
DR-BROKERING: A Semantic Brokering System

Grigoris Antoniou
Institute of Computer Science, FORTH, Greece

Department of Computer Science, University of Crete, Greece
antoniou@ics.forth.gr

Thomas Skylogiannis, Antonis Bikakis
Department of Computer Science, University of Crete, Greece

{dogjohn,bikakis}@csd.uoc.gr

Martin Doerr
Institute of Computer Science, FORTH, Greece

Nick Bassiliades
Department of Informatics, Aristotle University of Thessaloniki, Greece

nbassili@csd.auth.gr

Abstract. In this paper we study the brokering and matchmaking problem, that
is, how a requester’s requirements and preferences can be matched against a set
of offerings collected by a broker. The proposed solution uses the Semantic Web
standard of RDF to represent the offerings, and a deductive logical language for
expressing the requirements and preferences. We motivate and explain the
approach we propose, and report on a prototypical implementation exhibiting the
described functionality in a multi-agent environment.

Keywords: Brokering, Rules, Ontologies, RDF Schema

1. Introduction
E-Commerce describes the revolution that is currently transforming the way

business is conducted through the use of information technology, and in particular the
World Wide Web. According to [22], in the 1st generation e-Commerce applications
(current state), buyers and sellers are humans who typically browse through a
catalogue of well-defined commodities (e.g. flights, books…) and make fixed price
purchases usually by means of credit card transactions. Humans are in the loop at all
stages of buying process something which is time consuming.

The 2nd generation of e-Commerce will be realized through the use of automated
methods of information technology. Web users will be represented by software
agents. According to [27], there is an increasing use of software agents for all the
aspects of e-Commerce.

As software agents start to engage in e-commerce, new issues arise. Information
must be organized in a way that is accessible by both humans and machines.
Additionally, machines must be able to access, process and interpret the information

in the same way. This vision is consistent with the Semantic Web initiative [10],
which enriches the current Web through the use of machine-processable information
about the meaning (semantics) of information content. This way, the meaning of
displayed information is accessible not only to humans, but becomes also accessible
to software agents.

The key techniques of the Semantic Web are semantic annotations (meta-data),
such that Web information carries its meaning on its sleeve, and ontologies which
organize terms in a conceptualization of a domain, thus connecting semantic
annotations with each other and serving as a basis for interoperability.

The focus of the present work is related to semantic-based electronic markets.
Semantics-based electronic markets help both service providers and requesters to
match their interests. The key operations in such markets are to:

(a) Identify appropriate services that satisfy user requirements.

(b) Select the best service based on the user’s preferences.

 How to address these questions using Semantic Web technology is the main
focus of the present work. The three basic roles that we identify are the service
requester (or buyer or consumer), the service provider (or seller), and the broker. The
technical solution we provide is based on the following key ideas:

• The offerings or advertisements of service providers are represented in a
Semantic Web language (RDF).

• These advertisements are semantically enriched by the use of a domain
ontology (in RDF Schema).

• The advertisements are communicated to the broker by their providers.
• The requirements and preferences of a potential customer are represented in a

logical language, based on rules and priorities.
• The logical representation of preferences and requirements are communicated

to the broker by the requester.
• The broker matches the preferences against the set of available

advertisements. The outcomes are communicated back to the requester.
• The broker maintains a repository to permanently store the advertisements.
• All the above operations take place in a multi-agent environment based on the

peer to peer paradigm.

In the following we will elaborate on the problem, the technical solution, and an
implemented system displaying the described functionality. The remainder of the
paper is organized as follows: Section 2 reviews the most important Semantic Web
technologies used in our solution. Section 3 describes our solution to the brokering
problem, including a rationale for the chosen technologies. Section 4 illustrates the
approach using a concrete example. Section 5 describes the technical details of the
system that implements the solution. Section 6 reviews related work, and section 7
concludes the paper and poses future research directions.

2. An Overview of the Used Technologies

2.1 The Semantic Web Initiative
The aim of the Semantic Web initiative is to advance the state of the current Web

through the use of semantics. More specifically, it proposes to use semantic
annotations to describe the meaning of certain parts of Web information. For
example, the Web site of a hotel could be suitably annotated to distinguish between
hotel name, location, category, number of rooms, available services etc. Such meta-
data could facilitate the automated processing of the information on the Web site, thus
making it accessible to machines and not primarily to human users, as it is the case
today.

However, the question arises as to how the semantic annotations of different Web
sites can be combined, if everyone uses terminologies of their own. The solution lies
in the organization of vocabularies in so-called ontologies. References to such shared
vocabularies allow interoperability between different Web resources and applications.
For example, an ontology of hotel classifications in a given country could be used to
relate the rating of certain hotels. And a geographic ontology could be used to
determine that Crete is a Greek island and Heraklion a city on Crete. Such
information would be crucial to establish a connection between a requester looking
for accommodation on a Greek island, and a hotel advertisement specifying Heraklion
as the hotel location.

The development of the Semantic Web proceeds in steps, each step building a
layer on top of another. The layers that have reached sufficient maturity at present are:

• At the bottom layer we find XML [11], a language that lets one write
structured Web documents with a user-defined vocabulary. XML is
particularly suitable for sending documents across the Web, thus supporting
syntactic interoperability.

• RDF [5] is a basic data model for writing simple statements about Web objects
(resources). The RDF data model does not rely on XML, but RDF has an
XML-based syntax. Therefore it is located on top of the XML layer.

• RDF Schema [11] provides modeling primitives for organizing Web objects
into hierarchies. RDF Schema is based on RDF. RDF Schema can be viewed
as a primitive language for writing ontologies.

• But there is a need for more powerful ontology languages that expand RDF
Schema and allow the representation of more complex relationships between
Web objects. Ontology languages, such as OWL, are built on the top of RDF
and RDF Schema.

For an easy yet comprehensive introduction to the Semantic Web see [4]. In this paper
we will make use of RDF to express semantic annotations of offerings, and RDF
Schema for expressing ontologies.

2.2 Rules and Priorities on the Semantic Web
At present, the highest layer that has reached sufficient maturity is the ontology

layer in the form of the description logic based language OWL [21]. The next step in
the development of the Semantic Web will be the logic and proof layers, and rule
systems appear to lie in the mainstream of such activities. Moreover, rule systems can

also be utilized in ontology languages. So, in general rule systems can play a twofold
role in the Semantic Web initiative: (a) they can serve as extensions of, or alternatives
to, description logic based ontology languages; and (b) they can be used to develop
declarative systems on top of (using) ontologies. Reasons why rule systems are
expected to play a key role in the further development of the Semantic Web include
the following:

• Seen as subsets of predicate logic, monotonic rule systems (Horn logic) and
description logics are orthogonal; thus rules provide additional expressive
power to ontology languages.

• Efficient reasoning support exists to support rule languages.
• Rules are well known in practice, and are reasonably well integrated in

mainstream information technology, such as knowledge bases, etc.

Possible interactions between description logics and monotonic rule systems were
studied in [20]. However, these works don’t exploit features such as negation, rules
with exceptions and conflicting rules. Based on that work and on previous work on
hybrid reasoning [25] it appears that the best one can do at present is to take the
intersection of the expressive power of Horn logic and description logics; one way to
view this intersection is the Horn-definable subset of OWL.

In our work we follow a different approach, by adding rules “on top” of web
ontologies. However, as it is argued in [7], putting rules and description logics
together poses many problems, and may be overkill, both computationally and
linguistically. Another possibility is to start with RDF/RDFS, and extend it by adding
rules; this approach is adopted in the present work. Furthermore, we make use of a
feature called conflicts among rules. Generally speaking, the main sources of such
conflicts are:

• Default inheritance within ontologies.
• Ontology merging.
• Rules with exceptions as a natural representation of business rules.
• Reasoning with incomplete information.

Basics of Defeasible Logics
Defeasible reasoning is a simple rule-based approach to reasoning with incomplete

and inconsistent information. It can represent facts, rules, and priorities among rules.
This reasoning family comprises defeasible logics [2] and Courteous Logic Programs
[18]. The main advantage of this approach is the combination of two desirable
features: enhanced representational capabilities allowing one to reason with
incomplete and contradictory information, coupled with low computational
complexity compared to mainstream nonmonotonic reasoning. The main features of
this approach are:

• Defeasible logics are rule-based, without disjunction.
• Classical negation is used in the heads and bodies of rules, but negation-as-

failure is not used in the object language (it can easily be simulated, if
necessary [3]).

• Rules may support conflicting conclusions.
• The logics are skeptical in the sense that conflicting rules do not fire. Thus

consistency is preserved.

• Priorities on rules may be used to resolve some conflicts among rules.
• The logics take a pragmatic view and have low computational complexity.

There are two kinds of rules (fuller versions of defeasible logics include also
defeaters): Strict rules are denoted by A → p, and are interpreted in the classical
sense: whenever the premises are indisputable then so is the conclusion. An example
of a strict rule is “Professors are faculty members”. Written formally: professor(X) →
faculty(X). Inference from strict rules only is called definite inference. Strict rules are
intended to define relationships that are definitional in nature, for example ontological
knowledge.

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence. An
example of such a rule is faculty(X) ⇒ tenured(X) which reads as follows:
“Professors are typically tenured”.

A superiority relation on R is an acyclic relation > on R (that is, the transitive closure
of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior to r1.
This expresses that r1 may override r2. For example, given the defeasible rules

r: professor(X) => tenured(X)
r’: visiting(X) => ¬tenured(X)

which contradict one another, no conclusive decision can be made about whether a
visiting professor is tenured. But if we introduce a superiority relation > with r’ > r,
then we can indeed conclude that he/she cannot be tenured.

A formal definition of the proof theory is found in [2]. A model theoretic semantics is
found in [29], and argumentation semantics is discussed in [15].

3. Proposed Solution

3.1 Agent Discovery and Service Providing Architectures
Agent discovery is a way of advertising, managing and finding information about

agents’ services and capabilities. We can distinguish two different categories of agent
discovery mechanisms, centralized and distributed.

When it comes to centralized solutions for agent discovery, or “middle agents”
according to [38], three different kinds of agents prevail. They are called
matchmakers or Yellow Pages Services, facilitators and brokers respectively. We
borrow the next two figures (Figure 1, Figure 2) from their work.

Figure 1. Matchmaker Architecture

Requester

Provider 1

Matchmaker

Provider n

2 Request for service

 3 Unsorted full description of P1,…Pn

1 Advertisement of capabilities

4 Delegation of service

5 Service Results

When it comes to matchmakers, different service providers advertise their

capabilities (1) and the matchmaker puts them into a repository. When the
matchmaker is asked for a particular service by a service requester (2), it returns
information about all the available service providers (3). It now depends on the
requester which provider it will choose (4) for the required service. Lastly, the
provider serves the request and returns the results (5). It is assumed that the “address”
of a matchmaker is well-known.

Facilitators operate in a slightly different way. Initially, providers advertise their
capabilities (1). After requesters have located a facilitator they pass on their
preferences along with the delegation of a service (2). The facilitator, in turn, picks
one of the providers to delegate the requested service (3). The provider then returns
the result (4) and the facilitator returns it to the requester (5).

Requester

Provider 1

 Facilitator

Provider n

2 Delegation of service + preferences

5 Result of service

1 Advertisement of capabilities 4 Result of service

3 Delegation of service

Figure 2. Facilitator-Broker Architecture

A variation of this architecture could be that the middle agent itself performs the

serving of a request using services and information from other agents in conjunction
with his own services. In the latter case the middle agents is called “broker”. We use
this variation for our implementation. However, we would like to stress that our
technology can easily be adapted to realize any of the above architectures; we have
chosen to implement the broker architecture to demonstrate the feasibility of the
overall approach.

3.2 General Approach
The three basic roles that we identify in our brokering system are the Service

Requester (or the Buyer), the Service Provider (or Seller), and the Broker. Another
agent, called Directory Facilitator (D.F.) plays a secondary role and is the yellow
pages service (or Matchmaker), which agents use to find each other and register what
protocols they use, what ontologies they use, etc. The technical solution we provide is
based on the following key ideas:

• Service requesters, service providers and brokers are represented by software
agents that run on the JADE multi-agent platform.

• The requirements of the service requester are represented in defeasible logic,
using rules and priorities. These requirements include both indispensable
requirements that must be met for a service to be acceptable (for example, air-

conditioning is required), and soft requirements (preferences) that can be used
to select among the potentially acceptable offerings. These requirements are
communicated to the broker agent by the requester agent. This communication
initiates a brokering activity.

• The offerings or advertisements are represented in a certain semi-structured
format using the Semantic Web standard language RDF for describing Web
resources. The provider agents communicate the offerings to the broker agent.

• The terminology shared by providers, requesters and brokers is organized in
an ontology using the Semantic Web standard of RDF Schema.

• The broker is also a software agent and has special knowledge both for the
declarative language and the advertisement format. It also has the ability to
perform semantic checks to the information it receives.

• When the broker receives a request it matches the request to the
advertisements by running the request specification against the available
offerings, making use of information provided by the shared ontology, as
required. Then the requester’s preferences are applied to select the most
suitable offering(s) which are then presented to the requester.

• For the persistent storage of advertisements, an RDF repository, and
particularly ICS-FORTH RDF Suite [1], is used.

3.3 Description of Offerings
The offerings are described in RDF, the standard Semantic Web language for

representing factual statements. This choice (a) supports interoperability among
agents and applications, and (b) facilitates the easy publication, collection and
combination in decentralized dynamic settings. The offerings are enriched through
reference to shared ontologies, e.g. of the tourism domain or geographical terms. The
benefits of ontologies for matching requester requirements to offerings were stated
previously. We assume that this ontology is expressed in RDF Schema, a simple
ontology language based on RDF. We have chosen this language over the use of
OWL because at present it is not clear how the deductive capabilities of OWL and
rule systems can be combined; it is one of the main research lines in the Semantic
Web community. We could certainly use most features of OWL Lite, given that they
can be expressed using rules [20].

3.4 Description of Requests and Preferences
The requirements and preferences of the requester are described in a logical

language. Before choosing one or several languages for the specification of requests it
is important to establish a set of criteria that such languages need to satisfy. The
criteria presented below are inspired from those formulated by [23] in the context of
techniques for information modeling. They encompass several well-known principles
of language design.

Firstly, a language for specifying requirements and preferences needs to be formal,
in the sense that its syntax and its semantics should be precisely defined. This ensures
that the requirements and preferences can be interpreted unambiguously (both by
machines and humans) and that they are both predictable and explainable.

Secondly, the language should be conceptual. This, following the well-known
Conceptualization Principle of [17], effectively means that it should allow its users to
focus only and exclusively on aspects related to requirements, without having to deal
with any aspects related to their realization or implementation. Examples of
conceptually irrelevant aspects in the context that we consider are: physical data
organization and access, platform heterogeneity (e.g. message-passing formats), and
book-keeping (e.g. message queue management).

Thirdly, in order to ease the interpretation of strategies and to facilitate their
documentation, the language should be comprehensible. Comprehensibility can be
achieved by offering a graphical representation, by ensuring that the formal and
intuitive meanings are as much in line as possible, and by offering structuring
mechanisms (e.g. decomposition). These structuring mechanisms often lead to
modularity, which in our setting means that a slight modification to a strategy should
concern only a specific part of its specification. Closely related to its
comprehensibility, the language that we aim should be suitable, that is, it should offer
concepts close to those involved in requirements and preferences.

As we are interested in the automation of the brokering process, the requirements
description language should be executable, and its execution should exhibit
acceptable performances even for complex requirements (i.e. the execution
performances should be scalable). Finally, the language that we aim should be
sufficiently expressive, that is, it should be able to precisely capture a wide spectrum
of requirements.

We have chosen defeasible logic to represent requesters’ requirements and
preferences because it satisfies the above criteria. In particular,

• It is a formal language with well-understood meaning ([2] presents a proof
theory, [29] its model semantics, and [15] its argumentation semantics), thus it
is also predictable and explainable.

• It is designed to be executable; implementations are described in [30]. It is
also scalable, as demonstrated in the same paper, where it was shown that
100,000 rules can be processed efficiently. This is so because the
computational complexity of defeasible logic is low [28].

• It is expressive, as demonstrated by the use of rules in various areas of
information technology. In fact, among the logical systems, it is rule-based
systems that have been best integrated in mainstream IT.

• Finally, it is suitable for expressing requirements and preferences in our
setting. This is so because it supports the natural representation of important
features:

 Rules with exceptions are a useful feature in our problem. For
example, a general rule may specify acceptable offerings, while more
specific rules may describe cases in which the general rule should not
apply and the offering should not be accepted. We will elaborate on
this point in the next section when we consider a concrete example.

 Priorities are an integral part of defeasible logic, and are useful for
expressing user preferences for selecting the most appropriate offerings
from the set of the acceptable offerings.

4. A Brokered Trade Example
In this section we present a full example of using defeasible logic in a brokered trade
application that takes place via an independent third party, the broker. The broker
matches the buyer’s requirements and the sellers’ capabilities, and proposes a
transaction when both parties can be satisfied by the trade. In our case, the concrete
application (which has been adopted from [4]) is apartment renting and the landlord
takes the role of the abstract seller.

Available apartments reside in an RDF document (Figure 4). The requirements of
a potential renter, called e.g. Carlo, are shown in Figure 3. These requirements are
expressed in defeasible logic as explained below, in a logic-like syntax. More
specifically, the following predicates are used to describe properties of apartments:
• size(x,y), where y is the size of apartment x (in m2)
• bedrooms(x,y), where apartment x has y bedrooms
• price(x,y), where y is the price for x
• floor(x,y), where apartment x is on the y-th floor
• gardenSize(x,y), where apartment x has a garden of size y
• lift(x), meaning that there is an elevator in the house of x
• pets(x), meaning that pets are allowed in x
• central(x), meaning that x is centrally located

1. Carlos is looking for an apartment of at least 45m2 with at least 2 bedrooms. If it is on the 3rd floor

or higher, the house must have an elevator. Also, pet animals must be allowed.
2. Carlos is willing to pay $300 for a centrally located 45m2 apartment, and $250 for a similar flat in

the suburbs. In addition, he is willing to pay an extra $5 per m2 for a larger apartment, and $2 per
m2 for a garden.

3. He is unable to pay more than $400 in total. If given the choice, he would go for the cheapest option.
His 2nd priority is the presence of a garden; lowest priority is additional space.

Figure 3. Verbal description of Carlo’s (a potential renter) requirements.

<!DOCTYPE rdf:RDF [...
 <!ENTITY carlo "http://.../carlo.rdf#">]>
<rdf:RDF ... xmlns:carlo="&carlo;">
 <carlo:apartment rdf:about="&carlo;a1">
 <carlo:bedrooms rdf:datatype="&xsd;integer">1</carlo:bedrooms>
 <carlo:central>yes</carlo:central>
 <carlo:floor rdf:datatype="&xsd;integer">1</carlo:floor>
 <carlo:gardenSize rdf:datatype="&xsd;integer">0</carlo:gardenSize>
 <carlo:lift>no</carlo:lift>
 <carlo:name>a1</carlo:name>
 <carlo:pets>yes</carlo:pets>
 <carlo:price rdf:datatype="&xsd;integer">300</carlo:price>
 <carlo:size rdf:datatype="&xsd;integer">50</carlo:size>
 </carlo:apartment>
 ...
</rdf:RDF>

Figure 4. RDF document for available apartments

Also the following predicates are used:
• acceptable(x), meaning that flat x satisfies Carlos’s requirements
• offer(x,y), meaning that Carlos is willing to pay $ y for flat x
Any apartment is a priori acceptable.
r1: => acceptable(X)

However, Y is unacceptable if one of Carlos’s requirements is not met (exceptions to
rule r1).
r2: bedrooms(X,Y), Y < 2 => ¬acceptable(X)
r3: size(X,Y), Y < 45 => ¬acceptable(X)
r4: ¬pets(X) => ¬acceptable(X)
r5: floor(X,Y), Y > 2, ¬lift(X) => ¬acceptable(X)
r6: price(X,Y), Y > 400 => ¬acceptable(X)
r2 > r1, r3 > r1, r4 > r1, r5 > r1, r6 > r1

The price Carlos is willing to pay for an apartment is calculated as follows:
r7: size(X,Y), Y ≥ 45, garden(X,Z), central(X) => offer(X, 300 + 2Z +
5(Y−45))
r8: size(X,Y), Y ≥ 45, garden(X,Z),¬central(X) => offer(X, 250 + 2Z +
5(Y−45))

An apartment is only acceptable if the amount Carlos is willing to pay is not less than
the price specified by the landlord.
r9: offer(X,Y), price(X,Z), Y < Z => ¬acceptable(X)
r9 > r1

In addition to identifying the apartments acceptable to Carlos it is also possible to
reduce the number further, even down to a single apartment, by taking further
preferences into account. Carlos’s preferences are based on price, garden size, and
size, in that order, represented as follows:
r10: cheapest(X) => rent(X)
r11: cheapest(X), largestGarden(X) => rent(X)
r12: cheapest(X), largestGarden(X), largest(X) => rent(X)
r11 > r10, r12 > r10, r12 > r11

Since at most one apartment can be rented, literals rent(X) are conflicting. This is
represented using conflict sets: C(rent(x)) = {¬rent(x)} ∪ {rent(y) |
y ≠ x}
The prerequisites of these rules can be derived from the set of acceptable apartments
using further rules. For example, cheapest(X) can be calculated by the following
rule that makes use of negation as failure (operator not):
rc: acceptable(X), price(X,Z),
 not(acceptable(Y), Y ≠ X, price(Y,W), W < Z)
 => cheapest(X)

Similar rules exist for largestGarden(X) and largest(X), as well.

5. Brokering System Implementation

5.1 Multi-Agent Framework
The agent framework we used for the development of our system is JADE [9],

[24]. JADE is an open-source middleware for the development of distributed multi-
agent applications. It is Java-based and compliant with the FIPA specifications [14]. It
provides libraries for agent discovery, communication and interaction, based on FIPA
standards

From the functional point of view, JADE provides the basic services necessary to
distributed peer-to-peer [34] applications in the fixed and mobile environment. JADE
allows each agent to dynamically discover other agents and to communicate with
them according to the peer-to-peer paradigm. From the application point of view, each
agent is identified by a unique name and provides a set of services. It can register and

modify its services and/or search for agents providing given services, it can control its
life cycle and, in particular, communicate with all other peers.

5.2 System Architecture and Modules

The architecture of the broker consists of five main modules: (a) reasoning module,
(b) control module, (c) semantic and syntactic validator, (d) RDF Suite module, and
(e) rule-query-RDF loader module. Reasoning and control modules consist of other
sub-modules as one can see in Figure 5 which depicts the overall system architecture.
The other three modules are stand-alone. Finally, the control module is responsible for
the coordination of all the other modules.

Figure 5. The Brokering System Architecture

RDF Translator
The role of the RDF translator is to transform the RDF statements into logical

facts, and the RDFS statements into logical facts and rules. This transformation allows
the RDF/S information to be processed by the rules provided by the Service Requester
(representing the requester’s requirements and preferences). For RDF data, the SWI-
Prolog RDF parser is used to transform them into an intermediate format, representing
triples as rdf(Subject, Predicate, Object). Some additional processing (i) transforms
the facts further into the format Predicate(Subject, Object); (ii) cuts the namespaces
and the “comment” elements of the RDF files, except for resources that refer to the
RDF Schema, for which namespace information is retained.

In addition, for processing RDF Schema information, the following rules capturing
the semantics of RDF Schema constructs are created:
 A: C(X):- rdf:type(X,C).

 B: C(X):- rdfs:subClassOf(Sc,C), Sc(X).
 C: P(X,Y):- rdfs:subPropertyOf(Sp,P), Sp(X,Y).
 D: D(X):- rdfs:domain(P,D), P(X,Z).
 E: R(Z):- rdfs:range(P,R), P(X,Z).

Let us consider rule B that captures the meaning of the subclass relation of RDFS. A
class Sc is subclass of a class C when all instances of Sc are also instances of C.
Stated another way, if X is an instance of Sc then it is also instance of C. That is
exactly what rule B says. All the above rules are created at compile-time, i.e. before
the actual querying takes place. Therefore, although the above rules at first sight seem
second-order because they contain variables in place of predicate names, they are
actually first-order rules, i.e. predicate names are constant at run-time.

Semantic-Syntactic Validator
This module is an embedded version of [37], a parser for validating RDF

descriptions. Upon receipt of an advertisement, the RDF description, which
corresponds to that advertisement, is checked by this module. Among others, the tests
performed are: class hierarchy loops, property hierarchy loops, domain/range of
subproperties, source/target resources of properties and types of resources. This
module is “called” by the control module and returns either the RDF description, in
case the latter is error free, or an error message. For the implementation of this
module we used the API of VRP.

Interaction and Communication Modules
The communication module is responsible for sensing the network and notifying

the control module when an external event (e.g. a request message) occurs. In order
to decide the course of action based on the incoming message’s type, the broker
agent extracts the message from the queue and examines its type, i.e. whether it is a
“Broker Request”, ”Advertise Request” message etc. Accordingly it activates the
interaction module. The interaction module consists of different interaction protocols
that extend the standard FIPA Request interaction protocol. For the implementation
of these modules, we used the API of JADE framework.

RDF Suite Module
The RDF Suite module is responsible for all the actions related with the handling

of the advertisements and the domain ontology. The most important functions of this
module are:

• Initial upload of RDFS ontology and RDF instances into the RDF repository.
• Update of the RDF repository with RDF descriptions that are received from

the service providers and correspond to product or service advertisements.
• Preparation of RQL queries and forwarding to the RDF Suite.
• Receipt of RQL queries’ results.

The RDF Suite module implements a client socket, which connects to a server
socket and passes an RQL query or retrieves the results. At this point we must say,
that although RSSDB and VRP work well in MS Windows and their Java API can be
easily used, there is a problem with RQL that operates only in UNIX. The server
socket, which creates a UNIX pipe to RSSDB, solves this problem. For the
implementation of this module we used the API of RSSDB and the API of Java for
File Management and Networking.

Rule-Query-RDF Loader

The role of this module is to download the files, which contain the rules and the
query of the user, in defeasible logic format. It also downloads the appropriate RDF
descriptions, which correspond to service providers’ advertisements. It also
implements methods for file handling. For the implementation of this module we used
the API of Java for File Management and the API for Networking.

Reasoning Module
The role of the Reasoning Module is to apply the queries to files, which contain the

facts and the rules, and to evaluate the answer. When the Service Requester makes a
query, the Reasoning Module compiles the files containing the facts and the rules, and
applies the query to the compiled files. The answer of the query is sent to the Control
Module of the system. The reasoning engine that we employed to implement this
module is DR-Prolog [6]. This is a defeasible reasoning system that is based on the
translation of defeasible theories into Prolog clauses, and is built on top of XSB
Prolog.

Rule Parser & Translator
The Rule Parser is responsible for checking the validity of the defeasible rules, which
are submitted by the Service Requester. The rules are considered to be valid, if they
follow the standard syntax of defeasible logic, as described in [2]. If there are syntax
errors, the system informs the user about these errors, and does not proceed to the
translation. Otherwise, the parser creates a symbol table, which includes all the rules
and priority information, and passes this table to the Translator.

The Rule Translator is responsible for transforming the rules submitted by the Service
Requester using the syntax of defeasible logic, into Prolog rules that emulate the
semantics of defeasible logic. The method we use for translating defeasible theories
into logical programs is described in detail in [5].

The logical program that derives from this procedure will be later combined with the
logical facts that represent the RDF triples, and will be used to evaluate the queries of
the Service Requester.

Query Translator
In order to apply a query to the Prolog files, which contain the rules and the facts, it
must be priorly transformed into a valid Prolog query. This task is performed by the
Query Translator. There is a standard format for the queries that the Service Requester
can make:

D x : which are the literals (atoms or their negation) x which are provable according to
the rules provided by the Service Requester.

The literals ‘x’ represent the conclusions of the rules, which are submitted by the
Service requester. ‘x’ can be for example of the form ‘accept_hotel(X)’. In this case a
query of the form ‘D accept_hotel(X)’, is intended to find those literals X satisfying
the conclusion ‘accept_hotel(X)’.

5.3 System Interactions
We describe the sequence of actions, separately for the buyer (B label) and the

seller (S label). Initially Buyer, Seller and Broker agents, subscribe to Directory
Facilitator or D.F. agent. These actions are depicted by the dashed lines (step 0). They
provide information such as the ontologies they are committed to, the interaction
protocols they use, the content language they use etc.

A seller initializes an interaction by issuing an “Advertise” request (step S1). The
broker extracts the field “RDFInfoAtWeb” from the received message and tries to
download the corresponding advertisement from the web, which is an RDF
description with information about the advertised product or service (step S2). If the
document exists, broker informs the seller that he agrees to perform the requested
action (step S3). Subsequently the broker checks the RDF advertisement semantically
and syntactically, using the Semantic and Syntactic validator module (step S4). The
result is returned to the control module of broker (step S5), and if the advertisement is
valid, according to the domain ontology, seller is informed that the requested action
was performed. Otherwise an error message is posted (step S6). Broker then performs
a twofold action. He firstly feeds the RDF Suite module with the advertisement (step
S7), which in turn stores it to the RDF Suite repository (step S8) and secondly sends
the advertisement to the RDF translator module of the Inference engine to add it in the
knowledge base (step S9). Finally the knowledge base is updated with the new facts
which were previously extracted from the RDF advertisement (step S10).

A buyer sends an “Available Products” request to the broker (step B1). Broker
informs buyer if he agrees or not to perform the action (step B2) and in turn he sends
to buyer a message with the available categories of products (step B3). Buyer then
issues a ”Brokering” request, for a particular category of products (step B4). Broker
downloads from the web the Rules which capture the preferences of the buyer and are
expressed in defeasible logic. He also downloads the submitted query which is also
expressed in defeasible logic (step B5). Subsequently the rules and the query are
stored in the knowledge base by the broker (step B6). Broker informs the buyer if he
agrees or not to perform the requested action, according to the validity of the rules and
the query (step B7). Broker in turn activates the reasoning module (step B8), which
uses the stored data in the knowledge base (step B9) and performs the reasoning
process. The result is the set of the ID’s of the matched RDF descriptions (step B10).
Afterwards, the RDF Suite module of the broker creates dynamically an RQL query
(step B11) which is passed to the RDF Suite repository for the retrieval of all the
resources which correspond to the IDs of the result set (step B12). The result of the
query is returned to the broker (step B13). Finally, the broker encapsulates the
received information to an ACL message and sends it back to the buyer (step B14).

6. System Evaluation
In section 3 we described the main arguments in favour of our approach, and its
distinctive features. In this section we concentrate on the performance evaluation of
the reasoning module. In particular, we present the most significant results from the
experimental evaluation of DR-Prolog, the reasoning engine at the heart of our
system, which we conducted and originally presented in [6]. The experimental tests
are defeasible theories, consisting of a varying number of facts, rules and superiority
relations.

In DR-BROKERING, we assume that the facts derive from the translation of RDF
documents that contain the available data, and the rules and superiority relations are
contained in the defeasible theories imported by the user. Here, we focus only on
those theories that contain a large number of facts, and a set of conflicting rules.

These are the tree theories, tree(n,k), in which kn facts and
∑
−

=

1

0

n

i

ik
conflicting rules

form a k-branching tree of depth n in which every literal occurs k times (see [6] for
more details).

In Table 1, we present the time (in CPU seconds) that DR-Prolog requires to conduct
a proof for one of the literals supported by the rules of the theory. The overall “size”
of the theory is defined as the sum of the number of facts, rules and literals in the
bodies of all rules. The experiments are designed to execute all rules and literals of
each test theory.

tree(n,k) Size Time
n = 6, k = 3 2185 0.22

n = 7, k = 3 6559 1.16

n = 8, k = 3 19681 9.61

Table 1. Execution times for tree theories

More details about the experimental evaluation of the performance of DR-Prolog, as
well as a comparison with the performance of similar defeasible reasoning
implementations can be found in [6].

7. Related Work
InfoSleuth [31] is an agent-based information discovery and retrieval system that

adopts “broker agents” to perform the syntactic and semantic matchmaking. The
broker uses a rule-based reasoning engine, implemented in LDL, to determine which
agents have advertised services that match those requested in the query. The
brokering is realized in two levels. Syntactic brokering is the process of matching
request, on the basis of the syntax of incoming messages and used ACLs or Content
Languages. Semantic brokering is the process of matching requests on the basis of the
requested capabilities or offered services. An agent’s knowledge is expressed
independently of syntax, based on shared common service ontology.

Trastour et al. [36] enumerate the requirements for a language to express service
descriptions in the context of a matchmaking service. They propose the use of
RDF/RDFS for the matchmaking process. Each advertisement, either for service
request, or for service offering is represented as an RDF resource. Properties from this
resource characterize the type of requested or offered service. The advertisements are
stored into a repository and the matching of advertisements is reduced to matching of
RDF graphs. The authors implemented a matching algorithm.

Li and Horrocks [26] assess the requirements for a service description language
and ontology, and argue that DAML+OIL and DAML-S common service ontology,
fulfil these requirements. This argument is supported by their design and
implementation of a prototype matchmaker which uses a description logic reasoner to
match service advertisements and requests based on the semantics of ontology-based
service descriptions. Similar is the work of [33]. They also use DAML-S to describe
the advertisements along with the request and afterwards they use a matching
algorithm.

Chen et al. [13] propose an architecture for an agent that, although not explicitly
stated, could be used for semantic brokering. The iAgent they propose consists of
inference, control and communication layer. As they say, a typical inference engine
makes inference according to static facts and rules. As an alternative they propose that
the facts are extracted from semantic mark-up documents that are written in

DAML+OIL. The fact translator module of the iAgent, converts all the DAML+OIL
documents into prolog format. As a result, although DAML+OIL is description logic,
which is not suitable for complex queries, iAgent finally uses a Horn-based logic
engine (SWI-Prolog) for inferencing.

8. Conclusions and Future Work
In this paper we studied the brokering and matchmaking problem, that is, how a

requester’s requirements and preferences can be matched against a set of offerings
collected by a broker. The proposed solution uses the Semantic Web standard of RDF
to represent the offerings, and a deductive logical language for expressing the
requirements and preferences. We motivated and explained the approach we propose,
and reported on a prototypical implementation exhibiting the described functionality
in a mulit-agent environment.

Our approach has obvious advantages compared to other approaches. Particularly,
(a) we do not provide a fixed algorithm for brokering but it is the user who specifies
the algorithm on the basis of its preferences. (b) The architecture we provide is higly
reusable. The system can be applied in any domain only with the addition of a new
ontology and new rules which capture the preferences. (c) Using JADE, we exploit
the advantages of peer-to-peer systems (i.e. travel agencies and broker as peers) and
also make use of FIPA standards for agent communication and discovery. (d) We use
a higly expessive language for preferences specification with interesting features,
such as conflicting rules and priorities of rules. (e) We use RDF for the expression of
advertisements. This choice supports interoperability among agents and applications
and facilitates the easy publication, collection and combination in decentralized
dynamic settings. (f) We allow for permanent storing of advertisements with the use
of the RDF Suite repository.

The main limitations of the current implementation are: (a) The advertisements
cannot be removed automatically when they expire. (b) The syntax of the defeasible
logic may appear too complex for many users, and should be supported by, possibly
graphical, authoring tools.

The architecture we proposed is based on the assumption that all service
advertisements have the same format, i.e. that there is a shared ontology. This is not a
very unrealistic assumption, since many business communities have already conceded
into common ontologies. However, even if different travel agents use different
ontologies, ontology translation techniques could be used to map different ontologies
onto the common ontology supported by the brokering service. The ontology
translation service could be offered by the brokering service for several popular
ontologies. However, if a service provider uses a minor and/or personal ontology,
then it should be his/her responsibility to provide translation to the common ontology,
should he/she wants to take advantage of the brokering services offered.

In the future we intend to extend the described work in various directions: (i) Add
advertisement removal functionality, which will be activated, when the advertisement
has expired. (ii) Implement graphical user interfaces for the integrated system.
Someone will be able to load the files, which correspond to the rules of negotiation
strategy and brokering preferences respectively, using a file manager. He will be also
able to adjust negotiation protocol parameters and monitor the progress of the
brokering and negotiation procedure. (iii) Integrate the current brokering system with
the negotiation system proposed in [35]. In our current implementation, a service

requester agent is able to find potential products or services and potential service
providers. We intend to extend our system to support direct involvement of the
service requester in negotiation with the service provider for the resulted product, as
soon as the brokering stage has been completed.

Finally, as a long-term goal we intend to extend the semantic brokering approach
presented in this paper to brokering for general purpose semantic web services,
providing matchmaking between Web Service advertisements and requests described
in OWL-S. Of course, first of all we must carefully define which of the features of
OWL are captured by defeasible logic and can be used, and which cannot.

References
[1] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis and K. Tolle (2001). The ICS-FORTH

RDFSuite: Managing Voluminous RDF Description Bases. In Proc. 2nd International Workshop on the
Semantic Web, Hongkong, May 1, 2001.

[2] G. Antoniou, D. Billington, G. Governatori and M.J. Maher (2001). Representation results for defeasible
logic. ACM Transactions on Computational Logic 2, 2 (2001): 255 – 287.

[3] G. Antoniou, M. J. Maher and D. Billington (2000). Defeasible Logic versus Logic Programming without
Negation as Failure. Journal of Logic Programming 41,1 (2000): 45 – 57.

[4] G. Antoniou and F. van Harmelen (2004). A Semantic Web Primer. MIT Press 2004.
[5] G. Antoniou, A. Bikakis (2004). “A System for Non-Monotonic Rules on the Web». Workshop on Rules

and Rule Markup Languages for the Semantic Web (RuleML 2004), G. Antoniou, H. Boley (Ed.),
Springer-Verlag, Hiroshima, Japan, 8 Nov. 2004.

[6] G. Antoniou and A. Bikakis (2006). DR-Prolog: A System for Defeasible Reasoning with Rules and
Ontologies on the Semantic Web, IEEE Transactions on Knowledge Data and Engineering (accepted).

[7] G. Antoniou, G. Wagner, "Rules and Defeasible Reasoning on the Semantic Web", in Proc. RuleML
Workshop 2003, Springer-Verlag, LNCS 2876, pp. 111–120, 2003.

[8] D. Beckett (2004). RDF/XML Syntax Specification, W3C Recommendation, February 2004. Available at:
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

[9] F.Bellifemine, G Caire, A.Poggi, G. Rimassa (2003). JADE A White Paper. Telecom Italia EXP magazine
Vol 3, No 3 September 2003.

[10] T. Berners-Lee (1999). Weaving the Web. Harper 1999.
[11] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler (2000). Extensible Markup Language (XML) 1.0

(Second Edition) W3C Recommendation, October 2000. Available at: http://www.w3.org/TR/2000/REC-
xml-20001006.

[12] D. Brickley, R.V. Guha (2004). RDF Vocabulary Description Language 1.0: RDF Schema W3C
Recommendation, February 2004. Available at: http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[13] Y-C. Chen, W-T. Hsu, P-H. Hung (2003). Towards Web Automation by Integrating Semantic Web and
Web Services. In Proc. 12th International WWW Conference.

[14] FIPA. http://www.fipa.org.
[15] G. Governatori and M.J. Maher. An argumentation-theoretic characterization of defeasible logic. In

Proceedings of the 14th European Conference on Artificial Intelligence}, Amsterdam, 2000. IOS Press.
[16] G. Governatori, M. Dumas, A. ter Hofstede and P. Oaks (2001). A formal approach to legal negotiation. In

Proc. ICAIL 2001, 168-177.
[17] J.J. van Griethuysen, editor. Concepts and Terminology for the Conceptual Schema and the Information

Base. Publ. nr. ISO/TC97/SC5/WG3-N695, ANSI, 11 West 42nd Street, New York, NY 10036, 1982.
[18] B. N. Grosof (1997). Prioritized conflict handing for logic programs. In Proc. of the 1997 International

Symposium on Logic Programming, 197-211.
[19] B. N. Grosof, M. D. Gandhe and T. W. Finin: SweetJess: Translating DAMLRuleML to JESS. RuleML

2002. In: Proc. International Workshop on Rule Markup Languages for Business Rules on the Semantic
Web.

[20] B. N. Grosof, I. Horrocks, R. Volz and S. Decker (2003). Description Logic Programs: Combining Logic
Programs with Description Logic". In: Proc. 12th Intl. Conf. on the World Wide Web (WWW-2003), ACM
Press.

[21] D.L. McGuinness , F. van Harmelen (2004). OWL Web Ontology Language Overview W3C
Recommendation, February 2004. Available at: http://www.w3.org/TR/owl-features/.

[22] M. He, N.R. Jennings, and H-F. Leung (2003). On Agent-Mediated Electronic Commerce. IEEE
Transactions on Knowledge and Data Engineering Vol. 15, No 4 July/August 2003.

[23] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis, University of
Nijmegen, Nijmegen, The Netherlands, 1993.

[24] JADE Project: http://jade.cselt.it/.
[25] A. Levy and M-C. Rousset (1998). Combining Horn rules and description logics in CARIN. Artificial

Intelligence 104, 1-2 (1998):165 – 209.
[26] L. Li and I. Horrocks (2003). A Software Framework For Matchmaking Based on Semantic Web

Technology. In Proc. 12th International Conference on WWW, ACM 2003.
[27] P. Maes, R.H. Guttman and A.G. Moukas (1999). Agents That Buy and Sell. Communications of the ACM

Vol. 42, No. 3 March 1999.
[28] M.J. Maher (2001). Propositional Defeasible Logic has Linear Complexity. Theory and Practice of Logic

Programming 1,6, p. 691-711.
[29] M.J. Maher (2002). A Model-Theoretic Semantics for Defeasible Logic”, Proc. Workshop on

Paraconsistent Computational Logic, 67 - 80, 2002.
[30] M.J. Maher, A. Rock, G. Antoniou, D. Billington and T. Miller (2001). Efficient Defeasible Reasoning

Systems. International Journal of Tools with Artificial Intelligence 10,4 (2001): 483—501.
[31] M. Nodine, W. Bohrer, A. Hee Hiong Ngu (1998). Semantic Brokering over Dynamic Heterogeneous Data

Sources in InfoSleuth. In Proc. 15th International Conference on Data Engineering, IEEE Computer
Society.

[32] D. Nute (1994). Defeasible logic. In Handbook of logic in artificial intelligence and logic programming
(vol. 3): nonmonotonic reasoning and uncertain reasoning. Oxford University Press.

[33] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara (2002). Semantic Matching of Web Services
Capabilities. In Proc. 1st International Semantic Web Conference (ISWC-2002).

[34] S. Saroiu, P. Krishna, Gummadi, S.D. Gribble (2002). A Measurement Study of Peer-to-Peer File Sharing
Systems SPIE and ACM Multimedia - Multimedia Computing and Networking (MMCN-2002).

[35] T. Skylogiannis, G. Antoniou, N. Bassiliades, G. Governatori (2005) "DR-NEGOTIATE-A System for
Automated Agent Negotiation with Defeasible Logic-Based Strategies ". In proceedings of the IEEE
international conference on e-Technology,e-Commerce and e-Service (EEE05). Hong Kong, China April
2005.

[36] D. Trastour, C. Bartolini, J. Gonzalez- Castillo (2001). A Semantic Web Approach to Service Description
for Matchmaking of Services. HP Technical Report. August 2001.

[37] VRP. The ICS-FORTH Validating Rdf Parser - VRP (2004). Available at:
http://139.91.183.30:9090/RDF/VRP/.

[38] H-C. Wong and K. Sycara (2000). A Taxonomy of Middle-agents for the Internet. In Proc. 4th
International Conference on Multi Agent Systems (ICMAS-2000).

