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Machine Learning for Adaptive Planning 

Abstract 

This chapter is concerned with the enhancement of planning systems using techniques from 

Machine Learning in order to automatically configure their planning parameters according to the 

morphology of the problem in hand. It presents two different adaptive systems that set the 

planning parameters of a highly adjustable planner based on measurable characteristics of the 

problem instance. The planners have acquired their knowledge from a large data set produced by 

results from experiments on many problems from various domains. The first planner is a rule-

based system that employs propositional rule learning to induce knowledge that suggests 

effective configuration of planning parameters based on the problem's characteristics. The second 

planner employs instance-based learning in order to find problems with similar structure and 

adopt the planner configuration that has proved in the past to be effective on these problems. The 

validity of the two adaptive systems is assessed through experimental results that demonstrate the 

boost in performance in problems of both known and unknown domains. Comparative 

experimental results for the two planning systems are presented along with a discussion of their 

advantages and disadvantages. 

 

INTRODUCTION 

Domain independent heuristic planning relies on ingenious techniques, such as heuristics and 

search strategies, to improve the execution speed of planning systems and the quality of their 

solutions in arbitrary planning problems. However, no single technique has yet proved to be the 

best for all kinds of problems. Many modern planning systems incorporate more than one such 

optimizing techniques in order to capture the peculiarities of a wider range of problems. 



 

However, to achieve the optimum performance these planners require manual fine-tuning of their 

run-time parameters.  

Few attempts have been made to explain which are the specific dynamics of a planning 

problem that favor a specific planning technique and even more, which is the best setup for a 

planning system given the characteristics of the planning problem. This kind of knowledge would 

clearly assist the planning community in producing flexible systems that could automatically 

adapt themselves to each problem, achieving best performance. 

This chapter focuses on the enhancement of Planning Systems with Machine Learning 

techniques in the direction of developing Adaptive Planning Systems that can configure their 

planning parameters automatically in order to effectively solve each different Planning problem. 

More specifically, it presents two different Machine Learning approaches for Adaptive Planning: 

a) Rule learning and b) Instance-based learning. Both approaches are described in detail and their 

performance is assessed through several experimental results that exhibit different aspects of the 

learning process. In addition, the chapter provides an extended overview of past approaches on 

combining Machine Learning and Automated Planning, two of the most important areas of 

Artificial Intelligence. 

The rest of the chapter is organized as follows: The next section reviews related work on 

combining learning and planning and discusses the adopted learning techniques. Then the 

problem of the automatic configuration of planning systems is analyzed. The following two 

sections present the two learning approaches that have been used for the adaptive systems and 

present experimental results that compare them and show the gain in the performance over the 

initial planner. Finally, the last section discusses several issues concerning the two learning 

approaches, concludes the chapter and poses future research directions.  



 

MACHINE LEARNING FOR AUTOMATED PLANNING 

Machine Learning is the area of Artificial Intelligence concerned with the design of computer 

programs that improve at a category of tasks with experience. It is a very broad field with many 

learning methodologies and numerous algorithms, which have been extensively exploited in the 

past to support Planning systems in many ways. Since it is a usual case for seemingly different 

planning problems to present similarities in their structure, it is reasonable enough to believe that 

planning strategies that have been successfully applied to some problems in the past will be also 

effective for similar problems in the future. Learning can assist planning systems in three ways: 

a) to learn domain knowledge, b) to learn control knowledge and c) to learn optimization 

knowledge.  

Domain knowledge is utilized by planners in pre-processing phases in order to either 

modify the description of the problem in a way that it will make it easier for solving or make the 

appropriate adjustments to the planner to best attack the problem. Control knowledge can be 

utilized during search in order to either solve the problem faster or produce better plans. For 

example, the knowledge extracted from past examples can be used to refine the heuristic 

functions or create a guide for pruning non-promising branches. Most work on combining 

machine learning and planning in the past has focused on learning control knowledge since it is 

crucial for planners to have an informative guide during search. Finally, optimization knowledge 

is utilized after the generation of an initial plan, in order to transform it in a new one that 

optimizes certain criteria, e.g. number of steps or usage of resources.  

Learning Domain Knowledge 

OBSERVER (Wang, 1996) is a learning module built on top of the PRODIGY system that uses 

the hints and past knowledge of experts in order to extract and refine the full description of the 



 

operators for a new domain. The description of the operators include negative, positive and 

conditional preconditions and effects. OBSERVER uses a multistrategy learning technique that 

combines learning by observing and refining through practice (learning by doing). Knoblock 

(1990) presented another learning module for PRODIGY, called ALPINE, that learns abstraction 

hierarchies and thus reduces the required search. ALPINE classifies the literals of the given 

planning problem, abstracts them and performs an analysis on the domain to aid ordering and 

combination of the abstractions. 

MULTI-TAC (Minton, 1996) is a learning system that automatically fine tunes itself in 

order to synthesize the most appropriate constraint satisfaction program to solve  a problem 

utilizing a library of heuristics and generic algorithms. The methodology we followed in this 

chapter for one of the adaptive systems (HAPRC) presents some similarities with MULTI-TAC, 

since both approaches learn models that associate problem characteristics with the most 

appropriate setups for their solvers. The learned model of MULTI-TAC is a number of rules that 

are extracted using two complementary methods. The first one is analytic and employs meta-level 

theories in order to reason about the constraints, while the second one, which is based on the 

generate–and–test schema, extracts all possible rules and uses test problems in order to decide 

about their quality.  

One of the few past approaches towards the direction of adaptive planning is the BUS 

system (Howe & Dahlman, 1993; Howe et al, 1999). BUS runs six state-of-the-art planners, 

namely STAN, IPP, SGP, BlackBox, UCPOP and PRODIGY, using a round-robin schema, until 

one of them finds a solution. BUS is adaptive in the sense of dynamically deciding the ordering 

of the six planners and the duration of the time slices based on the values of five problem 

characteristics and some rules extracted from the statistical analysis of past runs. The system 



 

achieved more stable behaviour than all the individual planners but it was not as fast as one may 

have expected. 

The authors have worked during the past few years in exploiting Machine Learning 

techniques for Adaptive Planning and have developed two systems that are described in detail 

later in this chapter. The first system, called HAPRC (Vrakas et al, 2003a ; 2003b), is capable of 

automatically fine-tuning its planning parameters based on the morphology of the problem in 

hand. The tuning of HAPRC is performed by a rule system, the knowledge of which has been 

induced through the application of a classification algorithm over a large dataset containing 

performance data of past executions of  HAP (Highly Adjustable Planner). The second system, 

called HAPNN (Tsoumakas et al, 2003), adopts a variation of the k Nearest Neighbour machine 

learning algorithm that enables the incremental enrichment of its knowledge and allows users to 

specify their level of importance on the criteria of plan quality and planning speed. 

 Learning Control Knowledge 

The history of learning control knowledge for guiding planning systems, sometimes called 

speedup learning, dates back to the early 70’s. The STRIPS planning system was soon enhanced 

with the MACROPS learning method (Fikes et. al, 1972) that analyzed past experience from 

solved problems in order to infer successful combinations of action sequences (macro-operators) 

and general conditions for their application. MACROPS was in fact the seed for a whole new 

learning methodology, called Explanation-Based Learning (EBL).  

EBL belongs to the family of analytical learning methods that use prior knowledge and 

deductive reasoning to enhance the information provided by training examples. Although EBL 

encompasses a wide variety of methods, the main underlying principle is the same: The use of 

prior knowledge to analyze, or explain each training example in order to infer which example 



 

features and constraints are relevant and which irrelevant to the learning task under consideration. 

This background knowledge must be correct and sufficient for EBL to generalize accurately. 

Planning problems offer such a correct and complete domain theory that can be readily used as 

prior knowledge in EBL systems. This apparently explains the very strong relationship of EBL 

and planning, as the largest scale attempts to apply EBL have addressed the problem of learning 

to control search. An overview of EBL computer programs and perspectives can be found in 

(Ellman, 1989).  

The PRODIGY architecture (Carbonell et al, 1991; Veloso et al, 1995) was the main 

representative of control-knowledge learning systems. This architecture, supported by various 

learning modules, focuses on learning the necessary knowledge (rules) that guides a planner to 

decide what action to take next during plan execution. The system mainly uses EBL to explain 

fails and successes and generalize the knowledge in control rules that can be utilized in the future 

in order to select, reject or prefer choices. Since the overhead of testing the applicability of rules 

was quite large (utility problem) the system also adopted a mixed criterion of usability and cost 

for each rule in order to discard some of them and refine the rest. The integration of EBL into 

PRODIGY is detailed in (Minton, 1988).  

Borrajo and Veloso (1996) developed HAMLET, another system combining planning and 

learning that was built on top of PRODIGY. HAMLET combines EBL and inductive learning in 

order to incrementally learn through experience. The main aspects responsible for the efficiency 

of the system were: the lazy explanation of successes, the incremental refinement of acquired 

knowledge and the lazy learning to override only the default behavior of the planner.  

Another learning approach that has been applied on top of PRODIGY, is the STATIC 

algorithm (Etzioni, 1993), which used Partial Evaluation to automatically extract search-control 

knowledge from training examples. Partial Evaluation, a kind of program optimization method 



 

used for PROLOG programs, bares strong resemblance to EBL. A discussion of their relationship 

is provided in (van Harmelen & Bundy, 1988). 

DYNA-Q (Sutton, 1990) followed a Reinforcement Learning approach (Sutton & Barto, 

1998). Reinforcement learning is learning what to do – how to map situations to actions – so as to 

maximize a numerical reward signal. The learner is not told which actions to take, as in most 

forms of machine learning, but instead must discover which actions yield the most reward by 

trying them. DYNA-Q employed the Q-learning method, in order to accompany each pair of 

state-action with a reward (Q-value). The rewards maintained by DYNA-Q are incrementally 

updated as new problems are faced and are utilized during search as a means of heuristic 

function. The main problems faced by this approach were the very large memory requirements 

and the amount of experience needed for solving non-trivial problems. 

A more recent approach of learning control knowledge for domain independent planning 

was presented by Martin and Geffner (2000). They focus on learning generalized policies that 

serve as heuristic functions, mapping states and goals into actions. In order to represent their 

policies they adopt a concept language, which allows the inference of more accurate models 

using less training examples. The learning approach followed in this project was a variation of 

Rivest’s Decision Lists (1987), which is actually a generalization of other concept representation 

techniques, such as decision trees. 

Eureka (Jones & Langley, 1995) adopts a flexible means-ends analysis for planning and is 

equiped with a learning module that performs Analogical Reasoning over stored solutions. The 

learning approach of Analogical Reasoning is based on the assumption that if two situations are 

known to be similar in some respects, it is likely that they will be similar in others. The standard 

computational model of reasoning by analogy defines the source of an analogy to be a problem 

solution, example, or theory that is relatively well understood. The target is not completely 



 

understood. Analogy constructs a mapping between corresponding elements of the target and 

source. Analogical inferences extend this mapping to new elements of the target domain.  

Eureka, actually maintains a long-term semantic network which stores representations of 

past situations along with the operators that led to them. The semantic network is constantly 

modified by either adding new experiences or updating the strength of the existing knowledge. 

Daedalus (Langley & Allen, 1993) is a similar system that uses a hierarchy of probabilistic 

concepts in order to summarize its knowledge. The learning module of Daedalus is quite complex 

and in a sense it unifies a large number of learning techniques including Decision Tree 

Construction, Rule Induction and EBL. 

Another example of utilizing learning techniques for inferring control knowledge for 

automated planning systems is the family of planners that employ Case-based Reasoning 

(Kolodner, 1993). Case-based Eeasoning (CBR) is an instance-based learning method that deals 

with instances that are usually described by rich relational representations. Such instances are 

often called cases. In contrast to instance-based methods that perform a statistical computation of 

a distance metric based on numerical values, CBR systems must compute a complex similarity 

measure. Another distinctive feature of CBR is that the output for a new case might involve the 

combination of the output of several retrieved cases that match the description of the new case. 

The combination of past outputs might involve the employment of knowledge-based reasoning 

due to the rich representation of cases.  

CBR is actually very related to analogical reasoning. Analogical reasoning provides the 

mechanism for mapping  the output of an old case to an output for a new case. Cased-based 

reasoning was based on analogical reasoning but also provided a complete framework for dealing 

with issues like the representation of cases, strategies for organizing a memory of prior cases, 

retrieval of prior cases and the use of prior cases for dealing with new cases. 



 

Two known case-based planning systems are CHEF (Hammond, 1989) and PRIAR 

(Kambhampati & Hendler, 1992). CHEF is one of the earliest case-based planners and used the 

Szechwan cooking as the application domain. CHEF used memory structures and indexes in 

order to store successful plans, failed plans and repairs among with general conditions allowing it 

to reuse past experience. PRIAR is a more general case-based system for plan modification and 

reuse that uses hierarchical non-linear planning, allowing abstraction and least-commitment. 

Learning Optimization Knowledge 

Ambite, Knoblock and Minton (2000) have presented an approach for learning Plan Rewriting 

Rules that can be utilized along with local search, in order to improve easy-to-generate low 

quality plans. In order to learn the rules, they obtain an optimal and a non-optimal solution for 

each problem in a training set, transform the solutions into graphs, and then extract and 

generalize the differences between each pair of graphs (optimal and non-optimal) and form rules 

in a manner similar to EBL.  

IMPROVE (1998), deals with the improvement of large probabilistic plans in order to 

increase their probability of being successfully carried out by the executor. IMPROVE uses a 

simulator in order to obtain traces of the execution of large plans and then feeds these traces to a 

sequential discovery data mining algorithm in order to extract patterns that are common in 

failures but not in successes. Qualitative reasoning (Kuipers, 1994) is then applied in order to 

improve the plans.  

Summary and Further Reading 

Table 1 summarizes the 18 approaches that were presented in this Section. It shows the name of 

each system, the type of knowledge that was acquired, the way this knowledge was utilized and 

the learning techniques that were used for inducing it. Further information on the topic of 



 

Machine Learning for Automated Planning can be found in the extended survey of Zimmerman 

and Kambhampati (2003) and also in (Gopal, 2000). 

System Knowledge Utilization Learning Techniques 
OBSERVER Domain Refine  problem definition Learning by Observing, Refining via Practice 
MULTI-TAC Domain Configure System Meta-Level Theories, Generate and Test  
ALPINE Domain Abstract the problem Domain Analysis, Abstraction 
BUS Domain Configure System Statistical Analysis 
HAPRC  Domain Configure System Classification Rules 
HAPNN Domain Configure System kNN 
PRODIGY Control Search guide EBL 
HAMLET Control Search guide EBL, Rule Learning 
STATIC Control Search guide Partial Evaluation 
STRIPS Control Macro-operators EBL 
Generalized Policies  Control Search guide Decision Lists 
DYNA-Q Control Heuristic  Reinforcement Learning 
CHEF Control Canned plans CBR 
PRIAR Control Canned plans CBR 
EUREKA Control Search guide Analogical Reasoning 
DAEDALUS Control Search guide Analogical Reasoning, Conceptual Clustering 
Plan Rewriting Optimization Reduce plan size EBL 
IMPROVE Optimization Improve plan applicability  Sequential Patterns 

Table 1. System name, type of knowledge, utilization and learning techniques  

THE PLANNING PROBLEM 

The rest of the chapter addresses learning domain knowledge for the automatic configuration of 

planning systems. The aim of this approach is to build an adaptive planning system that can 

automatically fine-tune its parameters based on the morphology of the problem in hand. This is a 

very important feature for planning systems, since it combines the efficiency of customized 

solutions with the generality of domain independent problem solving. 

There are two main issues for investigation: a) what sort of customization should be 

performed on a domain-independent planner and b) how can the morphology of a planning 

problem be captured and quantified. These are addressed in the remaining of this section. 

The Planning System 

The planning system used as a test bed for our research is HAP (Highly Adjustable Planner), a 

domain-independent, state-space heuristic planning system, which can be customized through a 



 

number of parameters. HAP is a general planning platform which integrates the search modules 

of the BP planner (Vrakas & Vlahavas, 2001), the heuristics of AcE (Vrakas & Vlahavas, 2002) 

and several techniques for speeding up the planning process. Apart from the selection of the 

planning direction, which is the most important feature of HAP, the user can also set the values 

of 6 other parameters that mainly affect the search strategy and the heuristic function. The seven 

parameters along with their value sets are outlined in Table 2. 

Name Value Set 
Direction {0,1} 
Heuristic {1,2,3} 
Weights (w1 and w2) {0,1,2,3} 
Penalty {10,100,500} 
Agenda {10,100,1000} 
Equal_estimation {0,1} 
Remove {0,1} 

Table 2 The value sets for planning parameters 

HAP is capable of planning in both directions (progression and regression). The system is 

quite symmetric and for each critical part of the planner, e.g. calculation of mutexes, discovery of 

goal orderings, computation of the heuristic, search strategies etc., there are implementations for 

both directions. The search Direction is the first adjustable parameter of HAP with the following 

values: a) 0 (Regression or Backward chaining) and b) 1 (Progression or Forward chaining). The 

planning direction is a very important factor for the efficiency of a planning system, since the 

best direction strongly depends on the morphology of the problem in hand and there is no easy 

answer which direction should be preferred. 

The HAP system employs the heuristic function of the AcE planner, as well as two 

variations. Heuristic functions are implemented for both planning directions during the pre-

planning phase by performing a relaxed search in the direction opposite to the one used in the 

search phase. The heuristic function computes estimations for the distances of all grounded 



 

actions of the problem. The original heuristic function of the AcE planning system, is defined by 

the following formula: 

( ( ))

1, ( )
( )

1 ( ), ( )
X MPS prec A

if prec A I
dist A

dist X if prec A I
∈

  ⊆
=

+   ⊄



 ∑

  

where A is the action under evaluation, I is the initial state of the problem and MPS(S) is a 

function returning a set of actions, with near minimum accumulated cost, achieving state S. The 

algorithm of MPS is outlined in Figure 1. 

 Function MPS(S)  
Input: a set of facts S 
Output: a set of actions achieving S with near mini mum accumulated dist 
 

Set G = ∅ 

S = S – S ∩ I 

Repeat 
 f  is the first fact in S 
 Let act ( f ) be the set of actions achieving f 
 for each action A in act ( f ) do 

  val ( A) = dist ( A) / |add ( A)  ∩ S| 
 

Let A'  be an action in act ( f ) that minimizes val 

Set G = G ∪ A' 

 Set S = S – add ( A' ) ∩ S 

Until S = ∅ 

Return G 
  

Figure 1. Function MPS(S) 

Apart from the original AcE heuristic function described above, HAP embodies two more 

fined-grained variations. The general idea behind these variations lies in the fact that when we 

select a set of actions in order to achieve the preconditions of an action A, we also achieve several 

other facts (denoted as implied(A)), which are not mutually exclusive with the preconditions of A. 

Supposing that this set of actions was chosen in the plan before A, then after the application of A, 

the facts in implied(A) would exist in the new state, along with the ones in the add-list of A. 



 

Taking all these into account, we produce a new list of facts for each action (named 

enriched_add) which is the union of the add-list and the implied list of this action.  

The first variation of the AcE heuristic function uses the enriched instead of the 

traditional add-list in the MPS function in the second part of the function that updates state S. So 

the command ( ')Set S S add A S= − ∩  becomes _ ( ')Set S S enriched add A S= − ∩ . 

The second variation pushes the above ideas one step further. The enriched_add list is 

also used in the first part of the MPS function, which ranks the candidate actions. So, it 

additionally alters the command val(A)=dist(A)/| ( )add A S∩ | to  

val(A)=dist(A)/ | _ ( )enriched add A S∩ |. 

The user may select the heuristic function to be used by the planner by configuring the 

Heuristic parameter. The acceptable values are three: a) 1 for the AcE heuristic, b) 2 for the first 

variation and c) 3 for the second variation. 

Concerning search, HAP adopts a weighted A* strategy with two independent weights: w1 

for the estimated cost for reaching the final state and w2 for the accumulated cost of reaching the 

current state from the starting state (initial or goals depending on the selected direction). In this 

work we have used four different assignments for the variable weights which correspond to 

different assignments for w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3, w2 =1), c) 2 (w1 =2, w2 =1) 

and d) 3 (w1 =1, w2 =1). By selecting different value sets for the weights one can emulate a large 

number of search strategies such as Best-First-Search (w1 =1, w2 =0) or Breadth-First-Search (w1 

=0, w2 =1). It is known that although certain search strategies perform better in general, the ideal 

treatment is to select the strategy which bests suits the morphology of the problem in hand. 

The HAP system embodies two fact-ordering techniques (one for the initial state I and 

another one for the goals G), which try to find strong orderings in which the facts (of either I or 



 

G) should be achieved. In order to find these orderings, the techniques make extensive use of 

mutual exclusions between facts, performing a limited search. These orderings are utilized during 

normal search phase, in order to identify possible violations. For each violation contained in a 

state, the estimated heuristic value of this state is increased by Penalty, a constant number 

supplied by the user. In this work we have tested the HAP system with three different values for 

Penalty: a) 10, b) 100 and c) 500. The reason for not being very strict with states containing 

violations of orderings, is the fact that sometimes the only path to the solution is through these 

states. 

The HAP system allows the user to set an upper limit in the number of states in the 

planning agenda. This enables the planner to handle very large problems, since the memory 

requirements will not grow exponentially with the size of the problem. However, in order to keep 

a constant number of states in the agenda, the algorithm prunes branches, which are less likely to 

lead to a solution, and thus the algorithm cannot guarantee completeness. Therefore, it is obvious 

that the size of the planning agenda significantly affects the search strategy. For example, if we 

set Agenda to 1 and w2 to 0, the search algorithm becomes pure Hill-Climbing, while by setting 

Agenda to larger values, w1 to 1 and w2 to 1 the search algorithm becomes A*. Generally, by 

increasing the size of the agenda we reduce the risk of not finding a solution, while by reducing 

the size of the agenda the search algorithm becomes faster and we ensure that the planner will not 

run out of memory. In this work we have used three different settings for the size of the agenda: 

a) 10, b) 100 and c) 1000. 

Another parameter of HAP is Equal_estimation that defines the way in which states with 

the same estimated distances are treated. If Equal_estimation is set to 0 then when two states with 

the same value in the heuristic function exist, the one with the largest distance from the starting 



 

state (number of actions applied so far) is preferred. If Equal_estimation is set to 1, then the 

search strategy will prefer the state that is closer to the starting state. 

HAP also embodies a technique for simplifying the definition of the current sub-problem 

(current state and goals) during the search phase. This technique eliminates from the definition of 

the sub-problem all the goals that: a) have already been achieved in the current state and b) do not 

interfere with the achievement of the remaining goals. In order to do this, the technique performs 

a dependency analysis on the goals of the problem off-line, before the search process. Although 

the technique is very useful in general, the dependency analysis is not complete. In other words, 

there are cases where an already achieved sub-goal should be temporarily destroyed in order to 

continue with the achievement of the rest of the goals. Therefore, by removing this fact from the 

current state the algorithm may risk completeness. The parameter Remove can be used to turn on 

(value 1) or off (value 0) this feature of the planning system. 

The parameters presented above are specific to the HAP system. However, the 

methodology presented in this chapter is general enough and can be applied to other systems as 

well. Most of the modern planning systems support or can be modified to support all or some of 

the parameterized aspects presented in this section. For example, there are systems such as the 

progression planner HSP (Bonet et. al, 1997) that were accompanied by versions working in the 

opposite directions; HSP-R (Bonet & Geffner, 1999) is a regression planner based on HSP. 

Moreover, most of the planning systems presented during the last years can be customized 

through their own set of parameters. For example, the GRT planning system (Refanidis & 

Vlahavas, 2001) allows the user to customize the search strategy (Best-first or Hill-climbing) and 

to select how the goals of the problem are enriched (this affects the heuristic function). LPG 

(Gerevini et al, 2003) can be customized through a large number of planning parameters and 

could also be augmented using the proposed methodology. The user may select options such as 



 

the heuristic function (there are two available), the search strategy, the number of restarts, the 

depth of the search, the way mutexes are calculated and others. The MIPS system (Edelkamp & 

Helmert, 2001) also allows some customization, since it uses a weighted A* search strategy, the 

weights of which can be set by the user, in a manner similar to HAP. Furthermore, the user can 

also set the optimization level. 

Quantifying the structure of planning problems 

Selecting a set of numerical attributes that represent the dynamics of problems and domains is 

probably the most important task in the process of building an adaptive planning system. These 

attributes should be able to group problems with similar structure and discriminate uneven ones. 

Moreover, these attributes should clearly influence specific choices for the values of the available 

planning parameters. Therefore, their selection strongly depends on the underlying planning 

system. 

The result of a theoretical analysis on a) the morphology of problems, b) the way this is 

expressed through the PDDL language and c) the technology of the HAP planning system, was a 

set of 35 measurable characteristics that are presented in Table 3. In Table 3, h(I) refers to the 

number of steps needed to reach I (initial state) by regressing the goals, as estimated by the 

backward heuristic function. Similarly, h(G) refers to the number of steps needed to reach the 

goals by progressing the initial state, estimated by the forward heuristic function. 

Our main concern was to select simple attributes that their values are easily calculated and 

not complex attributes that would cause a large overhead in the total planning time. Therefore, 

most of the attributes come directly from the PDDL input files and their values can be calculated 

during the standard parsing process. We have also included a small number of attributes closely 

related to specific features of the HAP planning system, such as the heuristics or the fact-ordering 



 

techniques. In order to calculate the values of these attributes, the system must perform a limited 

search. However, the overhead is negligible compared to the total planning time.  

Name Description 
A1 Percentage of dynamic facts in Initial state over total dynamic facts 
A2 Percentage of static facts 
A3 Percentage of goal facts over total dynamic facts 
A4 Ratio between dynamic facts in Initial state and goal facts 
A5 Average number of actions per dynamic fact 
A6 Average number of facts per predicate 
A7 Standard deviation of the number of facts per predicate 
A8 Average number of actions per operator 
A9 Standard deviation of the number of actions per operator 
A10 Average number of mutexes per fact 
A11 Standard deviation of the number of mutexes per fact 
A12 Average number of actions requiring a fact 
A13 Standard deviation of the number of actions requiring a fact 
A14 Average number of actions adding a fact 
A15 Standard deviation of the number of actions adding a fact 
A16 Average number of actions deleting a fact 
A17 Standard deviation of the number of actions deleting a fact 
A18 Average ratio between the number of actions adding a fact and those deleting it 
A19 Average number of facts per object 
A20 Average number of actions per object 
A21 Average number of objects per object class 
A22 Standard deviation of the number of objects per object class 
A23 Ratio between the actions requiring an initial fact and those adding a goal (Relaxed branching factors) 
A24 Ratio between the branching factors for the two directions 
A25 h(I)/h(G) [1st heuristic] - h(I)/h(G) [2nd heuristic] 
A26 h(I)/h(G) [1st heuristic] - h(I)/h(G) [3rd heuristic] 
A27 h(I)/h(G) [2nd heuristic] - h(I)/h(G) [3rd heuristic] 
A28 Average number of goal orderings per goal 
A29 Average number of initial orderings per initial fact 
A30 Average distance of actions / h(G) [forward direction] 
A31 Average distance of actions / h(I) [backward direction] 
A32 a30/a31 
A33 Percentage of standard deviation of the distance of actions over the average distance of actions [Forward 

direction] 
A34 Percentage of standard deviation of the distance of actions over the average distance of actions [Backward 

direction] 
A35 Heuristics deviation [a33/a34] 

Table 3. Problem characteristics 

A second concern was the fact that the attributes should be general enough to be applied 

to all domains. Furthermore, their values should not largely depend on the size of the problem, 

otherwise the knowledge learned from easy problems can not be efficiently applied to difficult 



 

ones. For example, instead of using the number of mutexes (mutual exclusions between facts) in 

the problem, which is an attribute that strongly depends on the size of the problem (larger 

problems tend to have more mutexes), we divide it by the total number of dynamic facts (attribute 

A10) and this attribute (mutex density) identifies the complexity of the problem without taking 

into account whether it is a large problem or not. This is a general solution followed in all 

situations where a problem attribute depends nearly linearly on the size of the problem. 

The attributes can be classified in three categories: The first category (attributes A01-A9, 

A12-A24) refer to simple and easily measured characteristics of planning problems that source 

directly from the input files (PDDL). The second category (attributes A10, A11, A28, A29) 

consists of more sophisticated features of modern planners, such as mutexes or orderings 

(between goals and initial facts). The last category (attributes A25-A27, A30-A35) contains 

attributes that can be instantiated only after the calculation of the heuristic functions and refer to 

them.  

The attributes presented above aim at capturing the morphology of problems expressed in 

a quantifiable way. The most interesting aspects of planning problems according to this attribute 

set are: a) the size of the problem, which mainly refers to the dimensions of the search space, b) 

the complexity of the problem, c) the directionality of the problem that indicates the most 

appropriate search direction, and d) the heuristic that best suits the problem.  

The first two categories, namely the size and the complexity, are general aspects of planning 

problems. The directionality is also a general aspect of planning problems that is additionally, of 

great importance to HAP, due to its bi-directional capabilities. The last category depends strongly 

on the HAP planning system, concerning the suitability of the heuristic functions for the problem 

in hand. Although the four aspects that the selection of attributes was based on are not enough to 

completely represent any given planning problem, they form a non trivial set that one can base 



 

the setup of the planning parameters of HAP. Table 4 sketches the relation between the four 

problem aspects described above and the 35 problem attributes adopted by this work. 

Attribute Size Complexity Directionality Heuristics 
A1 •    
A2 • •   
A3 •    
A4 •  •  
A5 • •   
A6 •    
A7 • •   
A8 •    
A9 • •   
A10  •  • 
A11  •  • 
A12  •   
A13  •   
A14  •   
A15  •   
A16  •   
A17  •   
A18  • •  
A19 • •   
A20 • •   
A21  •   
A22  •   
A23  • •  
A24   •  
A25   • • 
A26   • • 
A27   • • 
A28  • •  
A29  • •  
A30    • 
A31    • 
A32   • • 
A33  • • • 
A34  • • • 
A35  • • • 

Table 4. Relation between problem aspects and attributes 

LEARNING APPROACHES 

The aim of the application of learning techniques in planning is to find the hidden dependencies 

among the problem characteristics and the planning parameters. More specifically, we are 

interested in finding those combinations of problem attributes and planning parameters that 

guarantee good performance of the system. One way to do this is by experimenting with all 



 

possible combinations of the values of 35 problem attributes and the 7 planning parameters and 

then process the collected data in order to learn from it. However, this is not tractable since most 

of the problem attributes have continuous value ranges and even by discretizing them it would 

require a tremendous number of value-combinations. Moreover, it would not be possible to find 

or create enough planning problems to cover all the cases (value combinations of attributes). 

One solution to the problem presented above is to select a relatively large number of 

problems, uniformly distributed in a significant number of domains covering as many aspects of 

planning as possible. Then experiment with these problems, called training set, and all the 

possible setups of the planning system (864 in the case of HAP), record all the data (problem 

attributes, planner configuration and the results in terms of planning time and plan length) and try 

to learn from that. It is obvious that the selection of problems for the training set is the second 

crucial part of the whole process. In order to avoid the over fitting and the disorientation of the 

learned model the training set must be significantly large and uniformly distributed over a large 

and representative set of different domains. 

After the collection of the data there are two important stages in the process of building 

the adaptive system: a) selecting and implementing an appropriate learning technique in order to 

extract the model and b) embedding the model in an integrated system that will automatically 

adapt to the problem in hand. Note however, that these steps cannot be viewed as separate tasks 

in all learning approaches.  

The rest of the section addresses these issues and presents details concerning the 

development of two adaptive systems, namely HAPRC and HAPNN. 



 

Data Preparation 

A necessary initial step in most data mining applications is data preparation. In our case, the data 

were collected from the execution of HAP using all 864 parameter configurations on 30 problems 

from each of the 15 planning domains of Table 5. The process of collecting the data is sketched 

in Figure 2. The recorded data for each run contained the 35 problem attributes presented in 

Section 0, the 7 planner parameters presented in Section 0, the number of steps in the resulting 

plan and the required time for building it.  
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Figure 2. Preparing the training data 

In the case where the planner did not manage to find a solution within the upper time limit 

of 60 seconds, a special value (999999) was recorded for both steps and time. This led to a 

dataset of 388.800 (450 problems * 864 configurations) records with 44 fields, the format of 

which is presented in Figure 3.  

Domain Source 
Assembly New domain 
Blocks-world (3 operators) Bibliography  
Blocks-world (4 operators) AIPS 98, 2000 
Driver AIPS 2002 
Ferry FF collection 
Freecell AIPS 2000, 2002 
Gripper AIPS 98 
Hanoi Bibliography 
Sokoban New domain 
Logistics AIPS 98, 2000 
Miconic-10 AIPS 2000 
Mystery AIPS 98 
Tsp FF collection 
Windows New domain 
Zeno AIPS 2002 

Table 5. Domains used for the creation of the learning data 
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Figure 3. The format of the records 

This dataset did not explicitly provide information on the quality of each run. Therefore, a 

data pre-processing stage was necessary that would decide about the performance of each 

configuration of HAP (for a given problem) based on the two performance metrics (number of 

plan steps and the required time for finding it). However, it is known within the planning 

community, that giving a solution quickly and finding a short plan are contradicting directives for 

a planning system. There were two choices in dealing with this problem: a) create two different 

models, one for fast planning and one for short plans, and then let the user decide which one to 

use or b) find a way to combine these two metrics and produce a single model which uses a trade-

off between planning time and length of plans. We tested both scenarios and noticed that in the 

first one the outcome was a planner that would either create short plans after too long a time, or 

create awfully large plans quickly. Since none of these cases are acceptable in real-world 

situations, we decided to adopt the second scenario. 

In order to combine the two metrics we first normalized the plan steps and planning time 

according to the following transformation:  

• Let Sij be the number of plan steps and Tij be the required time to build it for problem i 

(i=1..450) and planner configuration j (j=1..864). 

• We first found the shortest plan and minimum planning time for each problem among the 

tested planner configurations. 
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• We then normalized the results by dividing the minimum plan length and minimum planning 

time of each run with the corresponding problem value. For the cases where the planner could 

not find a solution within the time limits, the normalized values of steps and time were set to 

zero. 
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• We finally created a combined metric about plan attribute Mij, which uses a weighted sum of 

the two normalized criteria: 

* *norm norm
ij s ij t ijM w S w T= +  

Classification Rules 

Learning sets of if-then rules is an appealing learning method, due to the easily understandable 

representation of rules by humans. There are various approaches to rule learning, including 

transforming decision trees to rules and using genetic algorithms to encode each rule set. We will 

here briefly describe another approach that is based on the idea of Sequential Covering that it has 

been exploited by a number of planning systems. 

Sequential covering is a family of algorithms for learning rule sets based on the strategy 

of learning one rule, removing the data it covers, then iterating this process (Mitchell, 1997). The 

first rule will be learned based on all the available training examples. We then remove any 

positive examples covered by this rule and then invoke it again to learn a second rule based on 

the remaining training examples. It is called a sequential covering algorithm because it 

sequentially learns a set of rules that together cover the full set of positive examples. The final set 

of rules can then be sorted so that more accurate rules will be considered first when a new 

instance must be classified.  



 

Learning a rule usually involves performing a heuristic search in the space of potential 

attribute-value pairs to be added to the current rule. Depending on the strategy of this search and 

the performance measure used for guiding the heuristic search several variations of sequential 

covering have been developed.  

The CN2 program (Clark & Niblett, 1989) employs a general to specific beam search 

through the space of possible rules in search of a rule with high accuracy, though perhaps 

incomplete coverage of the data. Beam search is a greedy non-backtracking search strategy in 

which the algorithm maintains a list of the k best candidates at each step, rather than a single best 

candidate. On each search step, specializations are generated for each of these k best candidates, 

and the resulting set is again reduced to the k most promising members. A measure of entropy is 

the heuristic guiding the search.   

AQ (Michalski et al, 1986) also conducts a general-to-specific beam-search for each rule, 

but uses a single positive example to focus this search. In particular, it considers only those 

attributes satisfied by the positive example as it searches for progressively more specific 

hypotheses. Each time it learns a new rule it selects a new positive example from those that are 

not yet covered, to act as a seed to guide the search for this new disjunct.  

IREP (Furnkranz & Widmer, 1994), RIPPER (Cohen, 1995) and SLIPPER (Cohen & 

Singer, 1999) are three rule learning systems that are based on the same framework but use 

reduced error pruning to prune the antecedents of each discovered rule. IREP was a first 

algorithm that employed reduced-error pruning. RIPPER is an enhanced version of the IREP 

approach dealing with several limitations of IREP and producing rules of higher accuracy. 

SLIPPER extends RIPPER by using confidence-rated boosting and manages to achieve even 

better accuracy.  



 

Classifying executions 

In order to learn classification rules from the dataset, a necessary step was to decide for the two 

classes (good run or bad run) based on the value of the combined quality metric Mij. Therefore, 

we split the records of the training data into two categories: a) the class of good runs consisting of 

the records for which Mij was larger than a threshold and b) the class of bad runs consisting of the 

remaining records. In order to create these two sets of records, we calculated the value Qij for 

each run, which is given by the following formula: 
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where c, is the threshold constant controlling the quality of the good runs. For the Mij metric, we 

used the value of 1 for both ws and wt in order to keep the balance between the two quality 

criteria. 

For example, for c equal to 1.6 the above equation means that "a plan is good if its 

combined steps and time are at most 40% worse (bigger) than the combined minimum plan steps 

and time for the same problem". Since normalized steps and time are combined with a 1:1 ratio, 

the above 40% limit could also be interpreted as an average of 20% for each steps and time. This 

is a flexible definition that would allow a plan to be characterized as good even if its steps are for 

example 25% worse than the minimum steps as long as its time is at most 15% worse than the 

minimum time, provided that their combination is at most 40% worse than the combined 

minimum steps and time. In the general case the combined steps and time must be at most 

(2-c)*100% worse than the combined minimum steps and time. After experimenting with various 

values for c we ended up that 1.6 was the best value to be adopted for the experiments. 



 

Modeling 

The next step was to apply a suitable machine learning algorithm in order to discover a model of 

the dependencies between problem characteristics, planner parameters and good planning 

performance. A first requirement was the interpretability of the resulting model, so that the 

acquired knowledge would be transparent and open to the inquiries of a planning expert. Apart 

from developing an adaptive planner with good performance to any given planning problem, we 

were also interested in studying the resulting model for interesting new knowledge and 

justifications for its performance. Therefore, symbolic learning approaches were at the top of our 

list. 

Mining association rules from the resulting dataset was a first idea, which however was 

turned down due to the fact that it would produce too many rules making it extremely difficult to 

produce all the relevant ones. In our previous work (Vrakas et al, 2003a), we have used the 

approach of classification based on association rules (Liu, Hsu & Ma, 1998), which induces 

association rules that only have a specific target attribute on the right hand side. However, such 

an approach was proved inappropriate for our current much more extended dataset.  

We therefore turned towards classification rule learning approaches, and specifically 

decided to use the SLIPPER rule learning system (Cohen & Singer, 1999) which is fast, robust, 

easy to use, and its hypotheses are compact and easy to understand. SLIPPER generates rule sets 

by repeatedly boosting a simple, greedy rule learner. This learner splits the training data, grows a 

single rule using one subset of the data and then prunes the rule using the other subset. The 

metrics that guide the growing and pruning of rules is based on the formal analysis of boosting 

algorithms. The implementation of SLIPPER that we used handles only two-class classification 

problems. This suited fine our two-class problem of "good" and "bad" performance. The output 



 

of SLIPPER is a set of rules predicting one of the classes and a default rule predicting the other 

one, which is engaged when no other rule satisfies the example to be classified. We run SLIPPER 

so that the rule set predicts the class of "good" performance. 

The Rule-Based Planner Tuner 

The next step was to embed the learned rules in HAP as a rule-based system that decides the 

optimal configuration of planning parameters based on the characteristics of a given problem. In 

order to perform this task certain issues had to be addressed:  

a. Should all the rules be included? 

The rules that could actually be used for adaptive planning are those that associate, at the same 

time, problem characteristics, planning parameters and the quality field. So, the first step was to 

filter out the rules that included only problem characteristics as their antecedents. This process 

filtered out 21 rules from the initial set of 79 rules. We notice here that there were no rules 

including only planning parameters. If such rules existed, then this would mean that certain 

parameter values are good regardless of the problem and that the corresponding parameters 

should be fixed in the planner. 

The remaining 58 rules that model good performance, were subsequently transformed so 

that only the attributes concerning problem characteristics remained as antecedents and the 

planning parameters were moved to the right-hand side of the rule as conclusions, replacing the 

rule quality attribute. In this way, a rule decides one or more planning parameters based on one or 

more problem characteristics.  



 

What conflict resolution strategy should be adopted for firing the rules? 

Each rule was accompanied by a confidence metric, indicating how valid a rule is, i.e. what 

percentage of the relevant data in the condition confirms the conclusion-action of the rule. A 

100% confidence indicates that it is absolutely certain that when the condition is met, then the 

action should be taken. 

The performance of the rule-based system is one concern, but it occupies only a tiny 

fragment of the planning procedure, therefore it is not of primary concern. That is why the 

conflict resolution strategy used in our rule-based system is based on the total ordering of rules 

according to the confidence factor, in descending order. This decision was based on our primary 

concern to use the most certain (confident) rules for configuring the planner, because these rules 

will most likely lead to a better planning performance. 

Rules are appropriately encoded so that when a rule fires and sets one or more parameters, 

then all the other rules that might also set one (or more) of these parameters to a different setting 

are “disabled”. In this way, each parameter is set by the most confident rule (examined first), 

while the rest of the rules that might affect this parameter are skipped.  

What should we do with parameters not affected by the rule system? 

The experiments with the system showed that on average the rule based system would affect 

approximately 4 planning parameters, leaving at the same time 3 parameters unset. According to 

the knowledge model, if a parameter is left unset, its value should not affect the performance of 

the planning system. However, since the model is not complete, this behavior could also be 

interpreted as an inability of the learning process to extract a rule for the specific case. In order to 

deal with this problem we performed a statistical analysis in order to find the best default settings 

for each independent parameter.  



 

For dealing with situations where the rule-based systems leaves all parameters unset we 

calculated the average normalized steps and time for each planner configuration: 

1

norm

ij
avg i

j

i

S

S =
∑

∑
, 

1

norm

ii
avg i

j

i

T

T =
∑

∑
 

and recorded the configuration with the best sum of the above metrics, which can be seen in 

Table 6. 

For dealing with situations where the rule system could only set part of the parameters, 

but not all of them, we repeated the above calculations for each planner parameter individually, in 

order to find out if there is a relationship between individual settings and planner performance. 

Again for each parameter we recorded the value with the best sum of the average normalized 

steps and time. These settings are illustrated in Table 6. 

Name Best Configuration Best Individual Value 
Direction 0 0 
Heuristic 1 1 
Weights (w1 and w2) 2 2 
Penalty 10 100 
Agenda 100 10 
Equal_estimation 1 1 
Remove 0 1 

Table 6: Best combined and individual values of parameters 

In the future we will explore the possibility to utilize learned rules that predict bad 

performance as integrity constraints that guide the selection of the unset planner parameters in 

order to avoid inappropriate configurations. 

The rule configurable version of HAP, which is outlined in Figure 4 contains two additional 

modules, compared to the manually configurable version of the system, that are run in a pre-

planning phase. The first module, noted as Problem Analyzer, uses the problem’s representation, 

constructed by the Parser, to calculate the values of the 35 problem characteristics used by the 



 

rules. These values are then passed to the Rule System module, which tunes the planning 

parameters based on the embedded rule base and the default values for unset parameters. The 

values of the planning parameters along with the problem’s representation are then passed to the 

planning module, in order to solve the problem. 

 

 
Figure 4. HAPRC Architecture 

k Nearest Neighbors 

Apart from the rule-based approaches, we also experimented with other learning methodologies, 

mainly in order to overcome several limitations of the former. A very interesting learning 

approach, which could be easily adapted to our problem, is the k Nearest Neighbors (kNN) 

algorithm. According to this approach, when the planner is faced with a new problem, it 

identifies the k nearest instances from the set of training problems, aggregates the performance 

results for the different planner configurations and selects the one with the best average 

performance.  
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This is the most basic instance-based learning method for numerical examples. The 

nearest neighbors of an instance are defined in terms of some distance measure for the vectors of 

values of the examples. Considering the following instance x, that is described by the attributes: 

( ) ( ) ( )1 1, ,..., nx x xα α α  

where r(x) denotes the value of the instance for the rth attribute. Then the distance d of two 

instances x1, x2 can be measured using any suitable L norm: 
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For L=1 we get the Manhattan distance, while for L=2 we get the Euclidean distance. 

When a new instance requires classification, the k nearest neighbor approach first 

retrieves the k nearest instances to this one. Then it selects the classification that most of these 

instances propose. 

Preparing the Training Data 

According to the methodology previously described, the system needs to store two kinds of 

information: a) the values for the 35 attributes for each one of the 450 problems in the training set 

in order to identify the k closest problems to a new one and b) the performance (steps and time) 

of each one of the 864 planner configurations for each problem in order to aggregate the 

performance of the k problems and then find the best configuration.  

The required data were initially in the flat file produced by the preparation process 

described in a previous section. However, they were later organized as a multi-relational data set, 

consisting of 2 primary tables, problems (450 rows) and parameters (864 rows), and a relation 

table performances (450*864 rows), in order to save storage space and enhance the search for the 

k nearest neighbors and the retrieval of the corresponding performances. The tables were 



 

implemented as binary files, with the performances table being sorted on both the problem id and 

the parameter id. 

Online Planning Mode 

Given a new planning problem, HAPNN first calculates the values of the problem characteristics. 

Then the kNN algorithm is engaged in order to retrieve the ids of the k nearest problems from the 

problems file. The number of neighbors, k, is a user-defined parameter of the planner. In the 

implementation of kNN we use the Euclidean distance measure with the normalized values of the 

problem attributes to calculate the nearest problem. 

Using the retrieved ids and taking advantage of the sorted binary file, HAPNN promptly 

retrieves the performances for all possible configurations in a k*864 two-dimensional matrix. The 

next step is to combine these performances in order to suggest a single parameter configuration 

with the optimal performance, based on past experience of the k nearest problems. The optimal 

performance for each problem is calculated using the Mij criterion, where the two weights ws and 

wt are set by the user.  

We can consider the final k*864 2-dimensional matrix as a classifier combination 

problem, consisting of k classifiers and 864 classes. We can combine the decisions of the k 

classifiers, using the average Bayes rule, which essentially comes down to averaging the planner 

scores across the k nearest problems and selecting the decision with the largest average. Thus, the 

parameter configuration j (j=1..864) with the largest C is the one that is proposed and used. 
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The whole process for the online planning mode of HAPNN is depicted in Figure 5. It is 

worth noting that HAPNN actually outputs an ordering of all parameter configurations and not just 



 

one parameter configuration. This can be exploited for example in order to output the top 10 

configurations and let the user decide amongst them. Another useful aspect of the ordering, is that 

when the first parameter configuration fails to solve the problem within certain time, then the 

second best could be tried. Another  interesting alternative in such a case is the change of the 

weight setting so that time has a bigger weight. The effect of the weights in the resulting 

performance is empirically explored in the experimental results section that follows. 
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Figure 5. Online planning mode 

Offline Incremental Training Mode 

HAPNN can be trained incrementally with each new planning problem that arises. Specifically, 

the planner stores each new examined planning problem, so that it can later train from it offline. 

As in the training data preparation phase, training consists of running the HAP planner on the 

batch of newly stored problems using all 864 value combinations of the 7 parameters. For each 

run, the features of the problem, the performance of the planner (steps of the resulting plan and 

required planning time) and the configuration of parameters are recorded. 

The incremental training capability is an important feature of HAPNN, stemming from the 

use of the kNN algorithm. As the generalization of the algorithm is postponed for the online 

phase, learning actually consists of just storing past experience. This is an incremental process 



 

that makes it possible to constantly enhance the performance of the adaptive planner with the 

advent of new problems.  

EXPERIMENTAL RESULTS 

We have conducted four sets of comprehensive experiments in order to evaluate the potential 

gain in performance offered by the adaptive way in which the planner parameters are configured 

and to compare the two different approaches (rule-based and kNN). For the experiments 

presented below we used HAPNN with the value of k set to 7. 

All the runs of the planning systems (static and adaptive), including those used in the 

statistical analysis and the machine learning process, were performed on a SUN Enterprise Server 

450 with 4 ULTRA-2 processors at 400 MHz and 2 GB of shared memory. The Operating system 

of the computer was SUN Solaris 8. For all experiments we counted CPU clocks and we had an 

upper limit of 60 sec, beyond which the planner would stop and report that the problem is not 

solved. 

Adapting to problems of known domains 

This experiment aimed at evaluating the generalization of the adaptive planners’ knowledge to 

new problems from domains that have already been used for learning. Examining this learning 

problem from the viewpoint of a machine learner we notice that it is quite a hard problem. Its 

multi-relational nature (problem characteristics and planner parameters) resulted in a large 

dataset, but the number of available problems (450) was small, especially compared to the 

number of problem attributes (35). This gives rise to two problems with respect to the evaluation 

of the planners: a) Since the training data is limited (450 problems), a proper strategy must be 

followed for evaluating the planners’ performance, b) evaluating on already seen examples must 

definitely be avoided, because it will lead to rather optimistic results due to overfitting. 



 

For the above reasons we decided to perform 10-fold cross-validation. We have split the 

original data into 10 cross-validation sets, each one containing 45 problems (3 from each of the 

15 domains). Then we repeated the following experiment 10 times: In each run, one of the cross-

validation sets was withheld for testing and the 9 rest were merged into a training set. The 

training set was used for learning the models of HAPRC and HAPNN and the test set for measuring 

their performance. Specifically, we calculated the sum of the average normalized steps and time. 

In addition we calculated the same metric for the best static configuration based on statistical 

analysis of the training data (HAPMC), in order to calculate the gain in performance. Finally, we 

calculated the same metric for the best configuration for any given problem (HAPORACLE) in order 

to compare with the maximum performance that the planners could achieve if it had an oracle 

predicting the best configuration. The results of each run were averaged and thus a proper 

estimation was obtained, which is presented in Table 7. 

Fold HAPMC HAPORACLE HAPRC HAPNN 

1 1,45 1,92 1,60 1,74

2 1,63 1,94 1,70 1,73

3 1,52 1,94 1,60 1,70

4 1,60 1,94 1,70 1,75

5 1,62 1,92 1,67 1,73

6 1,66 1,92 1,67 1,76

7 1,48 1,91 1,69 1,72

8 1,47 1,91 1,57 1,74

9 1,33 1,91 1,47 1,59

10 1,43 1,92 1,65 1,73

 Average 1,52 1,92 1,63 1,72

Table 7. Comparative results for adapting to problems of known domains 

Studying the results of Table 7 we notice that both adaptive versions of HAP significantly 

outperformed HAPMC. The difference in the performance between HAPRC and HAPMC was 0.11 

on average, which can be translated as a 7% average gain combining both steps and time. HAPNN 

performed even better, scoring on average 0.2 more (13% gain) than the static version. Moreover, 



 

the auto-configurable versions outperformed the static one in all folds, exhibiting a consistently 

good performance. This shows that the learning methodologies we followed were fruitful and 

resulted in models that successfully adapt HAP to unknown problems of known domains.   

Adapting to problems of unknown domains 

The second experiment aimed at evaluating the generalization of the adaptive planners’ 

knowledge to problems of new domains that have not been used for learning before. In a sense 

this would give an estimation for the behavior of the planner when confronted with a previously 

unknown problem of a new domain.  

This is an even harder learning problem considering the fact that there are very few 

domains that have been used for learning (15), especially compared again to the 35 problem 

attributes. To evaluate the performances of HAPRC and HAPNN we used leave-one-(domain)-out 

cross-validation. We split the original data into 15 cross-validation sets, each one containing the 

problems of a different domain. Then we repeated the following experiment 15 times: In each 

run, one of the cross-validation sets was withheld for testing and the 14 rest were merged into a 

training set. As in the previous experiment, the training set was used for learning the models and 

the test set for measuring its performance. 

The results show that all the planners performed worse than the previous experiment. Still 

HAPRC and HAPNN managed to increase the performance over HAPMC, as it can be seen in Table 

8. 

We notice a 3% average gain of HAPRC and 2% average gain of HAPNN over the static 

version in the combined metric. This is a small increase in performance, but it is still a success 

considering that there were only 15 domains available for training. The enrichment of data from 



 

more domains will definitely increase the accuracy of the models, resulting in a corresponding 

increase in the performance of the adaptive systems.  

Test Domain HAPMC HAPORACLE HAPRC HAPNN 

Assembly 1,31 1,89 1,46 1,08

Blocks 1,13 1,98 1,10 1,77

Blocks_3op 1,69 1,99 1,52 1,81

Driver 1,52 1,92 1,49 1,45

Ferry 1,03 2,00 1,66 1,41

Freecell 1,43 1,96 1,39 1,70

Gripper 1,75 1,99 1,62 1,61

Hanoi 1,08 1,87 1,03 1,10

Logistics 1,66 1,91 1,69 1,75

Miconic 1,79 1,96 1,71 1,07

Mystery 1,21 1,97 1,11 0,88

Sokoban 1,20 1,96 1,57 1,45

Tsp 1,56 1,74 1,56 1,29

Windows 1,30 1,78 1,26 1,55

Zeno 1,26 1,93 1,34 1,35

Average 1,39 1,92 1,43 1,42

Table 8. Comparative results for adapting to problems of unknown domains 

Scalability of the methodology 

The third experiment aimed at showing the ability of the adaptive systems to learn from easy 

problems (problems that require little time to be solved) and to use the acquired knowledge as a 

guide for difficult problems. It is obvious that such a behavior would be very useful, since 

according to the methodology, each problem in the training set must be attacked with every 

possible combination of the planner’s parameters and for hard problems this process may take 

enormous amounts of time.  

In order to test the scalability of the methodology, we have split the initial data set into 

two sets: a) the training set containing the data for the 20 easiest problems from each domain and 

b) the test set containing the 10 hardest problems from each domain. The metric used for the 

discrimination between hard and easy problems was the average time needed by the 864 different 



 

planner setups to solve the problem. We then used the training set in order to learn the models 

and statistically find the best static configuration of HAP and tested the two adaptive planners 

and HAPMC on the problems of the test set. For each problem we have also calculated the 

performance of HAPORACLE in order to show the maximum performance that could have been 

achieved by the planner.  

The results of the experiments, which are presented in Table 9, are quite impressive. The 

rule based version managed to outperform the best static version in 11 out of the 15 domains and 

its performance was approximately 40% better on average. Similarly HAPNN was better in 11 

domains too and the average gain was approximately 33%. There are some very interesting 

conclusions that can be drawn from the results: 

• With the exception of a small number of domains, the static configurations which are 

effective for easy problems do not perform well for the harder instances of the same 

domains. 

• There are some domains (e.g. Hanoi) where there must be great differences between the 

morphology of easy and hard problems and therefore neither the statistical nor the 

learning analyses can effectively scale up. 

• It is clear that some domains present particularities in their structure and it is quite 

difficult to tackle them without any specific knowledge. For example, in Freecell all the 

planners and specifically HAPRC and HAPMC that were trained from the rest of the 

domains only, did not perform very well (see Table 8), while the inclusion of Freecell’s 

problems in their training set, gave them a boost (see Table 9).  

• There are domains where there is a clear trade-off between short plans and little planning 

time. For example, the low performance of HAPORACLE in the Tsp domain shows that the 



 

configurations that result in short plans require a lot of planning time and the ones that 

solve the problems quickly produce bad plans. 

• The proposed learning paradigms can scale up very well and the main reason for this is 

the general nature of the selected problem attributes. 

Test Domain HAPMC HAPORACLE HAPRC HAPNN 

Assembly 0,91 1,86 1,64 1,80

Blocks 0,91 1,86 1,64 1,72

Blocks_3op 1,86 1,98 1,72 1,86

Driver 1,22 1,92 1,72 1,51

Ferry 0,31 2,00 1,89 1,85

Freecell 1,86 1,96 1,87 1,84

Gripper 1,68 1,99 1,76 1,96

Hanoi 0,45 1,80 1,19 0,50

Logistics 1,68 1,87 1,80 1,81

Miconic 1,93 1,96 1,93 1,93

Mystery 0,67 1,94 1,73 1,52

Sokoban 0,79 1,92 1,66 1,47

Tsp 1,35 1,54 1,32 1,46

Windows 1,52 1,65 1,49 1,42

Zeno 0,89 1,91 1,77 1,29

Average 1,20 1,88 1,68 1,60

Table 9. Scalability of the methodology 

Ability to learn a specific domain 

The fourth experiment aimed at comparing general models, which have been learned from a 

variety of domains versus specific models that have been learned from problems of a specific 

domain. The reason for such an experiment is to have a clear answer to the question whether the 

planning system could be adapted to a target domain by using problems of solely this domain. 

The rationale behind this is that a general-purpose domain independent planner can be used 

without having to hand code it in order to suit the specific domain. Furthermore, the experiment 

can also show how disorienting can the knowledge from other domains be.  



 

In order to carry out this experiment, we created 15 train sets, each one containing the 20 

easiest problems of a specific domain and 15 test sets with the 10 hardest instances. The next step 

was to learn specific models for each domain, and test them on the hardest problems of the same 

domain. For each domain we compared the performance of the specialized models versus the 

performance of general models, which have been trained from the 20 easier problems from all 15 

domains (see previous subsection). The results from the experiment are presented in Table 10, 

where:  

• HAPMC corresponds to the manually configured version according to the statistical 

analysis on the 20 easy problems of each domain,  

• specific HAPRC and HAPNN correspond to the adaptive versions trained only from the 20 

easier problems of each domain,  

• general HAPRC and HAPNN correspond to the adaptive versions trained from the 300 

problems (20 easier problems from each one of the 15 domains) and  

• HAPOracle corresponds to the ideal configuration. 

According to the results presented in Table 10, HAPRC outperforms the best static one in 

13 out of the 15 domains and on average it is approximately 7% better. This shows that we can 

also induce efficient models that perform well in difficult problems of a given domain when 

solely trained on easy problems of this domain. However, this is not the case for HAPNN, whose 

not very good performance indicates that the methodology requires more training data, especially 

because there is a large number of attributes.  

Comparing the specialized models of HAPRC with the general ones, we see that it is on 

average 4% better. This shows that in order to adapt to a single domain, it is better to train the 

planner exclusively from problems of that domain, although such an approach would 



 

compromise the generality of the adaptive planner. The results also indicate that on average there 

is no actual difference between the performance of the general and the specific versions of 

HAPNN. To some extend this behavior is reasonable and can be justified by the fact that most of 

the nearest neighbors of each problem belong to the same domain and no matter how many 

redundant problems are included in the training set, the algorithm will select the same problems 

in order to learn the model. 

   HAPRC HAPNN 

Test Domain HAPMC HAPORACLE specific general specific general 

Assembly 1,68 1,86 1,72 1,64 1,84 1,80

Blocks 1,68 1,86 1,74 1,64 1,64 1,72

Blocks_3op 1,85 1,98 1,88 1,72 1,89 1,86

Driver 1,68 1,92 1,78 1,72 1,22 1,51

Ferry 1,83 2,00 1,85 1,89 1,85 1,85

Freecell 1,88 1,96 1,85 1,87 1,84 1,84

Gripper 1,66 1,99 1,78 1,76 1,96 1,96

Hanoi 1,00 1,80 1,38 1,19 0,50 0,50

Logistics 1,80 1,87 1,81 1,80 1,81 1,81

Miconic 1,93 1,97 1,93 1,93 1,93 1,93

Mystery 1,65 1,94 1,83 1,73 1,52 1,52

Sokoban 1,61 1,92 1,88 1,66 1,57 1,47

Tsp 1,36 1,54 1,38 1,32 1,46 1,46

Windows 1,35 1,65 1,48 1,49 1,46 1,42

Zeno 1,43 1,91 1,80 1,78 1,44 1,29

Average 1,63 1,88 1,74 1,68 1,60 1,60

Table 10. General vs. specialized models 

DISCUSSION AND CONCLUSION 

This chapter presented our research work in the area of using Machine Learning techniques in 

order to infer and utilize domain knowledge in Automated Planning. The work consisted of two 

different approaches: The first one utilizes classification rules learning and a rule-based system 

and the second one uses a variation of the k-Nearest Neighbors learning paradigm.  

In the first approach the learned knowledge consists of rules that associate specific values 

or value ranges of measurable problem attributes with the best values for one or more planning 



 

parameters, such as the direction of search or the heuristic function. The knowledge is learned 

offline and it is embedded in a rule system, which is utilized by the planner in a pre-processing 

phase in order to decide for the best setup of the planner according to the values of the given 

problem attributes.  

The second approach is also concerned with the automatic configuration of planning 

systems in a pre-processing phase, but the learning is performed on-line. More specifically, when 

the system is confronted with a new problem, it identifies the k nearest instances from a database 

of solved problems and aggregates the planner setups that resulted in the best solutions according 

to the criteria imposed by the user.  

The model of the first approach is very compact and it consists of a relatively small 

number (less than 100) of rules that can be easily implemented in the adaptive system. Since the 

size of the model is small it can be easily consulted for every new problem and the overhead 

imposed to the total planning time is negligible. However, the inference of the model is a 

complicated task that involves many subtasks and requires a significant amount of processing 

time. Therefore, the model cannot be easily updated with new problems. Furthermore, if the user 

wishes to change the way the solutions are evaluated (e.g. emphasizing more on plan size) this 

would require rebuilding the whole model.  

On the other hand, the model of the k Nearest Problems approach is inferred on-line every 

time the system is faced with a new problem. The data that are stored in the database of the 

system are in raw format and this allows incremental expansion and easy update. Furthermore, 

each run is evaluated on-line and the weights of the performance criteria (e.g. planning time or 

plan size) can be set by the user. However, since the system maintains raw data for all the past 

runs, it requires a significant amount of disk size which increases as new problems are added in 



 

the database. Moreover, the overhead imposed by the processing of data may be significant, 

especially for large numbers of training problems.  

Therefore, the decision on which method to follow strongly depends on the application 

domain. For example, if the planner is used as a consulting software for creating large plans, e.g. 

for logistics companies, then neither the size requirements or the few seconds overhead of the k 

Nearest Problems would be a problem. On the other hand, if the planner must be implemented as 

a guiding system on a robot with limited memory then the rule based model would be more 

appropriate.  

According to the experimental results, both systems have exhibited promising 

performance that is on average better than the performance of any statistically found static 

configuration. The speedup improves significantly when the system is tested on unseen problems 

of known domains, even when the knowledge was induced by far easier problems than the tested 

ones. Such a behavior can prove very useful in customizing domain independent planners for 

specific domains using only a small number of easy-to-solve problems for training, when it 

cannot be afforded to reprogram the planning system. 

The speedup of our approach compared to the statistically found best configuration can be 

attributed to the fact that it treats planner parameters as associations of the problem 

characteristics, whereas the statistical analysis tries to associate planner performance with planner 

settings, ignoring the problem morphology. 

In the future, we plan to expand the application of Machine Learning to include more 

measurable problem characteristics in order to come up with vectors of values that represent the 

problems in a unique way and manage to capture all the hidden dynamics. We also plan to add 

more configurable parameters of planning, such as parameters for time and resource handling and 

enrich the HAP system with other heuristics from state-of-the-art planning systems. Moreover, it 



 

is in our direct plans to apply learning techniques to other planning systems, in order to test the 

generality of the proposed methodology. 

In addition, we will explore the applicability of different rule-learning algorithms, such as 

decision-tree learning that could potentially provide knowledge of better quality. We will also 

investigate the use of alternative automatic feature selection techniques that could prune the 

vector of input attributes thus giving the learning algorithm the ability to achieve better results. 

The interpretability of the resulting model and its analysis by planning experts will also be a point 

of greater focus in the future. 
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