
number of conflicts, and

e change-oldest: when selecting a variable to change from among conflicting variables,
select the one that has not changed in the longest period.

How the success of these heuristics depends on the problem class on which they are
used, was not evaluated, though. Furthermore, the communication cost is not taken into
account. When a process backtracks, this must be propagated around the network in order for
variable priorities to be updated. Communication cost is a very important issue in distributed
problem solving as it affects the time taken to solve the problem.

2.2.3 Distributed Forward Checking and Conflict-Directed Backjumping
Luo, Henry and Buchanan in [12] have adapted several backtracking improvement techniques
from centralised constraint satisfaction, namely forward checking, constraint learning and
backjumping, for use in distributed problem solving. These algorithms include the necessary
inter-agent communication, while employing methods to try to keep it to a minimum.

In comparisons of several of these distributed algorithms with parallel and sequential
counterparts, the distributed ones tended to do worse, on average.

3. The BT Workforce Scheduling Problem

3.1 Problem Statement

The workforce scheduling problem is to determine how to assign jobs to employees so as to
maximise the amount of work done and to

T minimise the amount of travel. It can be

R % X considered as a multi-TC-TSP (Time

2?125 e & - Constrained Travelling Salesman Problem).
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o H R = ¥ 5 n ? g 5ee location only once. A time constrained TSP

' o° ny 'o 4 involves additional time related constraints

fﬁ’ L . - that need to be satisfied (e.g. the journey

& e : Ry J,f must be finished before a certain time, some

# o et el g " jobs must be done in the afternoon, etc.). The

of"f s e 4 & E”° f” HE'” # data set we worked on is known as RD-250-
e . .5m§ g 118 [3] and is described next.

Jobs: There are 250 jobs, each one defined
Figure 1: Location of jobs and bases for the RD-250- by the 5-tuple:

8 dat, T s ot e ele (10, Job J0bY,Durat ion1ype)
base, respectively. The pair of co-ordinates (JobX, JobY)

indicate the location of the job. Duration

is the time needed by an average skilled engineer (see later) to accomplish the job. Job types
are: first/last (must be the very first/last in a tour, respectively), morning/ afternoon (must
start before/after 12:00 respectively), and any time (can be done at any time). The distribution

of the jobs over the problem's area is displayed in Figure 1.



Bases: There are 11 bases represented by a triple: (BaseID,BaseX,BaseY). The pair of
co-ordinates (BaseX,BaseY) indicates the location of a base. The location of the bases
and the number of engineers they own are also displayed in Figure 1
Technicians: There are 118 technicians. Each one is defined by the 6-tuple:

(TechID, BaselID, StartTime, EndTime, Skill, Overtime)
Thus, the engineer belongs to a base, starts and finishes every day at a certain time, has a
skill factor and is allowed to work a certain duration overtime (like in earlier work on this
dataset, we do not allow overtime). The base of a technician points to a pair of co-ordinates
which is actually the co-ordinate pair of the base. The start time is either 8:00 or 8:30 while
the end time is either 16:00 or 16:30 respectively. The ratio Skil1/10 indicates the
fraction of the standard duration that this technician needs to accomplish the job. For
example, a 30-minute job is served in 24 minutes by a technician with skill factor 8
(30*8/10=24).
Skill Constraints: For each job, there is a list of engineers associated with it that indicates
which of them are qualified to do the job. From now on, we will call this list the job's
technician list.
Travel Time: The travel time between two locations (X1, Y1) and (X2, Y2) is given by
the following function [1]:

| X1- X2|+|Y1-Y2|/2 [Y1- V2| +|X1- X2//2

. if |x1- x2|>|r1-v2| , o otherwise
Cost Function: The quality of a solution is calculated by the following cost function:
Techs Jobs

Cost = 21: TravelTime; + Z; (Duration;+ Penalty)* Flag ;
i= Jj=
where: Techs is the total number of technicians, TravelTime; is the total travel time of
engineer i, Jobs is the total number of jobs, Duration; is the duration of job j, Penalty is a
constant, currently set to 60 and Flag; is 0 if job j is allocated to an engineer; 1 otherwise.
Strictly speaking, what we want to do is to minimise the cost function.

3.2 The WMS

The approaches that have been used so far to tackle the stated problem include simulated
annealing [2], genetic algorithms [15], fast local search and guided local search [19] and
finally, constraint logic programming [1,20]. In [20] the WMS (Workforce Management
System) is described. The main feature of WMS is that it avoids a full search and uses
heuristics to produce the second best solution that has been reported so far, in terms of the
cost function, and the best solution if we also consider the execution time. It was implemented
in CHIP and tested under Andorra-I [18], a CHIP-like system. The key features of the
labelling strategy used in WMS are: a) The most constrained jobs are considered first, b) the
order of the candidate engineers to do a job is controlled by three different methods/ heuristics
[20]:

e The Closest First: A technician whose base is closest to the job is selected. This aims
to reduce the travel cost. The drawback is that, even if the engineer's base is closer to the
job under consideration, it does not mean that the travel time will be the minimum. This
is because the technician might be already on tour. The next heuristic compensates for
that problem.

e The Same Direction First: When a job is going to be labelled, the candidate engineers
are organised into two groups. Those that are in a good direction related to the job and
those that are in a bad direction. An engineer belongs to the good direction group if any



of the following conditions hold: a) the engineer is currently idle, b) the engineer has

been assigned a job that is in the same direction as the labelling job, and c) the engineer

has already been assigned more than one job, among which are at least two jobs in the
same direction as the labelling job. Two jobs, located at places J1 and J2, are said to be
in the same direction if the angle (J1,Base,J2) is less than 45 degrees.

e The Least Busy First: In this heuristic the least busy engineer is selected first. It does
not contribute to the reduction of the travelling time but it tries to improve the
workforce utilisation.

One last feature of WMS, worth mentioning, is that the complexity of the forward
checking algorithm for the closest heuristic is O(n*m) where n is the total number of jobs and
m 1is the average length of all engineers' job lists. This linearity allows the use of WMS with
larger datasets [20].

4. Distributed WMS

4.1 Clustering

The idea behind clustering is to partition the problem (data and search space) into sub-
problems of less complexity. As far as these sub-problems are independent, partitioning
reduces dramatically the execution time needed to solve them, as well. This time saving
allows us to use algorithms that are impractical in the case of the whole problem due to their
complexity. The overhead is that, when the sub-problems are related with constraints on
elements belonging to different sub-problems, additional effort is required to resolve conflicts.

We decided to use a clustering method that shares the service demand (i.e. the jobs)
among bases in a way proportional to the ratio of the total service capacity of each base. We
did not consider the various job types because jobs of the same type are uniformly distributed
over the problem's area. This large grained partitioning reflects the natural organisation of
BT's services that are also base-oriented.

Another fact is that the dynamic workforce quality distribution is also uniform among
bases. This term refers to the availability of technicians in a base, to serve jobs that are around
that base. Although it is expected to vary from day to day, because the available jobs are
different every day, we believe that this variation will be minor; the fact that the dataset is real
supports that belief. This eliminates the need to take into account the job's engineer list during
clustering. Three clustering methods were implemented, namely balloon, center of gravity and
mixed.

The balloon clustering method is distributed with centralised control (i.e. one base/agent
has the control at any time). The algorithm is given below:

1. Each base creates its input pool that contains all the jobs and is sorted in ascending order
of their distance from that base.
2. The virtual service capacity (VSC) for each base is calculated according to the
following function:
RealServiceCapacity,
~ Bases
z RealServiceCapacityj
j=1
where: RealServiceCapacity; is the total free time of all the engineers that belong to the
base j, TotalServiceDemand is the total duration of all jobs, and Bases is the number of
bases. Thus, the virtual service capacity of base i is proportional to the ratio of the total
service capacity of that base.
3. The sharing rate for a base i is defined as follows:

* TotalServiceDemand *2

VSC;



2 TechsOfBase, =1
2xceiling(In(TechsOfBase))) TechsOfBase, >1

where: ceiling(X) denotes the rounded up value of X.
4. The sharing order is defined in terms of the initial VSC values, (i.e. the base with the
smallest VSC will get jobs first), and is fixed during clustering.
5. While there are still jobs left to share, the base that has the control (we name it i) does:
if SharingRate;i=0 {
reset SharingRate; to its initial value (the one calculated in step 3)
give the control to the next base in the sharing order }
else if (VSC;<0 AND JobsInOutputPool;<6) OR (VSC>0) {
get the first job (named J) from the InputPool; and put it in the OutputPool;
reduce the SharingRate; by one
reduce the VSC; by the duration of job J
send a message to the rest bases to remove job J from their InputPool }
else give the control to the next base in the sharing order.

This method is applied in cycles and terminates when all jobs have been assigned to a base.
Bases

This is guaranteed to happen because ZVSC,- > DemandCapacity . It is easy to prove that the
i=1

complexity of the clustering algorithm is O(NumberOfJobs’). Note that, if the base that has

the control is the last in the sharing order, then the control is passed to the first base.

In the center of gravity clustering method each job is selected by the base that is closer
to that job as long as the following condition holds: (VSC;<0 AND JobsInOutputPool;<6) OR
(VSC;>0). The order according to which the jobs are considered for sharing is defined by their
distance (travel time) from the center of gravity , starting from the jobs that are farther from
that point. The center of gravity is the location on the problem's area (* point in Figure 2-
right) which is the center of gravity of the virtual multilateral (dotted line in Figure 2-right)
defined by the locations of the bases. Each corner of this multilateral is assumed to have
weight equal to the number of the personnel of that base. This clustering method is purely
distributed, that is each base works independently.

Note that, in both methods, the minimum number of jobs for every base is 6 and is
explicitly defined in the algorithms. This was introduced to make the construction of the
unique tour, for a base with a single engineer, more flexible.

SharingRate, = {

Bl || B2 | B3 | B4 | BS | Be || B7 | B8 | B9 | B10 | B11 | Sum

Technicians 1 10 1 34 15 1 1 52 1 1 1 118
Jobs-Balloon cluster. 6 36 6 62 45 6 7 64 6 6 6 250
Jobs-Mixed clustering | 6 33 6 80 51 6 7 43 6 6 6 250

Table 1: Distribution of jobs to bases (clusters) for the two clustering methods used.

The results of the balloon and center of gravity clustering methods are given in Table 1
and visualised in Figure 2. To evaluate these results we also visualised the solution obtained
by all three heuristics used in WMS [20]. The outcome was that each base dominates its
surrounding area, with some deviations for some small bases. We derived a visual post-
clustering for the results in [20] (i.e. a clustering that is a consequence of a solution given by
the global approaches used in WMS), and the overall picture was very similar to the result of
the balloon method. This strongly suggests that the first solution of the distributed method
will be of quality similar to that of the global approach. Furthermore, if we compare the



complexity of the global approach with that of the most complex sub-problem (base/agent 8),
we should expect, for the case of the closest heuristic, a speed up of about 6 for our distributed
approach.

Figure 2: Results of the balloon (left) and center of gravity (right) clustering methods. The clusters for the bases at
the lower right corner have been joined, for the purpose of this figure. Both the center of gravity (*) and the
virtual multilateral (dotted line) are also displayed on the right.

The mixed clustering method was introduced to alleviate the assignment of "far" jobs to
the small bases that occurred in the center of gravity method (Figure 2 right). According to the
mixed method, the small bases select jobs first using the balloon method and then, the
remaining jobs are assigned to the rest bases according to the center of gravity method. Since
this mixed method seemed more promising than the center of gravity, the latter was rejected.
The visualisation of the mixed clustering gave an overall picture similar to the one of the
balloon method.

4.2 First Solution Evaluation

A complete WMS system was attached to each agent to solve each sub-problem. A D-WMS-
Agent consists of the following modules: The clustering module, the WMS-variant module
which creates the first solution and is almost the same as the original WMS and the optimiser
module which optimises the first solution and is described later. A block diagram of the
architecture of the D-WMS is given in Figure 3. Note that, unlike the clustering and optimisa-
tion phases, sub-problem solving is performed without any co-operation between the solving
agents.

Table 2 contains a comparison between the global approach (WMS) and the first
solution of the distributed one (D-WMS). The first thing worth mentioning is that the first
solution is quite good in terms of scheduled jobs. A total of 165 jobs were allocated to
engineers using either closest (HI) or same direction (H2) heuristic for the case of balloon
clustering. These numbers are not as good as those in WMS but this was expected, since the
D-WMS agents had less jobs and technicians to select from, during the labelling phase. The
results for the mixed clustering where a bit worse than those of the balloon clustering, in both
heuristics. This was clearly a result of the assignment of less jobs (43 instead of 64) to the
base with the most technicians (base 8 - 52 technicians).



The execution time of D-WMS for that stage was the one of the slowest agent. This was
the agent 4 for the closest heuristic, while for the same direction heuristic was agent 8 in both

BT's Dataset

(

Tours - Final Solution

)

Figure 3: Block diagram of the D-WMS.

clustering methods. Thus we had
a speed up of about 5 using the
closest heuristic. We recall that,
based on the complexity of the

[ Cluster |; [ Cluster | E : .| forward checking algorithm of
us erlnlg us erlilg o ustering WMSI an(i,j us]il;g (thle m08§t
; Do : : .| complex sub-problem (cluster 8),
E|WMS-Variant|E E|WMS-Variant|E E|WMS-Variant|E we had predicted a speed up of

about 6 for the sub-problem

[ Optimizer | | Optimizer | solving task. The speed up for the

S L __________ L - — same direction heuristic was
about 2.5.

(_Toursett ) [ TourSer2 ] '""@@ Another important issue is

that, the total number of active
engineers (= number of tours) in
D-WMS is less than the corre-
sponding number in WMS, in all
cases (Table 2). This, together

with the greater number of unscheduled jobs in D-WMS, strongly suggests that it is possible
to assign unscheduled jobs of a cluster to technicians belonging to a different base/cluster.

WMS D-WMS
Clustering Method no clustering Balloon Clustering Mixed Clustering
Heuristic used H1 H2 H1 H2 H1 H2
Scheduled Jobs 191 196 165 165 158 162
Active Techs (=Tours) 67 68 61 62 59 60
Total Cost | 23563 21426 26534 24976 27736 25734
CPU Time (sec) 10.7 22.7 2.2 9.3 2.1 8.5

Table 2: Comparison between WMS and first solution of D-WMS. H1 and H2 stand for the closest
and same direction heuristics respectively.

Finally, if we ignore the execution time, it is possible to obtain a better overall first
solution by using in each agent the heuristic that gives the best local solution. This is possible
because the sub-problem solving step is purely distributed but the disadvantage is that further
analysis of the data of each cluster is required to be able to guess the right heuristic.

4.3 Optimisation

Various repair optimisation methods have been used in the past in such scheduling problems.
The main drawback of them is that they are computationally expensive and they aim mainly to
replace jobs in tours with other jobs so as to minimise transitions between jobs and spend
more time on actual work, minimising the cost function in that way. Such a method
implemented in a distributed environment will become even more complex because it requires
a lot of communication between the solving agents.

In the first solution of D-WMS we agree that there are cases of tours which include long
transitions and are promising candidates for a repair method. But we believe that we can, at
least, reach the quality of the solution of WMS with less effort. This is mainly because during
the generation of the first solution, each agent/base was not aware of the jobs of the



neighbouring bases. If we inform each agent for the existence of the unscheduled jobs of the
other bases/agents, then we should expect that some of them could be used to fill in periods in
which the technicians are idle. This is demonstrated in Figure 4 where we visualise some tours
of the first solution of the balloon/closest approach. In this figure, we can see tours with a lot
of used time (e.g. 1, 9, 10) as well as tours with a lot of unused time (e.g. 11, 41, 42). This free
time together with the free time of the idle technicians we tried to exploit to improve the tours
of the first solution, using a distributed and computationally cheap method.

BN First Morning B Afternoon B3 Last AnyTime M Transzition
+ [ I e AR R
s W N 4 e
10 NSRRI el i
11 IR
a0 1 L | |
41 N L
b e = |

Figure 4: Visualisation of some tours of the first solution of the balloon/closest approach. Each bar

represents the tour of the technician with the ID displayed on the left. The vertical line on the right

denotes the end of the 8 hour working day. It is obvious that there are tours with enough free time
to try to assign to them more jobs.

We have developed a patching method instead of a repair one. This is distributed,
involves little communication between the agents, and can be applied in cycles until no further
optimisation is possible. It consists of identifying possible gaps in a tour that can be filled (i.e.
convert gaps to patches) with one of the unscheduled jobs. Two sources of improvement are
possible:

e Unscheduled jobs belonging to an agent/cluster could be assigned (skill constraints
permitted) to active technicians who have enough free time and belong to another
cluster/ base, and

e Unscheduled jobs belonging to an agent/cluster could be assigned (skill constraints
permitted) to idle technicians of another cluster/base.

During an optimisation cycle Agent; does:

1. sends/receives the unscheduled jobs to/from the other agents

2. for each Tech; generates all Gap; x permutations based on the current tour Tour;; of Tech;;

3. for each Gap;;y generates all possible patches (named Patch;;y;) using jobs from the set of the
unscheduled jobs

4. sends/receives all patches Patch;;y, to/from the other agents

5. filters out the whole set of patches in an effort to keep the ones that further improve the first solution

and to resolve possible conflicts (i.e. prevent the use of a job in more than one patches)

6. uses the remaining of the patches Patch; s, to update (to patch) the tours Tour;;

Figure 5: An outline of the optimisation algorithm used by each D-WMS Agent to improve the first
solution. Steps 1 and 4 involve only exchange of information between agents. Steps 2, 3, 5 and 6 are
Gap Generation, Patch Generation, Patch Filtering and Patching, respectively.

An outline of the optimisation algorithm is illustrated in Figure 5. After the first solution
has been produced, each agent sends its unscheduled jobs to the other agents, and receives
from them their unscheduled jobs (step 1 in Figure 5). This is the first point during the



optimisation phase that involves communication between the agents. Then, each agent
identifies possible gaps (step 2) in its technicians' working timetable that can be filled, in step
3, with one of the unscheduled jobs (i.e. convert gaps to patches).

A second exchange of information between agents takes place in step 4. This time the
piece of information exchanged is the patches generated in step 3. Finally, in step 5, each
agent locally filters out the set of patches to resolve possible internal (between engineers) or
external (between agents) conflicts. Those of the remaining patches that refer to tours of that
particular agent (named Agent;), are used to improve the first solution produced by that
agent (step 6). The rest patches refer to first solution tours created by other agents, and
although are ignored by Agent ;, they are used by the other agents.

The above steps outline one cycle of the optimisation loop. Although more than one
gaps (and patches) are defined for each tour, only one is used, at maximum, to improve a tour.
The same algorithm can be used again to further optimise the tours, if possible. If this is not
true, then the optimisation phase terminates.

4.3.1 Gap Generation

According to the current state of an engineer, two different algorithms are used by each agent

to create the gaps. These are:

e Gap Generation for idle engineers
Because there is no real tour for an idle technician, we introduce the null tour which
starts from and ends at a certain base and serves no jobs. Two gaps are created from a
null tour: a) an eight hour (640 minutes) gap that can be filled with a job of any of the
types [first, last, morning, any time]. Jobs of type "afternoon" were excluded, because
are mutually exclusive with "morning" jobs, and b) a gap that can be filled with jobs of
type [first, last, afternoon, any time] and lasts from the midday to the end of the
working day of the engineer.
o Gap Generation for active engineers

For any given tour that serves N jobs there are N+1 potential locations between two
successive stop points in the tour. Each of these locations, under certain conditions, can
be used to locate a gap. Note that some locations are immediately rejected since they are
ruled by hard constraints. For example, it is not possible to serve any new job between a
last job and the arrival to a base at the end of an existing tour. The actual duration of a
generated gap between two existing stop points P1 and P2 is adjusted on the fly to
include the current transition duration from P1 to P2, and is augmented with the valid
types of candidate jobs. For example, if a gap starts after midday, then it cannot be filled
in by an unscheduled job of type "morning".

4.3.2 Patch Generation
Each gap; jx instance generated in the previous step can be used to produce patches. A patch
is a gap instance with the following properties:
e Its free time is fully or partially covered by the duration of one of the unscheduled jobs
plus the transitions to and from this job.
o The type of the job used is one of the valid job types for that gap.
e Modification of the tour the patch belongs to, reduces the cost function by a certain
amount called Gain.

It is clear that, the number of patches that will be produced by using one gap, depends
mainly on the number and the attributes of the unscheduled jobs. Moreover, any of the
unscheduled jobs can be used in more than one patches. In other words, the set of patches
created by each agent is not consistent neither internally nor externally (between the patch sets



of various agents). These conflicts will be resolved in the next step of optimisation (Patch
Filtering), that takes place after all agents exchange their own patch set, between each other.

4.3.3 Patch Filtering

The patch filtering step is performed locally, in each agent, but is made based on the global
patch set. As a result, redundant work is performed by each agent trying to filter out the global
patch set. The advantage of this is that no further communication is necessary. This is because
both the filtering algorithm and the dataset to filter are exactly the same for every agent. As a
result the filtered set of patches is the same for every agent, but each agent will keep at the end
only the patches that refer to its own technicians.

The patch filtering algorithm used by every agent is a three step algorithm and is applied
continuously (in loops) until the global set of patches becomes empty. The result is a set of
"good patches" that will be used later to optimise the tours. The patch filtering algorithm is
described in Figure 6.

Assuming that, after each optimisation loop there are N different tours for which there exist entries
into the global set of patches, each agent does:
1. Creates N groups each one containing all the patches of a single tour and sorts each of them on the
Gain value in descending order.
2. Creates the priority list which defines from which tour (group of patches) the filtering should start.
The criteria used to assign priorities are the number of patches in each group, the gain value of the
very first patch in each group and the tour index (ID), in this order.
3. Selects the tour (group of patches) with the highest priority:
if (it has only one patch) then {
discards all the patches that use the same job from any other group
puts this patch into the "good patches" pool }

else { applies the LookAhead mechanism to define which patch to use
discards all the patches that use the same job, from any other group

discards the remaining patches of that group (i.e. those refer to the same tour)

puts this patch into the "good patches" pool }

Figure 6: The patch filtering algorithm.

Aiming at a maximum reduction into the cost function during optimisation, we have
developed a Look Ahead mechanism which works as follows: When the tour under
consideration has more than one patch and the first one is also the first/best patch of another
tour (which is later in the priority list) then the agent also examines the gain of the second
patch. For example, say that tour T1 is under consideration and its first two patches are
J1/G1 and J2/G2 (JobID and Gain values respectively). If there is another tour T2, with
best (first) patch J1/G3 (i.e. uses the same job with the best patch of tour T1) and 2nd patch
J4 /G4 then:

if (G1+G4 > G2+G3) then (agent uses patch J1/G1 for tour T1)

else agent does {

ignores patch J1/G1 from the patches of T1 (that is, leaves J1/G1 for tour T2)
tries in a similar way to figure out if 72 /G2 is the "good patch" for tour T1}.



When the patch filtering is over, each agent updates only its own tours used those of the
"good patches" that refer to local tours. Tour updating is done by inserting the job of a patch
into the right position of the job list of the tour.

4.3.4 Final Solution Evaluation

Apart from the quality, there is no difference between the first solution and the optimised tour
sets. The consequence is that we can apply the optimisation algorithm successively until no
further optimisation is possible, a case in which all generated patches are filtered out immedi-
ately. We should expect further optimisation for two reasons: a) Some of the candidate tours
for optimisation in the first optimisation cycle were not optimised at all, because their patches
were discarded during patch filtering, and b) It is very likely that, among the optimised tours
there are some that still have enough free time to serve a job. This "no further optimisation"
situation happened on the third optimisation cycle for all clustering/heuristic combinations.

The most important figures of the total solution after each cycle are given in Table 3.
Final Solution
Clustering Method Balloon Mixed
Heuristic used H1 H2 H1 H2
Scheduled jobs || 185 (165+18+2) | 187 (165+20+2) | 178 (158+17+3) 181 (162+16+3)
Active Techs 67 (61+6+0) 67 (62+5+0) 65 (59+6+0) 64 (60+4+0)
Total Cost 23775 (26534) 22078 (24976) 25099 (27736) 23202 (25734)
Total Opt/tion time 5.4 sec 5.9 sec 6 sec 5.5 sec

Table 3: Final solution obtained by D-WMS after three optimisation cycles. The numbers in
brackets refer to the contribution to the final solution of the first solution, the first and the second
optimisation cycles respectively.

First of all, it is clear that the balloon clustering method gave better results than the
mixed one. The total cost we achieved for the closest (same distance) heuristic was 23775
(22078), a value very close to the corresponding results of the WMS in [20]. During the
optimisation phase, 20 (22) more jobs were served resulting in a total of 185 (187) scheduled
jobs against 189 (191) of WMS. This is a very good performance of D-WMS because,
although slightly worse at first glance in terms of scheduled jobs and total cost, it was
achieved in shorter time. In Figure 7 we have visualised the final solution of D-WMS (left) for
the balloon/same direction approach, as well as, the solution of WMS for the same heuristic.
The similarity of the tour patterns in those figures is remarkable.

The execution time of the optimisation phase is also given in Table 3. The most
complex tasks of the optimisation are the gap and patch generation. We estimated the order of
complexity of the "gap and patch generation" steps to be:

O((ScheduledJobs + 8*IdleTechs) *UnscheduledJobs)

It is obvious that, the more the scheduled jobs the fewer the unscheduled jobs. In addition,
more scheduled jobs generally implies less idle technicians. This explains why the "gap and
patch generation" task duration was almost the same for every optimisation cycle. The "patch
filtering" and "tour update" tasks were quite fast This was because after a patch is selected as a
"good patch", a lot of pruning is performed by discarding all patches that use the same job
with the "good patch". In addition, all patches that refer to the same tour with the selected
patch are also discarded.

In overall, for the balloon clustering method, we had the following results for the closest
(same direction) heuristics: 3% (4.8%) worse performance in number of scheduled jobs,
0.01% (0.03%) worse performance in terms of the cost function and 40% (50%) better
performance in terms of execution time.



Since our optimisation algorithm does not only optimise existing tours but also creates
new tours by assigning unscheduled jobs to idle engineers, we applied it to the empty tour set,
that is, we assumed that all the technicians are idle and all the jobs unscheduled. This process
was performed by a single agent and it took five cycles and about 3 minutes to complete. The
result was 105 tours, 177 scheduled jobs and a total cost of 25660. This "from scratch" tour
generation gave a tour set that when visualised revealed the nature of the optimisation
algorithm which is very close to the less busy heuristic used in WMS.

Figure 7: Final solution obtained by D-WMS (left) and WMS (right) using the closest heuristic.

Finally, we applied the optimisation algorithm to the results obtained by WMS in [20].
The result was two more allocated jobs and a small reduction to the total cost.

5. Related Work

This particular problem of BT has been deeply studied in the past by using various centralised
approaches: the genetic algorithm approach [15], simulated annealing [2], a guided local
search approach [19] and two CLP based approaches [1, 20]. We have selected the best results
from each approach and listed them in Table 4. Apart from [20], the results published so far
are all refer to the BT relaxed DT-250-118 dataset, in which all "first" jobs are assumed
"morning" jobs, and all "last" jobs are assumed "afternoon" jobs. Our results refer to the
original dataset and could be directly compared to the corresponding case of [20].

The guided local search (GLS) [19] is a sophisticated algorithm designed to overcome
the hill climbing's local optima problem. Table 4 shows that it has produced the best result on
this set of data at a rather high cost (execution time). No timing was reported for the genetic
algorithm approach [15] or simulated annealing [2]. A repairing technique was applied in [1]
and [15] to optimise the unallocated jobs further. This is not used in [20]. The CLP based
approach from BT [2] has a few similarities with [20], however, the forward checking
proposed in [20] is not used in [2].

We remind that all the above approaches are centralised, i.e. a single solving process is
performing all the computation. An agent based approach to CSPs has been studied in [8] and
[4]. In [8] the MARS system is introduced which is a generic approach to implement a testbed
that allows a CSP to be modelled as a community of co-operative agents. This work focuses
primarily on the agency aspects of the approach and is applied to transportation scheduling.



Furthermore, techniques for dynamic replanning are introduced, within the same framework.
Similar approaches are followed in [4] were the CHRONOS multi-agent environment is
described and is used to solve a teaching space utilisation problem. Our agent based method,
although is not as generic as the above two, is far less comlex and for the case of naturally
distributed CSPs we believe that it outperforms both of them in situations where quasi-real
time performance is required, since it does not rely on complex agent-to-agent communication
protocols.

Approaches Total | Travel | Unallocated | CPU Hardware
Cost Cost Cost (Jobs) Time
(sec)
Relaxed Dataset
GA * 22570 NA NA (54) NA
SA 21050 4390 16660 (56) NA
GLS 20433 4707 15726 (48) | 9183 | DEC Alpha, C++
CLP: BT * 21292 4902 16390 (53) 600
CLP: WMS 20981 4716 16220 (54) 97 | SUN-Sparc20, Andorra-I
Original Dataset
CLP: WMS 21426 4800 16626 (54) 95 | SUN-Sparc20, Andorra-I
CLP: WMS 21426 4800 16626 (54) 23 | SUN-UltraSparec,
Andorra L.
CLP: D-WMS ** | 22078 4731 17347 (63) 15 | SUN-UltraSparec,
Andorra-I, SICStus
*. after repair
**: after patching

Table 4: Comparison of different approaches applied to the BT DT-250-118 dataset.

6. Conclusions and Future Work

We presented a distributed (multi-agent oriented) approach to the workforce management
problem. First, we evaluated the results obtained by a Constraint Logic Programming based
system (WMS) developed in the past [20], and then, based on this evaluation we proposed a
distributed version of it, namely the D-WMS. We have show that certain types of scheduling
problems that are naturally distributed can be tackled efficiently, in terms of solution quality
and execution time, by adapting existing global approaches (like the WMS) in a distributed
environment.

The solving unit of D-WMS is the D-WMS Agent. It is consisted of three main
modules, each one responsible for one of the main tasks of our approach. These are:

¢ the co-operative partitioning of the problem,
¢ the independent solving of each sub-problem to get a first solution, and
e the co-operative improvement of the first solution.

We utilised the WMS in our agents as it was (with no modification) because, on the one
hand, the WMS had performed very well in [20] and from the other the natural distribution of
the problem was a guarantee that we will have an adequate first solution to try to improve. In
the first and third tasks, which involved co-operation between agents, we had to keep the
communication between them as low as possible.



The results were very encouraging. The techniques proposed performed well on the set
of real data. Not only was the final solution of good quality, but also the communication
between the agents was limited to a minimum level, achieving a short execution time.
Furthermore, all of the algorithms scale up well, thus they can be used with larger datasets.
According to [20] the same holds for the WMS. Moreover, the most complex of our
algorithms can be massively parallelised with no extra cost, resulting in greater speed ups. For
example, the generation of gaps for a tour could be a single independent process. The same
holds for the patch generation step. Th

D-WMS was simulated on a UltraSparc (175 MHz) based SUN machine using SICStus
and Andorra I Prolog (the sequential version). The visualisation tools where implemented in
LPA-Prolog for Windows. The D-WMS system is currently ported to a network of UNIX
workstation using the Linda facilities.
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