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ABSTRACT
Email has met tremendous popularity over the pastyfears. People are sending and receiving
many messages per day, communicating with partaeds friends, or exchanging files and
information. Unfortunately, the phenomenon of enwaikrload has grown over the past years
becoming a personal headache for users and a iahassue for companies. In this chapter, we
will discuss how disciplines like Machine Learnimgd Data Mining can contribute to the
solution of the problem by constructing intelliggathniques which automate email managing
tasks and what advantages they hold over otherectional solutions. We will also discuss the
particularity of email data and what special treatint requires. Some interesting email mining
applications like mail categorization, summarizati@automatic answering and spam filtering

will be also presented.

Keywords: data mining, machine learning, email, text minifigature selection, clustering,

classification, summarization, automatic answergmam filtering, intelligent systems
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EMAIL MINING: EMERGING TECHNIQUES FOR EMAIL MANAGEMENT
The impact of electronic mail in our daily life row more obvious than ever. Each minute,
millions of plain text or enriched messages ara@deaient and received around the globe. Some
of them are read with extra care and, at the sames thany of them are deleted with obvious
disinterest. As the internet grows, electronic ni@g not only turned into a vital tool for our
work but also into an important means of interppag@ommunication.

In professional life, email has invaded everywhefg@am organization, project
management, information exchange (Ducheneaut 8&®8eP001), decision making, client
support are only a few of a company's daily proeesghere email has been vital. Email also
made personal communication significantly easiat aered instant messaging with minimum
cost. People from all over the world can now exdgeaopinions and information with such ease
that made email the second most popular chanregramunications after voice (Miller, 2003).

Features that made email so popular are the rgpadicommunication, the minimum
cost and the fact that it is remarkably easy to Aseadvantage over voice communication (e.g.
phone) is that it is asynchronous, meaning thattieeno need for both sides of communication
to be on-line or in front of a computer at the samme.

Unfortunately, email could not escape the cursénédrmation Overload. Loads and
loads of incoming messages (some extremely imprddmer simply junk) have turned handling
of electronic mail into a tedious task. Today, &arage email user may receive at about 100 or
200 messages per day and, in a recent research pt@dicts that by the year 2006 email traffic
will be about 60 billion messages per day worldw{dehnston, 2002). Nowadays, people
struggle to separate important messages that demanddiate attention from the mound and
large companies are investing money in order tontaai email centers with personnel dedicated
to answer client requests and queries sent by smaAiditionally, the problem of spam
messaging has grown at a level that it is now camed an industry problem. It costs billions of
dollars (Rockbridge Associates 2004) as it takedapdwidth, clutters inboxes and occupies
employees who are receiving them. Moreover, theecdrof many spam messages is unsuitable
for children (e.g. pornographic).

In this chapter, we will discuss what discipling® IMachine Learning and Data Mining
have to offer to the solution of this email ovedgaroblem. How intelligent techniques, already

used before for other text applications can applgrmail data, what difficulties and obstacles
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have risen and what were the solutions proposetheSoteresting and novel applications like

email answering, classification and summarizatidhbe also presented.

HOW EMAIL WORKS (TERMINOLOGY)
Email does not work so differently than it usedatoen it first appeared. It relies on two basic
communications protocols: SMTP (Simple Mail TramsRrotocol), which is used to send
messages and POP3 (Post Office Protocol), whialsésl to receive messages. A simplified

version of the email life cycle can be seen in Fegl

M=

POF. IMAF

|

User1's MUA User2's MUA

Figure 1. Life Cycle of an email

The most importalagical elements of the Internet Mail System are:

1. Mail User Agent (MUA) — It is responsible for hefgi the user to read and write email
messages. The MUA is usually implemented in sofwesually referred to as “email
client”. Two popular email clients are Microsoft thwk? and Mozilla Thunderbirtd
These programs transform a text message into f@ppate internet format in order for
the message to reach its destination.

2. Mail Transfer Agent (MTA) —It accepts a messagespddo it by either an MUA or
another MTA and then decides for the appropriateely method and the route that the
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mail should follow. It uses the SMTP protocol tmdehe message to another MTA or an
MDA.

3. Mail Delivery Agent (MDA): It receives messagesfrddTAs and delivers them to the
user’s mailbox in the user’'s mail server

4. Mail Retrieval Agents (MRA): It fetches mail messadgrom the user’s mail server to the
user’s local inbox. MRAs are often embedded in éoignts.

An Email consists of two parts: Headers and Bodige Headers form a group of
necessary information in order for the mail to reée destination and be read properly by the
recipient. Typical header fields are for example throm:”, “To:”, or “Subject:” field. Full

message headers of an email message can be dagarm 2.

Received: from 3tratos (stratos.csd.auth.gr [155.207.113.238])
by  hermes.ccf.auth.gr (8.13.3/8.13.3) with ESNTF id
jed7CqgOe0l4460;

Tue, 19 Jul 2005 10:13:01 40300 (EE3T)

From: "Efstratios Kontopoulos™ <skontopofcsd.auth.gr:

To: "Giannis Katakiz" <katakfcsd.auth.gr>

Co: "Grigoriszs Tsoumakas" <greglicsd.auth.gr>

Subject: BasketBall

Date: Tue, 19 Jul 2005 10:12:55 +0300

Message-ID: <001001c538c3154bd084d0see7ict9bicsd, auth. gre

MIME-Ver=sion: 1.0

Content-Type: multipart/alternative;

boundary="----=_NextPart 000 0011 01C58C4A.711DECDOM

X-Priority: 3 (MNormal)

X-Mailer: Microsoft Outlook, Build 10.0.2627
X-MimeOLE: Produced By Microsoft HiweOLE V6.00.2800.1106
Importance: Normal

Figure 2: Headers of a typical Email
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EMAIL MINING
Email Mining can be considered as an applicatiothefupcoming research area of Text
Mining (TM or also known as Knowledge Discoveryrrolextual Data) on email data. Text
Mining is an emerging field that has attractedittierest of researchers from areas like Machine
Learning, Data Mining, Natural Language Processingj Computational Linguistics.
However, there are some specific characteristicerohil data that set a distinctive
separating line between Email and Text Mining:

1. Email includes additional information in the headef email that can be exploited for
various email mining tasks.

2. Text in email is significantly shorter and, themefosome Text Mining techniques might
be inefficient in email data.

3. Emalil is often cursorily written and, thus, lingigswell-formedness is not guarantied.
Spelling and grammar mistakes also appear frequentl

4. In an email message, different topics may be dgauisa fact that makes e.g. mail
classification more difficult.

5. Emall is personal and therefore generic technigaes difficult to be effective to
individuals.

6. Emall is a data stream and concepts or distribgtmintarget classes may change over
time. Algorithms should be incremental in both wapstance-wise and feature-wise, as
new features (e.g. words) may appeatr.

7. Email will probably have noise. HTML tags and alttaxents must be removed in order to
apply a text mining technique. In some other caseise is intensively inserted. In spam
filtering for example, noisy words and phrasesiaserted, in order to mislead machine
learning algorithms.

8. Itis rather difficult to have public email data fexperiments, due to privacy issues. This
is a drawback especially for research since contiparatudies can not be conducted
without public available datasets. An exceptiontiie above statement is the Enron
Corpus (Klimt & Yang, 2004), which was made pubéfter a legal investigation

concerning the Enron Corporation.
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Email Pre-processing and Representation

The first step of almost every Knowledge Discovesk is the pre-processing step of the data
which in the beginning is usually available in wisatalled “raw format”. In order to mine into
“raw” data and extract knowledge from it, it is essary to transform it into a format that is
more comprehensible to the machine learning alyost

In the last decade, people with the help of newahénced email clients, have started to
enter HTML code in order to enrich their plain teressages with different styles of text,
different fonts, images, links etc. In fact, thss achieved by sending an HTML page as an
attachment which every contemporary email clienthva build-in web browser is able to
present. In an email analysis procedure, HTML @strof the times not exploited to obtain
knowledge and is removed using HTML parsers in otd&eep the text contained in the HTML
document. Some times though, HTML tags are usechamacteristics (attributes) of the email
(see section Automatic Mail Organization). For epéarin (Corney, Vel, Anderson, & Mohay,
2002) the HTML tag frequency distribution is definas one of the attributes that describe the
email.

In text and email mining the most prevalent mddelrepresentation is the vector space
model (Salton, Wong, & Yang, 1975). In this apploagvery message is represented by a single
vector. Each element is associated to a tokenlger“a feature” in Machine Learning terms). In
textual data, tokens are usually words or phrasis. elements of the vectors have usually
Boolean values (0 or 1) in order to denote presemcabsence of the particular token in the
document, or weights (usually numerical values betwO and 1) to denote the importance of the
token for the document (e.g. term frequency). elxt ctlassification the use of single words as
tokens is much more common and it is usually reteto as “bag-of-words” representation. An
alternative would be to pick phrases as tokens, tmatybe contrary to what someone would
expect, using phrases instead of single words didraise the effectiveness of the algorithms
(Lewis, 1992). An interesting representation icdssed in (Boone, 1998), where additional so-
called “concept” features are used. Those featames denoting the distance between the
document and a “concept vector”. These vectorsanstructed after clustering all documents

and finding a representative one for each clustecept.

So, more formally, we represent an engilas a vectog, =[w, ,...,w, ;], where weights

w,; to w,; are the weights of tokens for the particular doeotn. Inw; ;, index i refers to
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token t, in our collection of tokens. In case we use woadstokens, thert, refers to the

i —thword of our vocabulary, which is basically a setltinct words.

The vocabulary of each problem is built by analgzisome training documents if
available and collecting distinct words, or incretadly constructed with every new message
arrival, with the latter being the most suitabl@@@ach taking under consideration that email is a
data stream. Of course, either a predefined apjicapecific or a generic dictionary can be
used (local and global lexicon respectively).

Another decision that has to be made is wheth&etd words with common stem as one.
In that case a vocabulary of stems is built and d&olike “program”, “programming”,
“programmer” are treated and counted as one. lliogiaphy there already exist stemming
algorithms like the Porter Stemming Algorithm (FRoyt1997). Another common pre-processing
step is the removal of commonly used words (likelkas, prepositions etc) which we call “stop-
words”. That could be effective in most applicationecause these are words that appear in
natural language independently of topic. Hencey tlek discriminative power. On the other
hand, in applications like email author identifioat use of stop-words might be determinant
since the frequency of those terms might revealidesmtity of the author (Vel, Anderson,
Corney, & Mohay, 2001).

Especially for the email domain, features — wordsmf the email headers can be
generated. A word appearing in the subject of tnailecan be more important than the same
word appearing in the body. There is actually egatvork in the email mining literature that
exploits only header information with respectalgsults (Brutlag & Meek, 2000; Zhang, Zhu, &
Yao, 2004) .

Thus, in the case when mail headers are also ¢sglon, represents a feature if it
appears in the subject and a different featuredppears in the body. Therefore, the size of the
vector is actually doubled, as it should be infdren shown below (Zhang et al., 2004):

E; =[subject w;,body :w,, ... ,subject w,,body:w,].
Different ways to define the weight of a word inl@cument have been proposed. Apart

from the already mentioned Boolean weights (Anthopoulos, Koutsias, & Chandrinos, 2000;

Sahami, Dumais, Heckerman, & Horvitz, 1998), areratitive approach is to use TF-IDF
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(Term Frequency — Invert Document Frequency) (@Ba& Buckley, 1988) function for each

word to calculate the weights. The TF-IDF functismefined as follows:

N
w;, =TFIDF (t,e,) =TF Iogﬁ

where, TF, ; is the number of times token occurs in document (emaif, (Term Frequency),

N is the total number of emails anDF, is the number of email$, occurs (Document

Frequency). The idea behind this metric is theitiotu that a word is important for a document if
it appears many times in it and at the same tinnit a common word (a word that appears in
many documents). Cosine normalization can be uskgtie is a need to map the values of the
weights into thgl01] interval (Sebastiani, 2002).
TFIDF(t,,e
N > (TFII;F(tJ)e. )2
s=1 s17)

where|V | is the size of the vocabulary in use.

Feature Selection
A typical lexicon of words (e.g. for the Englismtuage) may consist of many thousands of
words. Those words in a typical bag-of-words appinoaill constitute the application’s feature
space. A feature space that large is not only coatipnally inefficient but also misleading for
many algorithms, as noisy or irrelevant features taken under consideration and overfitting
phenomena may occur (curse of dimensionality). dfoee, a considerable number of
dimensionality reduction algorithms have been gddn the literature. We usually refer to these
algorithms adeature selectiomethods, because dimensionality reduction is battgeved by
trying to select the “best” features from the whigature space. In text classification terms, this
means to select words that distinguish one docuroatggory from another more efficiently.
This is usually being accomplished by calculatingpacial quality measure for each word and
then selecting to use only the top-N features efréimk.

Typical information retrieval measures liRé-IDF (see above) are still applicable, but
now we use them to show the importance of a temihf® whole corpus and not only for the

specific document as when we usgelDF function to calculate weights.
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TFIDF, =TF Iogi
DF,

where TF, is the number of occurrences of the ternm the corpus andF, the number of

different documents this term occurs. N is agaetotal number of documents.

Measures from the information theory field are maidely used. Most effective in text
mining tasks as noted in (Yang & Pedersen, 199d)tharefore popular in email applications
are the Information Gain and Chi-Squared Measureti#er widely used measure is Mutual

Information (Yang & Pedersen, 1997). In generameasureM (t;,c;) indicates how much
distinctive power ternt; has in order to distinguish; from other categories. See below the

definition of Information Gain and Chi-Squared Mewts

Information Gain:

IGt _pt | P(ti!Cj) Pf | P(fi’cj)
(i’CJ)_ (i’Cj) Ogm'i' (i!Ci) Ogm

Chi-Squared Measure:

2 t _ N[P(ti’CJ)P(t_i’Ej)_P(thj)P(t_i’Cj)]z
6= P(,)P@)P(c,)PE,)

where N is the total number of documentB(t;) is the number of documents whereoccurs,
P(t;,c,) is the number ofc; documents, where terty does not occur and so forth. Finally,

some Machine Learning based methods for featuectsah are described in (Montanes, Diaz,
Ranilla, Combarro, & Fernandez, 2005) .

Email Classification

Most email mining tasks are being accomplished siggiemail classification at some point. In
general, what email classification confronts is @lssignment of an email message to one from a
pre-defined set of categories. Automatic emailsfastion aims at building a model (typically
by using machine learning techniques), which wildertake this task on behalf of the user.
Examples of applications are automatic mail categtion into folders, spam filtering and
author identification. But there are also otherl@ptions, where we use classification in the

process like automatic email summarization.
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There are actually two kinds of classification. Tiwst and simplest one is the flat
classification when we have only one level of at@ssThe other category is known as
hierarchical, where we have a hierarchy of classes subclasses (Bekkerman, McCallum, &
Huang, 2004; Itskevitch, 2001).

More formally, and in machine learning terms, if Wave a set of predefined classes

C={c,,...,.c,}, we need to construct a function-like model, whas8igns a mail message ) to
a class e.gM (e ) —» C. These models (also callethssifiers)can be built with various machine

learning techniques, such as Naive Bayes (Sahaahi 4998), Support Vector Machines (Klimt
& Yang, 2004), Rule Learning (Pazzani, 2002), DecisTrees (Quinlan, 1986) based
algorithms (Diao, Lu, & Wu, 2000) , Neural Networ{Slark, Koprinska, & Poon, 2003) and
Inductive Logic Programming (Crawford, Kay, & Mc@tl, 2002). Most of the classification
algorithms are compatible with the vector represtgott model. To build a classifier, a set of
training examples is required. An example is a agssthat has already been categorized,
usually by a user or a domain expert. An examplesislly a vectoe=[w,w,,...,w,,c,] where

c is the class that example belongs to. This procedure of building the cli@essiis called
training.

What is important in email classification is thetféhat email is a dynamic environment
and messages are constantly arriving. This meaisatthough there might be a training set in
availability, the classifier needs to be able tamdchew knowledge while new examples arrive.
Therefore, it is of vital importance for classifice algorithms to be characterized by the
element of incrementality (P. Cunningham, N. Nowl&nDelany, & M. Haahr, 2003; Katakis,
Tsoumakas, & Vlahavas, 2005; Richard Segal & Kep2&00).

The Naive Bayes Classifiéthe Naive Bayes Classifier (John & Langley, 199&g been

used many times for email classification applicagi¢Rennie, 2000; Sahami et al., 1998) . Its
simplicity (not only it is computationally cost efftive but also easy to implement), flexibility
and considerable performance are the basic chasdicte that made it so popular, not only in
email applications, but in text classification iengral (Lewis, 1998; Li & Jain, 1998; Mladenic,
1998). The Naive Bayes Classifier is based onsthmplifying assumption that the attribute

values (e.g. the tf-idf values of an email vectarg conditionally independent. The Naive
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Bayesian classification of an email=[w,,w,...,w,] into one category fronC ={c,c,,...,.C.} IS
calculated as follows (Mitchell, 1997):

Cye = argmaxP(c;)] [ P(w |¢))

where c,; is the classification proposed by the Naive Bawégorithm. A proposal for
probability estimation in text classification thean be found in (Mitchell, 1997) is displayed
below:

n+1
n+|V|

P(w |c)) =

where, n, is the total number of words (not distinct) in &ining examples belonging to
c; category,n is the number of timeword, occurs among these words andV |s the total

number of distinct words found within the trainidgta. Of course, there are other alternatives
for calculating the probabilities (John & Langld®95).

Support Vector MachinesSince their significantly good performance was frored

many times in the literature (Sebastiani, 2002)pdupVector Machines have gained popularity
in text and email classification. In their initiahd simplest form, Support Vector Machines are
binary classifiers, meaning that they separatectbjmto only two pre-defined classes. In that
case, the SVM classifier finds a hyperplane thpasstes a set of positive examples from a set of

negative examples with maximum margin (see Figiwre 3

Figure 3: A Support Vector Machine classifier. The hyper plane separ ating
the instances represented by the thick line. Itemsin grey represent the

support vectors. V isthe margin to be minimized.
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The margin is defined as the distance of the hyaeegfrom the nearest of positive and negative

examples (see Figure 3 — these examples are caiggport vectors”). Ifd is the input

document andv is the normal vector to the hyperplane (margihgntthe output (proposed

classification for the documed of the SVM classifier is calculated as follows:

+1 if v.d+b>0
-1 else

Cayy = Sigr{Vd +b} ={
The terminus is to maximize the margin which isrespnted by th& vector. The problem then
could be redefined as an optimization problem:
Maximize: |V |

Subject to: y,(V-d, +b)>1

where vectorsﬂi are all training examples (emails) awd is the real category (+1 or -1) that
documentd, belongs to. Hence, the last constraint requires dbrrect classification of all

training examples. Of course, this applies onlyhé& problem is linearly separable. There are,
however, already implemented modifications of thpgimization problem which can be applied
to non-linearly separable problems. Its solutionally requires a quadratic optimization method
that will calculate the optimal hyperplane and nmarghese methods are remarkably slow,
especially in high-dimensional feature spaces dikeil classification. A fast training algorithm
however, developed by Platt (1999) breaks the IQBeproblem down into a series of smaller
ones (known as Sequential Minimal Optimization Wis already implemented in machine
learning libraries like Weka (Witten & Frank, 2005)

Another advantage of SVMs is that most of the tithese is no need for term selection
and no parameters require tuning. On the other ,h&ngdport Vector Machines can still be

computationally cost ineffective, especially forltralass problems (Joachims, 1998).

Email Clustering
Email Clustering goes one step further. Subjecettdslders can be automatically constructed
starting from a set of incoming messages. In tagecthe goal is to build automatic organization

systems which will analyze an inbox recognize @isbf messages with the same concept, give
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an appropriate name to each cluster and then putessages into their corresponding folders
(Giuseppe Manco, Masciari, & Tagarelli, 2002; Sairam, Platt, & Renshaw, 2005).
The most widely used clustering algorithm in tekata is the K-Means algorithm. In

order to group some points in K clusters, K-Meansks in 4 basic steps:

1. Randomly choose K instances within the datasetasdn them as cluster centers

2. Assign the remaining instances to their closestelucenter

3. Find a new center for each cluster.

4. If the new cluster centers are identical to theviogs ones, then the algorithm stops.

Otherwise, repeat steps 2-4.

Calculation of distances between documents carclieeed by using a vector space model and

a cosine similarity measure. Similarity between sagese, ande, is defined as:

N
Sim&,8&,) =Ccosg,&,) =——
&) =08t &)= e |

Other similarity measures are proposed in (BaeZas’& Ribeiro-Neot, 1999) and
(Strehl, Ghosh, & Mooney, 2000).

APPLICATIONS
While techniques for tasks like document summapomatorganization, clustering and author
identification are already explored in the literatuemail data with its characteristics, as
discussed in section 2, raises a new challengeet@ammunity of Text Mining. Moreover, the
domain itself offered the ground for new applicatioto be created. Such applications are:

Automatic Answering, Thread Summarization and Spdtaring.

Automatic Answering

Large companies usually maintain email centersc@njunction with “call centers”) with
employees committed to answer incoming messagesseltmessages usually come from
company clients and partners and many times adtlressame problems and queries. Automatic

email answering is an effort to build mail centerspersonalized software that will be able to
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analyse an incoming message and then propose or sarel an applicable answer. Efforts
towards this direction have been made recently Bickel & Scheffer, 2004; Busemann,
Schmeier, & Arens, 2000; Scheffer, 2004).

Bickel and Scheffer (2004) describe methods foldng an automatic answering system
utilizing message pairs: questions and answerdurAisg that a respectable number of message

pairs is available in a repositdR={(q,,a,),...(d,.a,)}, they have proposed a number of

approaches.

The simplest one is to find the question messggevhich is most similar to a new
question message and then propose the corresponding answer messa@e the answer &
Measures and methods to calculate document sityilarie described in (Baeza-Yates &
Ribeiro-Neot, 1999).

A more sophisticated approach treats the problena agdassification task. This is
accomplished by grouping similar answers into aatieg (classeg),,...,.C,, € C, wheren<n.
The grouping of answers can be performed eithea byman expert, or more efficiently by a

clustering algorithm. For each cluster of answgrs{a,....a}, wher&k<n, a default
representative answer is automatically createdepgcting the answeg € C; which is most

similar to the centroid of the cluster. Typicalifywe have a group of vector€, ={a,,....a,} the

k
weights of the centroid vecta, are calculated asw, :%ZWH . Then, a classifier is trained
=1

on the dataseb ={(q,,C,)....,(q,,C,)} consisting of(questionclassOfAnwer) pairs. When a

new question messagearrives, the classifier outputs the predictedsckasd the representative
answer of this class is proposed as the ansveer to

In another paper (Scheffer, 2004), Scheffer isudismg how automatic email answering
could be enhanced by utilizing unlabeled data @ress called semi-supervised learning). He
experiments with transductive Support Vector Maekifdoachims, 1999) and co-training (Blum
& Mitchell, 1998). The approach is implemented in mtegrated email manager for the
Microsoft Outlook email client (Kockelkorn, Lunelgyr& Scheffer, 2003).
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Automatic Mail Organization into Folders

The growth of email usage has forced users towmags to organize archive and manage their
emails more efficiently. Many of them are organizincoming messages into separate folders.
Folders can be topic-oriented like “work”, "persihand "funny”, people-specific like “John”
and “Mary” or group-of-people-specific like “collgaes”, “family” and “friends”. Some users
are archiving their messages according to impoetaard thus maintain folders like “urgent”,
“for future reference”, “spam” etc. To achieve thisany users create some so-calleles to
classify their mail. Those are heuristic rules skeg for keywords in the message and then

taking an action like moving or copying to a faldéeleting or forwarding the message etc.

if(sender="John Smith” OR sender="Mary Smith”)
then (movelnto FAMILY)

if(body contains “call for papers”)
then{(movelnto CFP)
(forwardTo “COLLEAGUES")}

where FAMILY, and CFP are folders and COLLEAGUESigroup of people (practically a list
of addresses the user has created for mass emailifagst Email clients today, support the
creation of such rules.

What Machine Learning has to offer to this taskthe automatic classification of
incoming mail by observing past and current classions made by the user (e.g. analyzing
already existing folders or taking a current clgssiion as an example). Thus, the user does not
need to create the rules by himself. Furthermoeghime learning algorithms are able to classify
a message, taking under consideration its contedt reot only by searching for specific
keywords. This is usually achieved by combiningtisti@al and linguistic techniques. It is
extremely convenient for the user, since theresaree concepts like “messages concerning my
work” or “interesting messages” or “messages tha\Je to answer today” that cannot easily be
described with a combination of keywords. In factecent study (Ducheneaut & Belloti, 2001)
notes that most users do not use conventional fitigits not only because they find them
difficult to use, but also because they believe tia thirds of their mail volume would be

impossible to filter automatically. Moreover, tbesoncepts may change (e.g. the concept of



Email Mining 17

“interesting message”) from time to time. On thkesthand a Machine Learning algorithm can
learn to classify new messages just by silentlyenbsg past examples and can follow drift of
concepts by accepting user feedback.

A lot of research has been recorded in the fielthr@®, Koprinska, & Poon, 2003;
Cohen, 1996; Klimt & Yang, 2004; G. Manco, Masci&uffolo, & Tagarelli, 2002) and lots of
those ideas have been implemented into useful éo@d (Graham-Cumming, 2002; Ho, 2003;
Richard Segal & Kephard, 2000).

Popfile (Graham-Cumming, 2002) is a popular onlioel for classifying email. It is
written by John Graham-Cummings in Perl and itingpired by ifile (Rennie, 2000). It stands
between the mail server and client, retrieves ngess&om the server, classifies them and then
sends them to the client. Popfile starts its tragnfrom point zero and normally all messages
drop to the default inbox folder. If the user cesat bucket in popfile and then moves some
message to it then popfile will start to learn himaclassify similar messages. Users can create,
destroy or merge buckets at any time. Naturalbpfiie performs poorly in the beginning as it
only has few examples to learn from, but reporésstniowing an average classification accuracy
of 98,7% after 500 messages. Popfile implementsaaweNBayesian classifier using a bag-of-
words approach, but adding some extra handcradigdres (like the existence of html code, size
of images, email addresses in the “to:” headed fett) mainly to enhance its spam filtering
capabilities. This is because spammers use tecbsidjlge entering random text in spam
messages in order to mislead the Naive Bayes fodaissi

Another email categorization tool, SwiftFile (forryeknown as MailCat (R. Segal &
Kephard, 1999) ), an add-on to Lotus Notes, has loeweloped by IBM Research (Richard
Segal & Kephard, 2000), and is emphasizing the f@eincremental learning. With every new
message arrival, SwiftFile predicts three destomafolders. It places three buttons above the
message, in order for the user to send them quiokbne of them. SwiftFile uses a TF-IDF type
of classifier (basically a k Nearest Neighbour sifesr (Cover & Hart, 1967) using TF-IDF
weights (Sebastiani, 2002)), which is modified tgpport incremental learning and a bag-of-
words representation, using word frequencies in sags as weights. Each folddf is
represented by its centroid vector, calculated fatimessages in that folder. Similarity between

centroid vectors and the new message is calcuktddthe system proposes the three folders



Email Mining 18

with the highest similarity. The centroids of eatdlder are re-calculated after a new
classification, in order to follow potential con¢ejpift.

Other interesting software applications are EMMAo(H003), which uses multiple
classification Ripple Down Rules (Kang, ComptonPg&eston, 1995) and eMailSift (Aery &
Chakravarthy, 2004), which uses a graph basechmepproach for email classification.

There is although still some human effort involvedleciding and creating the subject-
folders for the classification. This step couldaweided by using email clustering. For example
in (Surendran et al., 2005) a personal email beowssbuilt by discovering clusters of messages
in the user’s inbox. The most suitable noun phragken selected by analysing the messages in
order to name the folder with a keyphrase thagsasentative of the folder's content. They use
TF-IDF vectors to represent the messages and thke&as algorithm for the clustering. Manco
et al. (2002) are exploring the same problem, gmtp under consideration similarity of
structured and unstructured parts of an email ngessa

Mail and Thread Summarization

Text summarization has been previously exploreéhiarmation technology literature
(Hovy & Lin, 1997; Marcu, 1997; Zechner, 1996). Timain motivation is again information
overload. Large collections of text documents (nearsicles, reviews, scientific documents,
literature) are available in the world wide webrodigital libraries. It is impossible for a reade
to find the time to read many documents and mopomtantly to adapt their content. Therefore,
new techniques are being developed in order tonzatioally extract the gist of documents. In
particular, some of those techniques embed madearaing algorithms, buildingummarizers
that at some point of the summarization proceduee able to learn from examples (Neto,
Freitas, & Kaestner, 2002).

The same need for summarization appears in electnoail. There is a certain category
of email users that receive hundreds of messagedaye Some of them are newsletters, others
are business decision-making messages from colbsagppointment arrangements etc. It would
be extremely useful for them if they could avoiddmg all of those messages and instead read
only the most important and necessary parts anddbieide if the messages demand immediate

attention. From a summary, they could also findibatnewsletter for example is interesting for
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them or not and only then read the full text. Agaiata mining techniques are explored in order
to build trainable tools for summarization.

Muresan et al. (2001) describe an email summaoizathethod that utilizes Natural
Language Processing and Machine Learning techniquesbasic steps of their method are: a)
extraction of candidate noun phrases (NPs) fromethail message, b) linguistic filtering of the
candidate NPs, such as removing common words aintgportant modifiers, and c) induction of
a model that will classify the filtered NPs int#e that are important and should be included in
the summary and those that aren't.

The last step is accomplished with the aid of maehiearning algorithms. Each
candidate NP is described using a vector of feafigech as the TF-IDF measure of the head of
the candidate NP, the length of the NP (in words @maracters) and the position of the NP. To
construct a training set, a large number of NPsaeted from several emails was manually
tagged as important or not. Experimental resultth vibecision Tree, Rule Induction and
Decision Forest learning algorithms led to severaresting conclusions, including that NPs are
better than n-grams (n consecutive words) forptirase level representation of email messages
and that linguistic filtering enhances the perfonegof Machine Learning algorithms.

The application of summarizing email threads (cosatons among two or more people
carried out by exchange of messages) has alsodjaiterest. Email threads might consist of
many email messages and it would be beneficialuter could avoid reading all of them and
instead read just the summary up to that pointhéir technical report (Lam, Rohall, Schmandt,
& Stern, 2002), Lam et al are trying to exploit éns#&ructure to improve thread summarization.
The basic idea is to identify a message as a pah @mail thread and then try to propose a
summary by extracting knowledge from the parentc€ator) messages as well. Wan and
McKeown (2004) are exploring the same problem imsifiess decision-making email threads.
They assume that in threads like these there iayavan issue-message (containing an issue-
sentence) which sets the problem or a query totthers. The other messages are supposed to be
response-messages, each one containing a resporieaee. Hence, in order to summarize the
thread, all issue and response sentences havddertidied and collected. The method proposed
to identify the issue sentence is to take all igmgssage sentences and compare them with each

response-message. Thus, the sentence that is irale 0 the response-messages is considered
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the issue-sentence. Finally, to extract the respgestences authors noticed that simply
extracting the first sentence of every responsesaggsis an effortless but effective approach.

A system for email summarization for the Spanighgleage is described in (Alonso,
Casas, Castellon, & Padro, 2004) and is availabler fdemonstration at

http://www.Isi.upc.edu/~bcasas/carpanta/demo.html.

Spam Filtering

The main goal of spam filtering is to identify asdrt out unsolicited commercial mails
(spam) from a user’'s mail stream. Spam mail (alsown as junk or bulk email) has begun as
small annoyance in the early days of email to becanmajor industry problem in the last five
years. The large amount of spam not only causedwidth (and therefore financial) problems,
but also takes up valuable time from email users i to separate and delete many unsolicited
messages every day. Moreover, many spam messagdsdein pornographic content
inappropriate for children.

To defeat spam, the information technology comnyubégun constructing spam filters
in order to delete automatically such unwanted nmog messages. There are many different
strategies proposed and implemented in the bajténst spam. We could organize them into
two general groups:

Technical or Non-Statistical Approaché&hich includes white and black lists, digital

signatures and handcrafted rules.
Machine Learning or Statistical Approach&¥hich includes statistical linguistic

analysis and machine learning algorithms.
Spam filtering techniques could be additionallyasriged into two other categories:

Server based solutiong/here messages are filtered on the ISP’s maikser

Client based solutiondVhere messages are categorized on the user’s tempu

While the obvious advantage of the first categsrthat spam messages never reach the client’s
computer, server based filters are not always petged and the user must check periodically
the junk folder on the server, in order to seehdré are any misclassified messages. Many
different machine learning classifiers have beeatetkin the bibliography. A not-complete list
can be seen below.

Naive Bayes (Sahami et al., 1998)
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Memory-Based Approaches (Sakkis et al., 2003)

Boosting Techniques (Carreras & Marquez, 2001)

Case-Based Reasoning (P. Cunningham, N. Nowlah,[Zlany, & M. Haahr, 2003)
Support Vector Machines (Drucker, Vapnik, & We, 299

Latent Semantic Indexing (Gee, 2003)

Stacking Classifiers (Sakkis et al., 2001)

Direct comparison of those methods is difficult &aese of the use of different corpora
and optimization of the algorithms. Developers, begr, have shown their preference to the
Naive Bayes classifier mainly because of its siaiyij flexibility, computational cost and decent
performanc&® . Nevertheless, advanced high-accurate softwilte, $pamAssasfn usually
combines techniques from both categories: Staaisticd Non-Statistical.

To some extent, the task of spam filtering is samib text and email classification.
However, there are some characteristics that disishh spam filtering from other classification
tasks.

In spam filtering, classification mistakes are afitof equal importance. To classify a
legitimate email as spam is a much more severeak@shan letting a non-legitimate message
pass the filter. Thus, we should make sure thamnagk a message as spam only if the classifier
predicts so with high confidence. In Naive Bayaseicample classification of an email message

e as spam should be made, if and onlfP{e= SPAM) >t, wheret is a threshold close to 1

(e.g. 0.98). The same applies in the evaluatiothef algorithm. One false positive mistake
should be counted as, for exam@dep false negative mistakes.

Another distinction is that in spam filtering weositd probably use extra features, like
information from headers, morphological charactessor punctuation marks, which in fact are
great indicators, as they exist in abundance imspeessages. Technical approaches like black
and white lists are maybe unavoidable as spamnated to input some random “innocent” text
in messages in order to mislead the classifier.ithdally, classes in spam filtering are far more
heterogeneous in content than a typical text orilectassification problem, meaning that there
are a lot of different types of spam messages dotlad different types of legitimate messages, a
fact that makes the distinction even more difficbftoreover, spammers tend to change the
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characteristics of spam messages and thus thefoegttremental learning is more obvious in
this case.

Although some of the above mentioned filters amarkably accurate (some of them
reaching 99% accuracy with only a few false posgjvthe problem is still remaining. Two
conferences are taking place every Yegathering professionals and academics from &l the

world introducing and discussing new ideas anddsen

Other Interesting Applications

Apart from the applications mentioned before, theme still some other worth
mentioning. For example Lewis (1997) mentions thate might be a need to identify if a mail
belongs to a thread without the use of structumarmation inserted by email clients (e.g. the
well known “RE:” prefix). Thus, the use of a TF-IDdfassifier, using similarity measures is
proposed in order to find messages belonging tedinge thread.

Author identification is another interestingpéipation explored in (Vel et al., 2001).
Email evidence can be central in cases of sexoatassment or racial vilification, threats,
blackmailing and so on. In these cases, the samileattempt to hide his/her true identity in
order to avoid detection. For example, the sesdaddress can be hidden by using an
anonymous mail server or the email's contents aadidr information can be modified in an
attempt to hide the true identity of theser. Although author identification has been
investigated before, email author identificatiospiiays again some unique characteristics. The
text is significantly shorter, but we could at game time exploit information from headers, like
attachments, timestamps etc. Particularly the astbbthis work use a set of Style Marker and
Structural features like: Number of blank lineger@mge sentence length, average word length,
vocabulary richness, existence of a greeting oramwell acknowledgement, number of
attachments etc. Finally, for the identificationtbé email author they use an SVM classifier.
Same authors have experimented with the identificadf the email author’'s gender (Corney et
al., 2002).
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CONCLUSIONSAND FUTURE TRENDS

Email is now extremely important for interpersor@mmunication and professional life.
Therefore its problems demand immediate attentiwh efficient solutions. What Data Mining
and Machine Learning have to offer to the clartima of email overload is intelligent
techniques for the automatization of many email age@ment tasks. Email categorization into
folders, email answering and summarization, spéterifig, are only a few representatives. All
of these applications have been explored repeatedhe literature with very promising results,
but spam filtering seems to gather the greateniie of all, probably because of its negative
financial impact. It is worth noticing though, thatany of these applications are extremely
demanding in terms of accuracy mainly because nmition in email data can be significantly
important. Therefore there is still space and rfeednprovement in performance in many of the
applications mentioned above.

Email Structure is very difficult to be generatednii plain text, and therefore we treat
email, almost always as unstructured text. On therdhand HTML, which until now is removed
in the preprocessing step, could help to give aleast semi-structured form to the email.
Knowledge discovery from structured informationm®re convenient and maybe more effort
should be made in this direction. For example waldtceransform HTML messages into XML
using XSL-T patterns.

A new idea that seems promising is Semantic Edmaparallel with Semantic Web, Email
could be enriched with meta-tags in order to dbschetter the information included in the
message. As discussed in (McDowell, Etzioni, Hale§y Levy, 2004), applications like
Information Dissemination, Event Planning, Reporen€ration and Email Auctions /
Giveaways could be achieved with the use of thegBdimEmail.

Email mining raised new difficulties and challendesthe text mining community. New
solutions had to be proposed in already discussedsadue to email data peculiarity.
Additionally, domain-specific problems provoked tbhevelopment of new applications like
spam filtering, email answering and thread sumraéon.

While effective solutions have been proposed totrap®il problems, not all of them have
been implemented in popular email clients. In facth the exception of spam filtering which is

now integrated in most commercial clients, no otqglications have been used widely from the
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average user. There is therefore an obvious nemdpilement those methods and integrate them

into useful and accurate software which will lebple take back control of their mailboxes.
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Endnotes

! http://www.idc.com/home.jhtml

2 Microsoft Outlook: http://www.microsoft.com/outl&b

% Mozilla ThunderBird: http://www.mozilla.org/prodtséthunderbird/

4 Spambayes ( http://spambayes.sourceforge.net)

® Popfile (http://popfile.sourceforge.net)

® The Apache Spam Assassin Project (http://spamassasrceforge.net

" Spam Conferencéittp://spamconference.ordZonference on Email and Anti-Spam:
http://www.ceas.cc/




