
Pergamon
Information Processing & Management. Vol. 31, No. 4, pp. 593--604, 1995

Elsevier Science Ltd. Printed in Great Britain

0306-4573(95)00004-6

COMFRESH: A COMMON FRAMEWORK FOR EXPERT
SYSTEMS AND HYPERTEXT

F. A. KOKKORAS and I. P. VLAHAVAS
Department of Informatics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

(Received December 1993; accepted in final form June 1994)

Abstract--Intelligent hypertext is a promising approach to information systems, because it
combines the power of inference of expert systems and the intuitive power of hypertext. In
this paper we propose the "COMFRESH", a common framework for expert systems and
hypertext. It is based on a Prolog interpreter and uses the conceptual graph knowledge
representation formalism for browsing and reasoning. COMFRESH can be used as a
knowledge based hypertext (intelligent hypertext) or as an expert system with hypertext
capabilities.

Keywords: Hypertext, Expert systems, Conceptual graphs.

1. INTRODUCTION

The term hypertext or hyperdocument is used to describe networks of electronically stored data
that in the simplest form are text sections called nodes. The conjunctions between nodes are
called links, while the software that controls this network is called hypertext system and it is an
information system.

A hypertext system enables the user to manipulate (create, delete, traverse, modify, annotate)
nodes and links easily, to search the network for specific information, to create understandable
semantic presentations of the network, to produce linear documents based on the network and
to collaborate with other users in authorship.

Much work has been done so far to make hypertext systems user-friendly and sophisticated
frameworks. The sense is that trying to produce such systems for the end users we create
cognitive overhead (Conklin, 1987) for the authors of hyperdocuments, as they have to add more
attributes to nodes and links. It is clear that neither all the systems are proper for any kind of
information, not all the users have the same demands. Furthermore, the associations that an
author has made should be understandable to different readers.

To bypass these disadvantages, hypertext systems must include some dynamic features more
than just adding procedures to links and to nodes. Expert systems attached to hypertexts is a
valuable approach as they give to the latter inference abilities. In addition, expert systems can
explain better their decisions to the user by using the hypertext's features. This combination of
hypertext and expert systems, usually called intelligent hypertext or expertext (Rada et al.,
1990), is a kind of information system that is currently under intensive research.

Most of the existing intelligent hypertext systems are based in a collection of expert modules.
Each module uses specific representation of the information to serve a particular need of the user
(browsing, inferencing, etc.). Thus, multiple representations of the documents are needed which
is disadvantageous.

In this paper we propose an intelligent hypertext model that supports browsing and
inferencing using a uniform representation; the conceptual graph (CG) knowledge representa-
tion formalism. We also present the "COMFRESH" (COMmon FRamework for Expert Systems
and Hypertext) an implementation of the proposed model.

Our model uses the conceptual graphs (CGs) as structural units (elementary semantic nets) to
create complex, query related semantic nets, instead of giving a firm, complex one. Thus, it can

593

594 E A. Kokkoras and I. P. Vlahavas

serve users with different organizational needs. Browsing is supported via the concepts
(components of a CG) which serve as hypertext links. To uphold inferencing and browsing the
COMFRESH includes a Prolog interpreter with the extra ability to handle CGs. It also allows
the addition of expert modules written in Prolog serving in this way a testbed for new tools. It
is also flexible enough to work as an inference engine with hypertext capabilities.

The problems that occur in the existing intelligent hypertext technology are discussed in
Section 2. Section 3 describes the CG formalism together with a hypertext model based on it.
In Section 4 a short description of the proposed system is given and, finally, Section 5 concludes
the paper and presents our future plans.

2. PROBLEMS IN THE EXISTING INTELLIGENT HYPERTEXT SYSTEMS

The problems related with the intelligent hypertext systems can be classified in three main
domains: system design, end-user and author related problems. In the following we discuss these
problems.

2.1. System design--the representation problem

One way to build an intelligent hypertext system is to use an expert shell in co-operation with
a hypertext system and to associate rules of the expert shell with text blocks. In another
approach, expert modules are used to acquire information from multiple represented documents.
Both approaches do not use a uniform representation way of the information to support
browsing and inferencing.

For instance, the large expert information system, called I3R (Intelligent Interface for
Information Retrieval) (Croft & Thompson, 1987), has a collection of independent but co-
operating expert modules each serving text retrieving, using a different strategy. The
disadvantage is that the data these modules use are structured in multiple ways to suit each
expert module's function.

Logic Petri net model provides a bridge between the informal semantic nets of hypertext and
the formal logic systems. Although it gives new abilities to intelligent hypertext systems, this
model is inconvenient, and encoding the knowledge of a document into this representation may,
however, be as difficult as the problem of building expert systems (Rada et al., 1990).

2.2. End-user related problems

The interconnected nodes of a hyperdocument constitute a semantic net. There are two types
of semantic nets in hypertext; the embedded and the independent one (Collier, 1987). The
former is easier to handle and includes links that serve as pointers to other nodes which
generalize or specialize the topic of the father node. In fact, it is just a net, not a real semantic
net.

The independent semantic net is more powerful as it can be traversed and analyzed without
visiting text blocks. It provides a uniform representation way for both browsing and querying
but it is a firm structure. Thus, it can not serve users with different organizational needs.

An easy way to bypass the above problem is to have multiple nets available. The drawback
here is that the author can not safely predict all possible nets in all instances. If he creates
balanced nets (Rada & You Geeng-Neng, 1991), where automatic net reconstruction is possible,
he is restricted to organize his information in a particular way.

Some hypertexts support the dynamic generation of views. The user posts a query based on
the attributes of the various objects of hypertext (nodes, links) and the system retrieves the parts
of the hyperdocument that satisfy the query (Clitherow et al., 1989). Moreover, artificial
intelligence techniques can be used to generate sub-graphs based on the parts of the
hyperdocument that satisfy a query (Gallagher et al., 1990). The latter method seems promising

COMFRESH 595

but adding to many attributes to nodes and to links the authoring process becomes
inconvenient.

2.3. Problems in authoring process

The most difficult task of the authoring process in hypertext is the linking one. Working on
our earlier hypertext system (Kokkoras, 1992), we found that the linking process became
extremely difficult when users were asked to work on hyperdocuments created either by others
or by themselves but after a long pause.

It is obvious that in a real hypertext application with too many nodes, the system should be
able to observe the author and warn him in illegal actions (linking, etc.) according to pre-defined
rules. Furthermore, the system should be able to suggest possible target nodes based on the
hyperdocument's structure or even to create automatically some links. In the first case, in the
linking process, some global, link related constraints are needed to make the system able of
eliminating the possible target nodes but the second case is difficult to handle with the existing
hypertext models.

3. CONCEPTUAL GRAPHS AND INTELLIGENT HYPERTEXT SYSTEMS

A flexible, precisely defined and understandable knowledge representation notation can lead
in an effective and easily modifiable expert system. If we want to create an effective and user-
friendly intelligent hypertext, we should give great attention to the expert part of it.

The CG model for the representation of knowledge can be used to create sophisticated,
intelligent hypertexts. This model is a general framework for expressing natural language
semantics but it is also a practical way to express a large amount of pragmatic information by
assertions. All the algorithms are domain-independent and every semantic domain can be
described through a purely declarative set of CGs. In addition, the CG model can present high-
order logical relations which are difficult to represent in a simple first-order logical formalism
(Fargues et al., 1986).

A definition of CGs and how this formalism can be used to create intelligent hypertext
systems are presented in the following.

3.1. Conceptual graphs: primitives and definition

The elements of the CG theory (Sowa, 1984; Sowa & Foo, 1987; Sowa & Way, 1986) are
concept-types, concepts and conceptual relations. Concept-types represent classes of entity,
attribute, state and event. Concept-types can be merged in a lattice whose partial ordering
relation < can be interpreted as a categorical generalization relation. Thus, CAR<VEHICLE
represents that the CAR is a kind of VEHICLE.

A concept is an instantiation of a concept-type and it is denoted by a concept type label inside
a box or between brackets (Fig. 1). To refer to specific individuals, a referent field is added. Two
identical concepts having different referents are not comparable by the < relation.

Conceptual relations show the relations between concepts. Each relation will be constrained

[CAT: 'Tom'] ~-- (AGNT) ~ [EAT] ~ (OBJCT) ~ [FOOD]

3 x,y cat('tom') A agent('Tom',y) A eat(y) A object(y,x) A food(x)

Fig. 1. A Conceptual Graph and its equivalent mapping into first order logic.

596 E A. Kokkoras and I. E Vlahavas

1. I animal agent eat

2. [tiger ~

-

=

!

4.

5. I tiger I ~

Fig. 2. The maximal join.

as to the concepts it can connect. As with concepts, there should be pre-defined but expandable
set of relation-types in a given system. They are denoted by a relation label inside a circle or
between parentheses (Fig. 1).

A C G (Figs 1 and 2) is a connected graph formed by concept and relation nodes. Each relation
is linked (only) to its requisite number of concepts, and each concept to none or more relations.
A CG represents information about typical objects or classes of objects in the world and can also
be used to define new concepts in terms of old ones. The definition of the relation < on concepts
can be extended to a partial relation on CGs.

There is a precisely defined mapping from a CG into first-order logic; it gives a conjunction
of predicates, one corresponding to each node of the graph (Fig. 1). A number of operations
(formation rules) are also defined on CGs, by which one can derive allowable graphs from a
canonical basis. The main operations are:

• Res t r i c t i on takes a graph and replaces any of its concept nodes either by changing the
concept-type to a subtype or adding a referent where there was none before.

• Jo in ing joins two graphs with a common concept over it, to form a single graph.
• S i m p l i f y i n g removes any duplicate relations between two concepts.
• Con t rac t i on tries to replace a subgraph of a given CG by a simple concept (or relation)

using the definition of this concept.
• E x p a n s i o n is the opposite to contraction operation (Fig. 3).

The sequence of examples in Fig. 2 form what is known as the m a x i m a l j o i n . It is a join of
two graphs followed by a sequence of restrictions, internal joins and simplifications so that as
much matching and merging of the original graphs as possible is performed. The maximal joint
can be regarded as a generalized unification operation (Jackman, 1988). The extension of the
relation < to CGs does not confer a lattice structure on the set of all CGs, because it is possible
to exist several maximal overlaps between two CGs.

Deduction with CGs is performed via "top-down resolution algorithm". A query expressed as
CG can be answered either with direct match with a fact-CG of the knowledge base, or with
indirect matching by using inferencing rules. The Sowa's classical "Oz" example is given in
Fig. 4.

COMFRESH 597

I MAMMAL: Lion l . . .

Expansion of
a concept

F I EPRODOCED I

+
Fig. 3. Browsing with Conceptual Graphs.

3.2. A conceptual graph based intelligent hypertext model

The CG formalism can be used in hypertext to support both inferencing and browsing. The
knowledge base of such a system includes CGs that correspond to the knowledge of a document
base, among with rules about how to use this knowledge. Some of these rules (e.g. formation
rules) might be common for all hyperdocuments.

One advantage of using CGs in hypertext is that we do not need to create complex semantic

A person is a citizen of Oz if and only if any of the following conditions are true:

1) This person is born in Oz.

2) One of his parents is a citizen of Oz.

3) This person is naturalized in Oz.

clause (inference rule):

[CITIZEN: *x] ~ (MEMB) ~-- [COUNTRY: 'Oz']

[PERSON: *x] ~-- (AGNT) <--- [BORN] ---> (LOC) --~ [COUNTRY: 'Oz']

clause (inference rule):

[CITIZEN: *x] ~- (MEMB) ~-- [COUNTRY: 'Oz']

[PERSON: *x] ~- (CHLD) ~-- [PERSON: *y] and [CITIZEN: *y] ~-- (MEMB) ~ [COUNTRY: 'Oz']

clause (inference rule):

CITIZEN: *x] ~- (MEMB) ~-- [COUNTRY: 'Oz']

[PERSON: *x] ~-- (RCPT) <-- [NATURALIZE] --> (LOC) --~ [COUNTRY: 'Oz']

clause (fact)

PERSON: 'Tinman'] ~-- (AGNT) <--- [BORN] --~ (LOC) --~ [COUNTRY: 'Oz']

$

(CHLD) -~ [GIRL: 'Dorothy']

goa l clause : "Who is a citizen of Oz country ?" ~ [PERSON] <-- (MEMB) ~-- [COUNTRY: 'Oz']

result :

CITIZEN: 'Tinman'] ¢- (MEMB) ~ [COUNTRY: 'Oz']

[CITIZEN: 'Dorothy'] <---- (MEMB) ~ [COUNTRY: 'Oz']

IPM 31-4-J

Fig. 4. Deduction with CGs. The classical Sowa's "Oz" example.

598 E A. Kokkoras and I. P. Vlahavas

~ K & R ~ . ~ °' Base

/ 7 ._/
Document about Unix

Document about an application

Knowledge

Fig. 5. Use of a concept as a hypertext link.

nets manually. The CGs are already semantic nets (the conceptual relations correspond to the
links and the concepts correspond to the nodes). Moreover, there are techniques to create CGs
automatically by document parsing. Using CG algorithms (maximal join etc.) we can create
complex query based, graphical views of our data. We pose a query in CG form and the system
displays graphically CGs that satisfy this query. When these views are inadequate, we can ask
the system to replace some concept-nodes of the graph (expansion operation) with their CG
definition (Fig. 3) or to display the document by which a CG is derived from. From the other
hand, a CG definition can be suppressed to a single concept-node (contraction operation) to
prevent a messed graph representation (Fig. 3).

A word of a document, that matches a concept of a concept-type hierarchy, can serve as link
to the document that describes this concept (Fig. 5) or to the graph definition of the concept itself
(Fig. 3). Thus, a word inside a document can serve as an embedded link in classical hypertext,
by means of a concept. Embedded links can be also used to connect a document with comments,
annotations and non-textual data such as graphics, sound or video.

To support inference, an inference mechanism should be attached to the system. There is a
precise mapping of CGs into first-order logic and some of the CG algorithms are just special
cases of Prolog's built-in logical inference and pattern matching. There is also a conceptually
powerful technique, metalevel programming, in which we can also write rules about how to use
other rules (metarules). Thus, logic programming and Prolog offer a conceptual common basis
(logic theory) and a practical technology to handle this formalism (Sowa & Way, 1986).

Having in mind that Prolog is the best language to handle CGs, the next question is how to
implement a CG based hypertext. One way is to create a stand-alone program written in Prolog,
capable of doing certain operations. The disadvantage of this approach is that if someone wants
to make modifications to the system he must modify its source code (Prolog code). This is an
impossible task for the end-user.

Instead of using Prolog to create just a stand-alone program, we can additionally attach a
Prolog Interpreter (Prolog Inference Engine PIE) as a part of the final program. This
interpreter can also be written in Prolog. In this way, we have already attached to the system the
right programming language for the kind of data we use. The result is a program that can be used
as a testbed for new ideas regarding intelligent hypertext. These new ideas can be implemented
as modules written in Prolog and activated by the PIE within the same framework. The value
of the embedded PIE becomes obvious in the following, simple example.

Consider that we want to know if the concept [person: "Tom"] exists, in this form, in a
knowledge base. Consider also that the knowledge base includes the concept [man: "Tom"]
instead of the above, while in the concept hierarchy exists a statement ([man] < [person]). The
only way to get the fight answer (which is: "No, there is not such a concept") is to perform the
matching operation without using the concept hierarchy. If the system does not support such an
operation we can write a Prolog predicate that does, and activate it via the PIE.

Actually, all the tools of an hypothetical system can be implemented in Prolog and activated
by the embedded PIE. However, it is more efficient, to implement the basic tools as part of the
kernel of the system,

COMFRESH 599

4. THE COMFRESH SYSTEM

In this section we give details on implementation and evaluation of the COMFRESH.

4.1. Implementation

The COMFRESH (Fig. 6) is a single user, knowledge based hypertext system that uses CGs
for browsing and reasoning. It is written in Prolog and consists of:

• A document base, which is a file (hyperdocument) that includes portions of text (nodes).
Each node displayed in a separate window, while it can be as large as 64 kbytes. More
than one document bases are allowed. Furthermore, COMFRESH supports links between
nodes belonging in different document bases, but with some limitations, as we will
describe in the following.

• A knowledge base that consists of CGs, concept-types, concept-type hierarchy, concepts
and relations that correspond to the document base's knowledge. Although many
knowledge bases are allowed (one knowledge base for each document base), only one of
them is used at any time. By default, this is the knowledge base of the hyperdocument,
the active node belongs in.

• A kernel that includes the system's interface and a Prolog interpreter. The interface is as
user friendly as possible with dialogue boxes, pull-down and pop-up menus. Each node
is displayed in its own window while several nodes can be displayed in overlapping
windows. Figure 7 displays a typical screen of COMFRESH. On the top of the screen
there is a pull-down menu with options regarding file handling, text editing, browsing
and knowledge base manipulation. COMFRESH's help system is a hyperdocument in
COMFRESH format with its own knowledge base. A status line at the bottom of the
screen reminds the user the main available options. In Fig. 7 two nodes and the
Conceptual Graph browser are opened. The word "Kiklades", in the text of the upper left
window, is a link to the node displayed in the central window. These links are

cument 1

Document 2)

|

i

Document
Base

i

i

i
i
i

•) Document N

Semanti~.~ c
Interpreter

. I

Prolog Inference Engine

Conceptual
Graph

Manager

, 4 -

Interface

Fig. 6. The COMFRESH system.

• 1~ Knowledge
Base

600 E A. Kokkoras and I. P. Vlahavas

C O M F R E S H Ver. 1.17 I File Edit Browsers Knowledge Help

I~;LAND$,HTX Node: Mikonos Size: 9.3 CGraphs: 46 [
I

Mikonos is a member of the group of islands Kiklades, [

lieing between Naxos and Tinos. Mikonos is also the name of[
i

the capital of the isl 1 ISLANDS.HTX Node: Kiklades Size: 13.1

I
Group of islands located in the central

Aegean Sea. It is consisted of 34 major

Conceptual Graph Browser I File: ISLANDS.CGR CGraphs: 986

[island: Mikonos] (member) - -

[group_of_islandsl (obj)

[Group_of_islands: Kildades l

\
(subj)

[is_a] /

[located]

I
(loc)

I
I sea: Aegean 1

F2-Edit F3-Modify F4-Link F5-Concepts F6-Relations F7-CGraphs F8-PIE F9-Quer

Fig. 7. A typical screen of COMFRESH.

distinguished from the rest text by their different color. The way the Conceptual Graph
browser works is described later in this section.

• Several modules for the user/author written in Prolog.

COMFRESH in its current implementation includes five modules: a parser, a semantic
interpreter, a query handler, a knowledge manager and a linkage assistant.

The parser uses syntactic rules to generate parse trees corresponding to all or the user desired
sentences of the documents.

The semantic interpreter translates these trees into CGs and asserts them into the knowledge
base if only they fulfill the canonical formation rules. Currently, there are some user-driven
actions, both in parser and the semantic interpreter, but our plan is to make them work as user-
independent as possible. Usually, these user driven actions concerning the replacement of
certain parts of a sentence (verbs, nouns, etc.) with synonyms existing in a given knowledge
base. The user can also force the semantic interpreter to abandon some parts of a sentence with
no interest. In the following example, the way the user intervenes becomes clear.

Consider the sentence: "Mikonos is a nice place for vacation". The user should point out that
the word "Mikonos" must be a reference in the concept-type [island]. The words "place" and
"vacation" can be used by the system to reduce the possible concept-types.

The query handler lets the user to construct queries concerning the knowledge base. A query
is expressed as a CG and is constructed either directly or indirectly. In the first case the user
selects the appropriate items (concepts and relations) from a combination of menus. In the latter
case the user selects a type of query from a previously defined set of types, expressed in natural
language. In Fig. 8 we can see two types of queries. Each of them is coupled with a semi-
structured CG. The user fills in the empty fields of either the natural language or the CG
expression (text in italics in Fig. 8) to make the question complete. This action is similar to
filling in the reference fields of some concepts. With the query completed, the system tries to
answer it (top-down resolution algorithm) based on the CGs of the knowledge base. Any query
can be saved for future use.

The knowledge manager includes the canonical formation rules, which are heavily used by
the semantic interpreter and the inference engine. It also supports other operations such as

COMFRESH 601

Query Types

QT 1. Which city is the capital of countryname ?

QT 2. How can I go from city_of_origin to destinationcity ?

Respective Conceptual Graphs.

CG 1. [city: x] (capit) [country: country._name]

..... (origin) [city: city_of_origin]
/

CG 2. [person] (agent) [travel] (mean) [transport]
\
..... (destin) [city: destination_city]

Fig. 8. Pre-defined query types expressed in natural language and CG form.

review of the knowledge base, expansion of the recognized concept and relation types and
manual assertion of new CGs.

The review of the knowledge base is performed in CG level. The user opens the knowledge
base file and displays any CG in graphical form. Many CGs that satisfy user defined criteria can
also be displayed. These criteria are filters that allow the user to inspect CGs having a common
property. Furthermore, the user can change parts of a CG or group of CGs, or even to delete a
CG. In any of these cases the corresponding nodes are displayed in an editor window and it is
up to the user to make the same changes into the text. For example, the user may want to see
all the CGs concerning the population of capital cities in order to update the population
numbers. In fact, any of the filters mentioned above is a kind of query.

The linkage assistant serves in many ways. When a new node is added in the document base,
this module finds all the occurrences of the concept-types in this node and prompts the user to
decide which of them will serve as embedded link. This is very useful when a concept appears
many times in the text.

Another case when the linkage assistant is invoked, is when the user creates an embedded link
manually. Here the user selects a word of the text and the linkage assistant searches for related,
target nodes. A node is related to the selected word if:

• the header of the node (nodename) is semantically related to the selected word,
• the selected word is semantically related to a concept that is part of a CG of this node,
• the selected word is semantically related to any part of the node's text.

The higher the rule is in order, the highest its priority. Moreover, any of the above rules can be
ignored. Usually, the last rule is ignored because is time consuming.

We give here an example of the above process. Consider a document base with nodes
regarding Greek islands. Let us say that in three of these islands (nodes 1, 2 and 3 respectively)
there is a middle-aged castle, and that there is also a fourth node (node 4) talking about middle-
aged buildings in Greek islands, having exactly this title (nodename). We have selected the word
"castle" inside node 1 in order to create a link and we ask the linkage assistant to suggest the
target node. According to the rules stated above the linkage assistant answers that the best target
node is node 4 (instead of nodes 2 or 3).

The last case the linkage assistant is used is to check the correctness of the manually added
CGs. For the latter function the tool is based on the constraints of the conceptual relations as
well as on user defined constraints, to make warnings or suggestions conceming the particular
CGs. For example, a constraint may want the relation (capital) to joint two concepts of the type
[city] and [country].

From the implementation point of view there is another module, the toolbox. This contains
global predicates used by the main modules. It is worth noting that some predicates from one
module are used in another. For example, the query handler uses predicates of the linkage

602 E A. Kokkoras and I. P. Vlahavas

assistant module during the construction of a query CG.
COMFRESH is a program of medium size. In its current version it consists of about 8500

lines of code. The main part is the kernel with a total of 4600 lines of code shared by the
interface and the embedded Prolog interpreter. The parser is about 1500 lines of code, while the
toolbox module is about 1000 lines of code. The size of the other modules varies from 300 to
500 lines of code.

4.2. Evaluation

The COMFRESH system is still a prototype and it is used in our labs for evaluation. For this
purpose a hyperbase was created regarding 30 Greek islands. A total of 50 text nodes (,-4000
sentences) were created; a node for each islands, plus 20 more nodes concerning aspects such
as groups of islands, ancient civilizations, historic periods, architectonic features of buildings
etc. The size of ech node varies from 2 to 20K with an average size of 7K per node.

Most of the text material was written in the COMFRESH's editor. The rest of it was written
in stand alone editors and were imported in COMFRESH for further manipulation. Each text file
was parsed to create the knowledge base. The evaluation team had previously decided what kind
of data would contribute to the construction of the knowledge base. Such data were: name and
population of islands and capital cities, monuments and their location, famous beaches, places
of entertainment, landmarks, hotels, ways for accessing each place and so on.

Sixteen (16) relations (agent, subject, object, location, member, origin, destination, mean etc.)
and 35 concept types (city, capital, island, person, travel, shop, transport, rent etc.) were defined.
A total of about 1700 concepts and 2100 conceptual graphs were produced after the parsing
procedure.

Several typical queries were applied to measure the performance of the interferencing
algorithms. For this test we used a typical 486-based PC but the source code is easily portable
to any workstation supporting Prolog. Table 1 displays some queries and their CG form. In Table
2 we give details regarding each query (the type of operation performed, the size of the query
CG, the time needed by the system to give either an answer or all the possible answers and
finally the total number of answers). It is worth saying that although the two queries are identical
for the end user, the underlying operation is different. The times in the first time column in Table
2 concerns the matching of a CG that is located in the middle of the knowledge base (the
knowledge base is scanned linearly).

The matching operation is a task that is used frequently in most of the inference procedures.
Let us say taht we want to find out if a CG taken from a knowledge base is matched with a given
CG. The computational complexity in such an operation is proportional to the second power of
the number of relations inside the given CG. The upper limit of the number of relation matches
needed to match the two CGs is given by the following relation:

ReIMatches =(1 +R) * R/2

where R is the relations of the given CG.

Table 1. Typical queries applied in COMFRESH

How can someone go from city of Athens to island Kriti
(direct ways)

---(origin)---[city: Athens]
[person:*]--(agent)--[travel:*]--(mean)--X

--(destination)--[island: Kriti]
How can someone go from city of Rodes to the island of Mikonos
(complex ways)

--(origin)---[city: Rodes]
[person:*]---(agent)---[travel:*]--(mean)--Y 1

--(destination)--[city: X]
AND

---(origin)---[city: X]
[person:*]--(agent)--[travei:*]--(mean)--Y2

---(destinafion)--[island: Mikonos]

COMFRESH

Table 2. Response times of COMFRESH for the queries of Table 1

Query Stop a t . . .

1st Find all Total
Operation Rel. Con. answer answers answers

1 Matching (use of hierarchy) 4 5 1.5 s 3.1 s 6
2 Matching (use of maximal join) 8 10 3.5 s 8. l s 4

603

In a knowledge base consisting of N CGs, the mean upper limit of the number of relation
matches needed to match one of these CGs with a given CG is RelMatches*N
/2, given that the knowledge base is scanned linearly.

5. C O N C L U S I O N S

In this paper we presented an intelligent hypertext model and we described COMFRESH, an
implementation of it. Our system combines the intuitive power of hypertext systems and the
power of inference of expert systems, to support multiple strategy information retrieval. The
advantage of COMFRESH is that it uses a unique representation way for browsing (hypertext
function) and querying (expert system function). It can serve readers with different
organizational needs, because it offers elementary nets (CGs) to construct complex and query
based graphs via the inference engine. The latter is a Prolog interpreter capable of handling
CGs.

As it described previously, COMFRESH is a dual system. It can be used as an expert system
with hypertext features in the explanation of its conclusions, or as a hypertext system with
artificial intelligent techniques in searching and retrieving of information. We currently work on
the second approach but the first is also in our plans together with a multi-user version.

Furthermore, we plan to explore how do different kinds of data affect the usability of
COMFRESH. Highly organized data (such as geography related data) can produce powerful
applications. Less organized information expected to affect primarily the authoring process, but
the knowledge representation model that was used can handle almost all kinds of knowledge,
helping in this way to bypass this problem.

R E F E R E N C E S

Collier, G. (1987). Thoth-ll: Hypertext with explicit semantics. Paper presented at Hypertext '87. Chaper Hill, N.C.:
University of North Carolina.

Conklin, J. (1987). Hypertext: An introduction and survey. Computer, 20, 17-41.
Clitherow, P., Rieckel, D., & Muller, M. (1989). VISAR: A system for inference and navigation in hypertext.

Proceedings Hypertext '89. New York: ACM.
Croft, W. B., & Thompson, R. H. (1987). IJR: A new approach to the design of document retrieval systems. Journal of

American Society of Information Science, 38, 389--404.
Fargues, J., Landau, M. C., Dugourd, A., & Catach, L. (1986). Conceptual Graphs for semantics and knowledge

processing. IBM Journal of Research and Development, 30(1), 70-79.
Gallagher, L., Furuta, R., & Stotts, P. D. (1990). Increasing the power of hypertext search with relational queries.

Hypermedia, 2(1), 1-14.
Jackman, M. K. (1988). The maximal join for conceptual graphs. In J. E Sowa, Foo & Ran (Eds), Conceptual graphs

for knowledge systems. Reading, Mass.: Addison-Wesley.
Kokkoras, E (1992). 3DHYP: Implementation of a hypertext system using PROLOG. Diploma thesis (in Greek).
Rada, R., & You Geeng-Neng (1991). Balanced outlines and hypertext, Department of Computer Science, University

of Liverpool.
Rada, R., Dunne, P., & Barlow, J. (1990). Expertext: From semantic nets to logic Petri nets. Expert Systems with

Applications, 1,217-229.
Sowa, J. F. (1984). Conceptual structures: Information processing in minds and machines. Reading, Mass.: Addison-

Wesley.

604 E A. Kokkoras and I. P. Vlahavas

Sowa, J. E & Foo (Eds) (1987). Conceptual Graphs for Knowledge Systems. New York.
$owa, J. F., & Way, E. C. (1986). Implementing a semantic interpreter using Conceptual Graphs. IBM Journal of

Research and Development, 30(1), 57-69.

