

Machine Learning for Adaptive Planning

Dimitris Vrakas, Grigorios Tsoumakas, Nick Bassiliades and Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, GREECE

Tel: +30 2310 998231, +30 2310 998418, +30 2310 998145

Fax: +30 2310 998362, +30 2310 998419

E-mail: [dvrakas, greg, nbassili, vlahavas]@csd.auth.gr

Machine Learning for Adaptive Planning

Abstract

This chapter is concerned with the enhancement of planning systems using techniques from

Machine Learning in order to automatically configure their planning parameters according to the

morphology of the problem in hand. It presents two different adaptive systems that set the

planning parameters of a highly adjustable planner based on measurable characteristics of the

problem instance. The planners have acquired their knowledge from a large data set produced by

results from experiments on many problems from various domains. The first planner is a rule-

based system that employs propositional rule learning to induce knowledge that suggests

effective configuration of planning parameters based on the problem's characteristics. The second

planner employs instance-based learning in order to find problems with similar structure and

adopt the planner configuration that has proved in the past to be effective on these problems. The

validity of the two adaptive systems is assessed through experimental results that demonstrate the

boost in performance in problems of both known and unknown domains. Comparative

experimental results for the two planning systems are presented along with a discussion of their

advantages and disadvantages.

INTRODUCTION

Domain independent heuristic planning relies on ingenious techniques, such as heuristics and

search strategies, to improve the execution speed of planning systems and the quality of their

solutions in arbitrary planning problems. However, no single technique has yet proved to be the

best for all kinds of problems. Many modern planning systems incorporate more than one such

optimizing techniques in order to capture the peculiarities of a wider range of problems.

However, to achieve the optimum performance these planners require manual fine-tuning of their

run-time parameters.

Few attempts have been made to explain which are the specific dynamics of a planning

problem that favor a specific planning technique and even more, which is the best setup for a

planning system given the characteristics of the planning problem. This kind of knowledge would

clearly assist the planning community in producing flexible systems that could automatically

adapt themselves to each problem, achieving best performance.

This chapter focuses on the enhancement of Planning Systems with Machine Learning

techniques in the direction of developing Adaptive Planning Systems that can configure their

planning parameters automatically in order to effectively solve each different Planning problem.

More specifically, it presents two different Machine Learning approaches for Adaptive Planning:

a) Rule learning and b) Instance-based learning. Both approaches are described in detail and their

performance is assessed through several experimental results that exhibit different aspects of the

learning process. In addition, the chapter provides an extended overview of past approaches on

combining Machine Learning and Automated Planning, two of the most important areas of

Artificial Intelligence.

The rest of the chapter is organized as follows: The next section reviews related work on

combining learning and planning and discusses the adopted learning techniques. Then the

problem of the automatic configuration of planning systems is analyzed. The following two

sections present the two learning approaches that have been used for the adaptive systems and

present experimental results that compare them and show the gain in the performance over the

initial planner. Finally, the last section discusses several issues concerning the two learning

approaches, concludes the chapter and poses future research directions.

MACHINE LEARNING FOR AUTOMATED PLANNING

Machine Learning is the area of Artificial Intelligence concerned with the design of computer

programs that improve at a category of tasks with experience. It is a very broad field with many

learning methodologies and numerous algorithms, which have been extensively exploited in the

past to support Planning systems in many ways. Since it is a usual case for seemingly different

planning problems to present similarities in their structure, it is reasonable enough to believe that

planning strategies that have been successfully applied to some problems in the past will be also

effective for similar problems in the future. Learning can assist planning systems in three ways:

a) to learn domain knowledge, b) to learn control knowledge and c) to learn optimization

knowledge.

Domain knowledge is utilized by planners in pre-processing phases in order to either

modify the description of the problem in a way that it will make it easier for solving or make the

appropriate adjustments to the planner to best attack the problem. Control knowledge can be

utilized during search in order to either solve the problem faster or produce better plans. For

example, the knowledge extracted from past examples can be used to refine the heuristic

functions or create a guide for pruning non-promising branches. Most work on combining

machine learning and planning in the past has focused on learning control knowledge since it is

crucial for planners to have an informative guide during search. Finally, optimization knowledge

is utilized after the generation of an initial plan, in order to transform it in a new one that

optimizes certain criteria, e.g. number of steps or usage of resources.

Learning Domain Knowledge

OBSERVER (Wang, 1996) is a learning module built on top of the PRODIGY system that uses

the hints and past knowledge of experts in order to extract and refine the full description of the

operators for a new domain. The description of the operators include negative, positive and

conditional preconditions and effects. OBSERVER uses a multistrategy learning technique that

combines learning by observing and refining through practice (learning by doing). Knoblock

(1990) presented another learning module for PRODIGY, called ALPINE, that learns abstraction

hierarchies and thus reduces the required search. ALPINE classifies the literals of the given

planning problem, abstracts them and performs an analysis on the domain to aid ordering and

combination of the abstractions.

MULTI-TAC (Minton, 1996) is a learning system that automatically fine tunes itself in

order to synthesize the most appropriate constraint satisfaction program to solve a problem

utilizing a library of heuristics and generic algorithms. The methodology we followed in this

chapter for one of the adaptive systems (HAPRC) presents some similarities with MULTI-TAC,

since both approaches learn models that associate problem characteristics with the most

appropriate setups for their solvers. The learned model of MULTI-TAC is a number of rules that

are extracted using two complementary methods. The first one is analytic and employs meta-level

theories in order to reason about the constraints, while the second one, which is based on the

generate–and–test schema, extracts all possible rules and uses test problems in order to decide

about their quality.

One of the few past approaches towards the direction of adaptive planning is the BUS

system (Howe & Dahlman, 1993; Howe et al, 1999). BUS runs six state-of-the-art planners,

namely STAN, IPP, SGP, BlackBox, UCPOP and PRODIGY, using a round-robin schema, until

one of them finds a solution. BUS is adaptive in the sense of dynamically deciding the ordering

of the six planners and the duration of the time slices based on the values of five problem

characteristics and some rules extracted from the statistical analysis of past runs. The system

achieved more stable behaviour than all the individual planners but it was not as fast as one may

have expected.

The authors have worked during the past few years in exploiting Machine Learning

techniques for Adaptive Planning and have developed two systems that are described in detail

later in this chapter. The first system, called HAPRC (Vrakas et al, 2003a ; 2003b), is capable of

automatically fine-tuning its planning parameters based on the morphology of the problem in

hand. The tuning of HAPRC is performed by a rule system, the knowledge of which has been

induced through the application of a classification algorithm over a large dataset containing

performance data of past executions of HAP (Highly Adjustable Planner). The second system,

called HAPNN (Tsoumakas et al, 2003), adopts a variation of the k Nearest Neighbour machine

learning algorithm that enables the incremental enrichment of its knowledge and allows users to

specify their level of importance on the criteria of plan quality and planning speed.

 Learning Control Knowledge

The history of learning control knowledge for guiding planning systems, sometimes called

speedup learning, dates back to the early 70’s. The STRIPS planning system was soon enhanced

with the MACROPS learning method (Fikes et. al, 1972) that analyzed past experience from

solved problems in order to infer successful combinations of action sequences (macro-operators)

and general conditions for their application. MACROPS was in fact the seed for a whole new

learning methodology, called Explanation-Based Learning (EBL).

EBL belongs to the family of analytical learning methods that use prior knowledge and

deductive reasoning to enhance the information provided by training examples. Although EBL

encompasses a wide variety of methods, the main underlying principle is the same: The use of

prior knowledge to analyze, or explain each training example in order to infer which example

features and constraints are relevant and which irrelevant to the learning task under consideration.

This background knowledge must be correct and sufficient for EBL to generalize accurately.

Planning problems offer such a correct and complete domain theory that can be readily used as

prior knowledge in EBL systems. This apparently explains the very strong relationship of EBL

and planning, as the largest scale attempts to apply EBL have addressed the problem of learning

to control search. An overview of EBL computer programs and perspectives can be found in

(Ellman, 1989).

The PRODIGY architecture (Carbonell et al, 1991; Veloso et al, 1995) was the main

representative of control-knowledge learning systems. This architecture, supported by various

learning modules, focuses on learning the necessary knowledge (rules) that guides a planner to

decide what action to take next during plan execution. The system mainly uses EBL to explain

fails and successes and generalize the knowledge in control rules that can be utilized in the future

in order to select, reject or prefer choices. Since the overhead of testing the applicability of rules

was quite large (utility problem) the system also adopted a mixed criterion of usability and cost

for each rule in order to discard some of them and refine the rest. The integration of EBL into

PRODIGY is detailed in (Minton, 1988).

Borrajo and Veloso (1996) developed HAMLET, another system combining planning and

learning that was built on top of PRODIGY. HAMLET combines EBL and inductive learning in

order to incrementally learn through experience. The main aspects responsible for the efficiency

of the system were: the lazy explanation of successes, the incremental refinement of acquired

knowledge and the lazy learning to override only the default behavior of the planner.

Another learning approach that has been applied on top of PRODIGY, is the STATIC

algorithm (Etzioni, 1993), which used Partial Evaluation to automatically extract search-control

knowledge from training examples. Partial Evaluation, a kind of program optimization method

used for PROLOG programs, bares strong resemblance to EBL. A discussion of their relationship

is provided in (van Harmelen & Bundy, 1988).

DYNA-Q (Sutton, 1990) followed a Reinforcement Learning approach (Sutton & Barto,

1998). Reinforcement learning is learning what to do – how to map situations to actions – so as to

maximize a numerical reward signal. The learner is not told which actions to take, as in most

forms of machine learning, but instead must discover which actions yield the most reward by

trying them. DYNA-Q employed the Q-learning method, in order to accompany each pair of

state-action with a reward (Q-value). The rewards maintained by DYNA-Q are incrementally

updated as new problems are faced and are utilized during search as a means of heuristic

function. The main problems faced by this approach were the very large memory requirements

and the amount of experience needed for solving non-trivial problems.

A more recent approach of learning control knowledge for domain independent planning

was presented by Martin and Geffner (2000). They focus on learning generalized policies that

serve as heuristic functions, mapping states and goals into actions. In order to represent their

policies they adopt a concept language, which allows the inference of more accurate models

using less training examples. The learning approach followed in this project was a variation of

Rivest’s Decision Lists (1987), which is actually a generalization of other concept representation

techniques, such as decision trees.

Eureka (Jones & Langley, 1995) adopts a flexible means-ends analysis for planning and is

equiped with a learning module that performs Analogical Reasoning over stored solutions. The

learning approach of Analogical Reasoning is based on the assumption that if two situations are

known to be similar in some respects, it is likely that they will be similar in others. The standard

computational model of reasoning by analogy defines the source of an analogy to be a problem

solution, example, or theory that is relatively well understood. The target is not completely

understood. Analogy constructs a mapping between corresponding elements of the target and

source. Analogical inferences extend this mapping to new elements of the target domain.

Eureka, actually maintains a long-term semantic network which stores representations of

past situations along with the operators that led to them. The semantic network is constantly

modified by either adding new experiences or updating the strength of the existing knowledge.

Daedalus (Langley & Allen, 1993) is a similar system that uses a hierarchy of probabilistic

concepts in order to summarize its knowledge. The learning module of Daedalus is quite complex

and in a sense it unifies a large number of learning techniques including Decision Tree

Construction, Rule Induction and EBL.

Another example of utilizing learning techniques for inferring control knowledge for

automated planning systems is the family of planners that employ Case-based Reasoning

(Kolodner, 1993). Case-based Eeasoning (CBR) is an instance-based learning method that deals

with instances that are usually described by rich relational representations. Such instances are

often called cases. In contrast to instance-based methods that perform a statistical computation of

a distance metric based on numerical values, CBR systems must compute a complex similarity

measure. Another distinctive feature of CBR is that the output for a new case might involve the

combination of the output of several retrieved cases that match the description of the new case.

The combination of past outputs might involve the employment of knowledge-based reasoning

due to the rich representation of cases.

CBR is actually very related to analogical reasoning. Analogical reasoning provides the

mechanism for mapping the output of an old case to an output for a new case. Cased-based

reasoning was based on analogical reasoning but also provided a complete framework for dealing

with issues like the representation of cases, strategies for organizing a memory of prior cases,

retrieval of prior cases and the use of prior cases for dealing with new cases.

Two known case-based planning systems are CHEF (Hammond, 1989) and PRIAR

(Kambhampati & Hendler, 1992). CHEF is one of the earliest case-based planners and used the

Szechwan cooking as the application domain. CHEF used memory structures and indexes in

order to store successful plans, failed plans and repairs among with general conditions allowing it

to reuse past experience. PRIAR is a more general case-based system for plan modification and

reuse that uses hierarchical non-linear planning, allowing abstraction and least-commitment.

Learning Optimization Knowledge

Ambite, Knoblock and Minton (2000) have presented an approach for learning Plan Rewriting

Rules that can be utilized along with local search, in order to improve easy-to-generate low

quality plans. In order to learn the rules, they obtain an optimal and a non-optimal solution for

each problem in a training set, transform the solutions into graphs, and then extract and

generalize the differences between each pair of graphs (optimal and non-optimal) and form rules

in a manner similar to EBL.

IMPROVE (1998), deals with the improvement of large probabilistic plans in order to

increase their probability of being successfully carried out by the executor. IMPROVE uses a

simulator in order to obtain traces of the execution of large plans and then feeds these traces to a

sequential discovery data mining algorithm in order to extract patterns that are common in

failures but not in successes. Qualitative reasoning (Kuipers, 1994) is then applied in order to

improve the plans.

Summary and Further Reading

Table 1 summarizes the 18 approaches that were presented in this Section. It shows the name of

each system, the type of knowledge that was acquired, the way this knowledge was utilized and

the learning techniques that were used for inducing it. Further information on the topic of

Machine Learning for Automated Planning can be found in the extended survey of Zimmerman

and Kambhampati (2003) and also in (Gopal, 2000).

System Knowledge Utilization Learning Techniques
OBSERVER Domain Refine problem definition Learning by Observing, Refining via Practice
MULTI-TAC Domain Configure System Meta-Level Theories, Generate and Test
ALPINE Domain Abstract the problem Domain Analysis, Abstraction
BUS Domain Configure System Statistical Analysis
HAPRC Domain Configure System Classification Rules
HAPNN Domain Configure System kNN
PRODIGY Control Search guide EBL
HAMLET Control Search guide EBL, Rule Learning
STATIC Control Search guide Partial Evaluation
STRIPS Control Macro-operators EBL
Generalized Policies Control Search guide Decision Lists
DYNA-Q Control Heuristic Reinforcement Learning
CHEF Control Canned plans CBR
PRIAR Control Canned plans CBR
EUREKA Control Search guide Analogical Reasoning
DAEDALUS Control Search guide Analogical Reasoning, Conceptual Clustering
Plan Rewriting Optimization Reduce plan size EBL
IMPROVE Optimization Improve plan applicability Sequential Patterns

Table 1. System name, type of knowledge, utilization and learning techniques

THE PLANNING PROBLEM

The rest of the chapter addresses learning domain knowledge for the automatic configuration of

planning systems. The aim of this approach is to build an adaptive planning system that can

automatically fine-tune its parameters based on the morphology of the problem in hand. This is a

very important feature for planning systems, since it combines the efficiency of customized

solutions with the generality of domain independent problem solving.

There are two main issues for investigation: a) what sort of customization should be

performed on a domain-independent planner and b) how can the morphology of a planning

problem be captured and quantified. These are addressed in the remaining of this section.

The Planning System

The planning system used as a test bed for our research is HAP (Highly Adjustable Planner), a

domain-independent, state-space heuristic planning system, which can be customized through a

number of parameters. HAP is a general planning platform which integrates the search modules

of the BP planner (Vrakas & Vlahavas, 2001), the heuristics of AcE (Vrakas & Vlahavas, 2002)

and several techniques for speeding up the planning process. Apart from the selection of the

planning direction, which is the most important feature of HAP, the user can also set the values

of 6 other parameters that mainly affect the search strategy and the heuristic function. The seven

parameters along with their value sets are outlined in Table 2.

Name Value Set
Direction {0,1}
Heuristic {1,2,3}
Weights (w1 and w2) {0,1,2,3}
Penalty {10,100,500}
Agenda {10,100,1000}
Equal_estimation {0,1}
Remove {0,1}

Table 2 The value sets for planning parameters

HAP is capable of planning in both directions (progression and regression). The system is

quite symmetric and for each critical part of the planner, e.g. calculation of mutexes, discovery of

goal orderings, computation of the heuristic, search strategies etc., there are implementations for

both directions. The search Direction is the first adjustable parameter of HAP with the following

values: a) 0 (Regression or Backward chaining) and b) 1 (Progression or Forward chaining). The

planning direction is a very important factor for the efficiency of a planning system, since the

best direction strongly depends on the morphology of the problem in hand and there is no easy

answer which direction should be preferred.

The HAP system employs the heuristic function of the AcE planner, as well as two

variations. Heuristic functions are implemented for both planning directions during the pre-

planning phase by performing a relaxed search in the direction opposite to the one used in the

search phase. The heuristic function computes estimations for the distances of all grounded

actions of the problem. The original heuristic function of the AcE planning system, is defined by

the following formula:

(())

1, ()
()

1 (), ()
X MPS prec A

if prec A I
dist A

dist X if prec A I
∈

 ⊆
=

+ ⊄

 ∑

where A is the action under evaluation, I is the initial state of the problem and MPS(S) is a

function returning a set of actions, with near minimum accumulated cost, achieving state S. The

algorithm of MPS is outlined in Figure 1.

 Function MPS(S)
Input: a set of facts S
Output: a set of actions achieving S with near mini mum accumulated dist

Set G = ∅

S = S – S ∩ I

Repeat
 f is the first fact in S
 Let act (f) be the set of actions achieving f
 for each action A in act (f) do

 val (A) = dist (A) / |add (A) ∩ S|

Let A' be an action in act (f) that minimizes val

Set G = G ∪ A'

 Set S = S – add (A') ∩ S

Until S = ∅

Return G

Figure 1. Function MPS(S)

Apart from the original AcE heuristic function described above, HAP embodies two more

fined-grained variations. The general idea behind these variations lies in the fact that when we

select a set of actions in order to achieve the preconditions of an action A, we also achieve several

other facts (denoted as implied(A)), which are not mutually exclusive with the preconditions of A.

Supposing that this set of actions was chosen in the plan before A, then after the application of A,

the facts in implied(A) would exist in the new state, along with the ones in the add-list of A.

Taking all these into account, we produce a new list of facts for each action (named

enriched_add) which is the union of the add-list and the implied list of this action.

The first variation of the AcE heuristic function uses the enriched instead of the

traditional add-list in the MPS function in the second part of the function that updates state S. So

the command (')Set S S add A S= − ∩ becomes _ (')Set S S enriched add A S= − ∩ .

The second variation pushes the above ideas one step further. The enriched_add list is

also used in the first part of the MPS function, which ranks the candidate actions. So, it

additionally alters the command val(A)=dist(A)/| ()add A S∩ | to

val(A)=dist(A)/ | _ ()enriched add A S∩ |.

The user may select the heuristic function to be used by the planner by configuring the

Heuristic parameter. The acceptable values are three: a) 1 for the AcE heuristic, b) 2 for the first

variation and c) 3 for the second variation.

Concerning search, HAP adopts a weighted A* strategy with two independent weights: w1

for the estimated cost for reaching the final state and w2 for the accumulated cost of reaching the

current state from the starting state (initial or goals depending on the selected direction). In this

work we have used four different assignments for the variable weights which correspond to

different assignments for w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3, w2 =1), c) 2 (w1 =2, w2 =1)

and d) 3 (w1 =1, w2 =1). By selecting different value sets for the weights one can emulate a large

number of search strategies such as Best-First-Search (w1 =1, w2 =0) or Breadth-First-Search (w1

=0, w2 =1). It is known that although certain search strategies perform better in general, the ideal

treatment is to select the strategy which bests suits the morphology of the problem in hand.

The HAP system embodies two fact-ordering techniques (one for the initial state I and

another one for the goals G), which try to find strong orderings in which the facts (of either I or

G) should be achieved. In order to find these orderings, the techniques make extensive use of

mutual exclusions between facts, performing a limited search. These orderings are utilized during

normal search phase, in order to identify possible violations. For each violation contained in a

state, the estimated heuristic value of this state is increased by Penalty, a constant number

supplied by the user. In this work we have tested the HAP system with three different values for

Penalty: a) 10, b) 100 and c) 500. The reason for not being very strict with states containing

violations of orderings, is the fact that sometimes the only path to the solution is through these

states.

The HAP system allows the user to set an upper limit in the number of states in the

planning agenda. This enables the planner to handle very large problems, since the memory

requirements will not grow exponentially with the size of the problem. However, in order to keep

a constant number of states in the agenda, the algorithm prunes branches, which are less likely to

lead to a solution, and thus the algorithm cannot guarantee completeness. Therefore, it is obvious

that the size of the planning agenda significantly affects the search strategy. For example, if we

set Agenda to 1 and w2 to 0, the search algorithm becomes pure Hill-Climbing, while by setting

Agenda to larger values, w1 to 1 and w2 to 1 the search algorithm becomes A*. Generally, by

increasing the size of the agenda we reduce the risk of not finding a solution, while by reducing

the size of the agenda the search algorithm becomes faster and we ensure that the planner will not

run out of memory. In this work we have used three different settings for the size of the agenda:

a) 10, b) 100 and c) 1000.

Another parameter of HAP is Equal_estimation that defines the way in which states with

the same estimated distances are treated. If Equal_estimation is set to 0 then when two states with

the same value in the heuristic function exist, the one with the largest distance from the starting

state (number of actions applied so far) is preferred. If Equal_estimation is set to 1, then the

search strategy will prefer the state that is closer to the starting state.

HAP also embodies a technique for simplifying the definition of the current sub-problem

(current state and goals) during the search phase. This technique eliminates from the definition of

the sub-problem all the goals that: a) have already been achieved in the current state and b) do not

interfere with the achievement of the remaining goals. In order to do this, the technique performs

a dependency analysis on the goals of the problem off-line, before the search process. Although

the technique is very useful in general, the dependency analysis is not complete. In other words,

there are cases where an already achieved sub-goal should be temporarily destroyed in order to

continue with the achievement of the rest of the goals. Therefore, by removing this fact from the

current state the algorithm may risk completeness. The parameter Remove can be used to turn on

(value 1) or off (value 0) this feature of the planning system.

The parameters presented above are specific to the HAP system. However, the

methodology presented in this chapter is general enough and can be applied to other systems as

well. Most of the modern planning systems support or can be modified to support all or some of

the parameterized aspects presented in this section. For example, there are systems such as the

progression planner HSP (Bonet et. al, 1997) that were accompanied by versions working in the

opposite directions; HSP-R (Bonet & Geffner, 1999) is a regression planner based on HSP.

Moreover, most of the planning systems presented during the last years can be customized

through their own set of parameters. For example, the GRT planning system (Refanidis &

Vlahavas, 2001) allows the user to customize the search strategy (Best-first or Hill-climbing) and

to select how the goals of the problem are enriched (this affects the heuristic function). LPG

(Gerevini et al, 2003) can be customized through a large number of planning parameters and

could also be augmented using the proposed methodology. The user may select options such as

the heuristic function (there are two available), the search strategy, the number of restarts, the

depth of the search, the way mutexes are calculated and others. The MIPS system (Edelkamp &

Helmert, 2001) also allows some customization, since it uses a weighted A* search strategy, the

weights of which can be set by the user, in a manner similar to HAP. Furthermore, the user can

also set the optimization level.

Quantifying the structure of planning problems

Selecting a set of numerical attributes that represent the dynamics of problems and domains is

probably the most important task in the process of building an adaptive planning system. These

attributes should be able to group problems with similar structure and discriminate uneven ones.

Moreover, these attributes should clearly influence specific choices for the values of the available

planning parameters. Therefore, their selection strongly depends on the underlying planning

system.

The result of a theoretical analysis on a) the morphology of problems, b) the way this is

expressed through the PDDL language and c) the technology of the HAP planning system, was a

set of 35 measurable characteristics that are presented in Table 3. In Table 3, h(I) refers to the

number of steps needed to reach I (initial state) by regressing the goals, as estimated by the

backward heuristic function. Similarly, h(G) refers to the number of steps needed to reach the

goals by progressing the initial state, estimated by the forward heuristic function.

Our main concern was to select simple attributes that their values are easily calculated and

not complex attributes that would cause a large overhead in the total planning time. Therefore,

most of the attributes come directly from the PDDL input files and their values can be calculated

during the standard parsing process. We have also included a small number of attributes closely

related to specific features of the HAP planning system, such as the heuristics or the fact-ordering

techniques. In order to calculate the values of these attributes, the system must perform a limited

search. However, the overhead is negligible compared to the total planning time.

Name Description
A1 Percentage of dynamic facts in Initial state over total dynamic facts
A2 Percentage of static facts
A3 Percentage of goal facts over total dynamic facts
A4 Ratio between dynamic facts in Initial state and goal facts
A5 Average number of actions per dynamic fact
A6 Average number of facts per predicate
A7 Standard deviation of the number of facts per predicate
A8 Average number of actions per operator
A9 Standard deviation of the number of actions per operator
A10 Average number of mutexes per fact
A11 Standard deviation of the number of mutexes per fact
A12 Average number of actions requiring a fact
A13 Standard deviation of the number of actions requiring a fact
A14 Average number of actions adding a fact
A15 Standard deviation of the number of actions adding a fact
A16 Average number of actions deleting a fact
A17 Standard deviation of the number of actions deleting a fact
A18 Average ratio between the number of actions adding a fact and those deleting it
A19 Average number of facts per object
A20 Average number of actions per object
A21 Average number of objects per object class
A22 Standard deviation of the number of objects per object class
A23 Ratio between the actions requiring an initial fact and those adding a goal (Relaxed branching factors)
A24 Ratio between the branching factors for the two directions
A25 h(I)/h(G) [1st heuristic] - h(I)/h(G) [2nd heuristic]
A26 h(I)/h(G) [1st heuristic] - h(I)/h(G) [3rd heuristic]
A27 h(I)/h(G) [2nd heuristic] - h(I)/h(G) [3rd heuristic]
A28 Average number of goal orderings per goal
A29 Average number of initial orderings per initial fact
A30 Average distance of actions / h(G) [forward direction]
A31 Average distance of actions / h(I) [backward direction]
A32 a30/a31
A33 Percentage of standard deviation of the distance of actions over the average distance of actions [Forward

direction]
A34 Percentage of standard deviation of the distance of actions over the average distance of actions [Backward

direction]
A35 Heuristics deviation [a33/a34]

Table 3. Problem characteristics

A second concern was the fact that the attributes should be general enough to be applied

to all domains. Furthermore, their values should not largely depend on the size of the problem,

otherwise the knowledge learned from easy problems can not be efficiently applied to difficult

ones. For example, instead of using the number of mutexes (mutual exclusions between facts) in

the problem, which is an attribute that strongly depends on the size of the problem (larger

problems tend to have more mutexes), we divide it by the total number of dynamic facts (attribute

A10) and this attribute (mutex density) identifies the complexity of the problem without taking

into account whether it is a large problem or not. This is a general solution followed in all

situations where a problem attribute depends nearly linearly on the size of the problem.

The attributes can be classified in three categories: The first category (attributes A01-A9,

A12-A24) refer to simple and easily measured characteristics of planning problems that source

directly from the input files (PDDL). The second category (attributes A10, A11, A28, A29)

consists of more sophisticated features of modern planners, such as mutexes or orderings

(between goals and initial facts). The last category (attributes A25-A27, A30-A35) contains

attributes that can be instantiated only after the calculation of the heuristic functions and refer to

them.

The attributes presented above aim at capturing the morphology of problems expressed in

a quantifiable way. The most interesting aspects of planning problems according to this attribute

set are: a) the size of the problem, which mainly refers to the dimensions of the search space, b)

the complexity of the problem, c) the directionality of the problem that indicates the most

appropriate search direction, and d) the heuristic that best suits the problem.

The first two categories, namely the size and the complexity, are general aspects of planning

problems. The directionality is also a general aspect of planning problems that is additionally, of

great importance to HAP, due to its bi-directional capabilities. The last category depends strongly

on the HAP planning system, concerning the suitability of the heuristic functions for the problem

in hand. Although the four aspects that the selection of attributes was based on are not enough to

completely represent any given planning problem, they form a non trivial set that one can base

the setup of the planning parameters of HAP. Table 4 sketches the relation between the four

problem aspects described above and the 35 problem attributes adopted by this work.

Attribute Size Complexity Directionality Heuristics
A1 •
A2 • •
A3 •
A4 • •
A5 • •
A6 •
A7 • •
A8 •
A9 • •
A10 • •
A11 • •
A12 •
A13 •
A14 •
A15 •
A16 •
A17 •
A18 • •
A19 • •
A20 • •
A21 •
A22 •
A23 • •
A24 •
A25 • •
A26 • •
A27 • •
A28 • •
A29 • •
A30 •
A31 •
A32 • •
A33 • • •
A34 • • •
A35 • • •

Table 4. Relation between problem aspects and attributes

LEARNING APPROACHES

The aim of the application of learning techniques in planning is to find the hidden dependencies

among the problem characteristics and the planning parameters. More specifically, we are

interested in finding those combinations of problem attributes and planning parameters that

guarantee good performance of the system. One way to do this is by experimenting with all

possible combinations of the values of 35 problem attributes and the 7 planning parameters and

then process the collected data in order to learn from it. However, this is not tractable since most

of the problem attributes have continuous value ranges and even by discretizing them it would

require a tremendous number of value-combinations. Moreover, it would not be possible to find

or create enough planning problems to cover all the cases (value combinations of attributes).

One solution to the problem presented above is to select a relatively large number of

problems, uniformly distributed in a significant number of domains covering as many aspects of

planning as possible. Then experiment with these problems, called training set, and all the

possible setups of the planning system (864 in the case of HAP), record all the data (problem

attributes, planner configuration and the results in terms of planning time and plan length) and try

to learn from that. It is obvious that the selection of problems for the training set is the second

crucial part of the whole process. In order to avoid the over fitting and the disorientation of the

learned model the training set must be significantly large and uniformly distributed over a large

and representative set of different domains.

After the collection of the data there are two important stages in the process of building

the adaptive system: a) selecting and implementing an appropriate learning technique in order to

extract the model and b) embedding the model in an integrated system that will automatically

adapt to the problem in hand. Note however, that these steps cannot be viewed as separate tasks

in all learning approaches.

The rest of the section addresses these issues and presents details concerning the

development of two adaptive systems, namely HAPRC and HAPNN.

Data Preparation

A necessary initial step in most data mining applications is data preparation. In our case, the data

were collected from the execution of HAP using all 864 parameter configurations on 30 problems

from each of the 15 planning domains of Table 5. The process of collecting the data is sketched

in Figure 2. The recorded data for each run contained the 35 problem attributes presented in

Section 0, the 7 planner parameters presented in Section 0, the number of steps in the resulting

plan and the required time for building it.

Problems,

performances,
parameters

Batch of stored
problems

All parameter
configurations

HAP

Figure 2. Preparing the training data

In the case where the planner did not manage to find a solution within the upper time limit

of 60 seconds, a special value (999999) was recorded for both steps and time. This led to a

dataset of 388.800 (450 problems * 864 configurations) records with 44 fields, the format of

which is presented in Figure 3.

Domain Source
Assembly New domain
Blocks-world (3 operators) Bibliography
Blocks-world (4 operators) AIPS 98, 2000
Driver AIPS 2002
Ferry FF collection
Freecell AIPS 2000, 2002
Gripper AIPS 98
Hanoi Bibliography
Sokoban New domain
Logistics AIPS 98, 2000
Miconic-10 AIPS 2000
Mystery AIPS 98
Tsp FF collection
Windows New domain
Zeno AIPS 2002

Table 5. Domains used for the creation of the learning data

Planning parameters

Problem attributes

Performance metrics

p1 p2 … p7 a1 a2 … a35 steps time

Figure 3. The format of the records

This dataset did not explicitly provide information on the quality of each run. Therefore, a

data pre-processing stage was necessary that would decide about the performance of each

configuration of HAP (for a given problem) based on the two performance metrics (number of

plan steps and the required time for finding it). However, it is known within the planning

community, that giving a solution quickly and finding a short plan are contradicting directives for

a planning system. There were two choices in dealing with this problem: a) create two different

models, one for fast planning and one for short plans, and then let the user decide which one to

use or b) find a way to combine these two metrics and produce a single model which uses a trade-

off between planning time and length of plans. We tested both scenarios and noticed that in the

first one the outcome was a planner that would either create short plans after too long a time, or

create awfully large plans quickly. Since none of these cases are acceptable in real-world

situations, we decided to adopt the second scenario.

In order to combine the two metrics we first normalized the plan steps and planning time

according to the following transformation:

• Let Sij be the number of plan steps and Tij be the required time to build it for problem i

(i=1..450) and planner configuration j (j=1..864).

• We first found the shortest plan and minimum planning time for each problem among the

tested planner configurations.

min min()
i ij

j

SS = , min min()
i ij

j

T T=

• We then normalized the results by dividing the minimum plan length and minimum planning

time of each run with the corresponding problem value. For the cases where the planner could

not find a solution within the time limits, the normalized values of steps and time were set to

zero.

•

min

, 999999

0,

i

norm

ijij

ij

S

SS
S

otherwise

=

≠

,

min

, 999999

0,

i

norm

ijij

ij

T

TT
T

otherwise

=

≠

• We finally created a combined metric about plan attribute Mij, which uses a weighted sum of

the two normalized criteria:

* *norm norm
ij s ij t ijM w S w T= +

Classification Rules

Learning sets of if-then rules is an appealing learning method, due to the easily understandable

representation of rules by humans. There are various approaches to rule learning, including

transforming decision trees to rules and using genetic algorithms to encode each rule set. We will

here briefly describe another approach that is based on the idea of Sequential Covering that it has

been exploited by a number of planning systems.

Sequential covering is a family of algorithms for learning rule sets based on the strategy

of learning one rule, removing the data it covers, then iterating this process (Mitchell, 1997). The

first rule will be learned based on all the available training examples. We then remove any

positive examples covered by this rule and then invoke it again to learn a second rule based on

the remaining training examples. It is called a sequential covering algorithm because it

sequentially learns a set of rules that together cover the full set of positive examples. The final set

of rules can then be sorted so that more accurate rules will be considered first when a new

instance must be classified.

Learning a rule usually involves performing a heuristic search in the space of potential

attribute-value pairs to be added to the current rule. Depending on the strategy of this search and

the performance measure used for guiding the heuristic search several variations of sequential

covering have been developed.

The CN2 program (Clark & Niblett, 1989) employs a general to specific beam search

through the space of possible rules in search of a rule with high accuracy, though perhaps

incomplete coverage of the data. Beam search is a greedy non-backtracking search strategy in

which the algorithm maintains a list of the k best candidates at each step, rather than a single best

candidate. On each search step, specializations are generated for each of these k best candidates,

and the resulting set is again reduced to the k most promising members. A measure of entropy is

the heuristic guiding the search.

AQ (Michalski et al, 1986) also conducts a general-to-specific beam-search for each rule,

but uses a single positive example to focus this search. In particular, it considers only those

attributes satisfied by the positive example as it searches for progressively more specific

hypotheses. Each time it learns a new rule it selects a new positive example from those that are

not yet covered, to act as a seed to guide the search for this new disjunct.

IREP (Furnkranz & Widmer, 1994), RIPPER (Cohen, 1995) and SLIPPER (Cohen &

Singer, 1999) are three rule learning systems that are based on the same framework but use

reduced error pruning to prune the antecedents of each discovered rule. IREP was a first

algorithm that employed reduced-error pruning. RIPPER is an enhanced version of the IREP

approach dealing with several limitations of IREP and producing rules of higher accuracy.

SLIPPER extends RIPPER by using confidence-rated boosting and manages to achieve even

better accuracy.

Classifying executions

In order to learn classification rules from the dataset, a necessary step was to decide for the two

classes (good run or bad run) based on the value of the combined quality metric Mij. Therefore,

we split the records of the training data into two categories: a) the class of good runs consisting of

the records for which Mij was larger than a threshold and b) the class of bad runs consisting of the

remaining records. In order to create these two sets of records, we calculated the value Qij for

each run, which is given by the following formula:

,

,
ij

ij
ij

good M c
Q

bad M c

>
= ≤

where c, is the threshold constant controlling the quality of the good runs. For the Mij metric, we

used the value of 1 for both ws and wt in order to keep the balance between the two quality

criteria.

For example, for c equal to 1.6 the above equation means that "a plan is good if its

combined steps and time are at most 40% worse (bigger) than the combined minimum plan steps

and time for the same problem". Since normalized steps and time are combined with a 1:1 ratio,

the above 40% limit could also be interpreted as an average of 20% for each steps and time. This

is a flexible definition that would allow a plan to be characterized as good even if its steps are for

example 25% worse than the minimum steps as long as its time is at most 15% worse than the

minimum time, provided that their combination is at most 40% worse than the combined

minimum steps and time. In the general case the combined steps and time must be at most

(2-c)*100% worse than the combined minimum steps and time. After experimenting with various

values for c we ended up that 1.6 was the best value to be adopted for the experiments.

Modeling

The next step was to apply a suitable machine learning algorithm in order to discover a model of

the dependencies between problem characteristics, planner parameters and good planning

performance. A first requirement was the interpretability of the resulting model, so that the

acquired knowledge would be transparent and open to the inquiries of a planning expert. Apart

from developing an adaptive planner with good performance to any given planning problem, we

were also interested in studying the resulting model for interesting new knowledge and

justifications for its performance. Therefore, symbolic learning approaches were at the top of our

list.

Mining association rules from the resulting dataset was a first idea, which however was

turned down due to the fact that it would produce too many rules making it extremely difficult to

produce all the relevant ones. In our previous work (Vrakas et al, 2003a), we have used the

approach of classification based on association rules (Liu, Hsu & Ma, 1998), which induces

association rules that only have a specific target attribute on the right hand side. However, such

an approach was proved inappropriate for our current much more extended dataset.

We therefore turned towards classification rule learning approaches, and specifically

decided to use the SLIPPER rule learning system (Cohen & Singer, 1999) which is fast, robust,

easy to use, and its hypotheses are compact and easy to understand. SLIPPER generates rule sets

by repeatedly boosting a simple, greedy rule learner. This learner splits the training data, grows a

single rule using one subset of the data and then prunes the rule using the other subset. The

metrics that guide the growing and pruning of rules is based on the formal analysis of boosting

algorithms. The implementation of SLIPPER that we used handles only two-class classification

problems. This suited fine our two-class problem of "good" and "bad" performance. The output

of SLIPPER is a set of rules predicting one of the classes and a default rule predicting the other

one, which is engaged when no other rule satisfies the example to be classified. We run SLIPPER

so that the rule set predicts the class of "good" performance.

The Rule-Based Planner Tuner

The next step was to embed the learned rules in HAP as a rule-based system that decides the

optimal configuration of planning parameters based on the characteristics of a given problem. In

order to perform this task certain issues had to be addressed:

a. Should all the rules be included?

The rules that could actually be used for adaptive planning are those that associate, at the same

time, problem characteristics, planning parameters and the quality field. So, the first step was to

filter out the rules that included only problem characteristics as their antecedents. This process

filtered out 21 rules from the initial set of 79 rules. We notice here that there were no rules

including only planning parameters. If such rules existed, then this would mean that certain

parameter values are good regardless of the problem and that the corresponding parameters

should be fixed in the planner.

The remaining 58 rules that model good performance, were subsequently transformed so

that only the attributes concerning problem characteristics remained as antecedents and the

planning parameters were moved to the right-hand side of the rule as conclusions, replacing the

rule quality attribute. In this way, a rule decides one or more planning parameters based on one or

more problem characteristics.

What conflict resolution strategy should be adopted for firing the rules?

Each rule was accompanied by a confidence metric, indicating how valid a rule is, i.e. what

percentage of the relevant data in the condition confirms the conclusion-action of the rule. A

100% confidence indicates that it is absolutely certain that when the condition is met, then the

action should be taken.

The performance of the rule-based system is one concern, but it occupies only a tiny

fragment of the planning procedure, therefore it is not of primary concern. That is why the

conflict resolution strategy used in our rule-based system is based on the total ordering of rules

according to the confidence factor, in descending order. This decision was based on our primary

concern to use the most certain (confident) rules for configuring the planner, because these rules

will most likely lead to a better planning performance.

Rules are appropriately encoded so that when a rule fires and sets one or more parameters,

then all the other rules that might also set one (or more) of these parameters to a different setting

are “disabled”. In this way, each parameter is set by the most confident rule (examined first),

while the rest of the rules that might affect this parameter are skipped.

What should we do with parameters not affected by the rule system?

The experiments with the system showed that on average the rule based system would affect

approximately 4 planning parameters, leaving at the same time 3 parameters unset. According to

the knowledge model, if a parameter is left unset, its value should not affect the performance of

the planning system. However, since the model is not complete, this behavior could also be

interpreted as an inability of the learning process to extract a rule for the specific case. In order to

deal with this problem we performed a statistical analysis in order to find the best default settings

for each independent parameter.

For dealing with situations where the rule-based systems leaves all parameters unset we

calculated the average normalized steps and time for each planner configuration:

1

norm

ij
avg i

j

i

S

S =
∑

∑
,

1

norm

ii
avg i

j

i

T

T =
∑

∑

and recorded the configuration with the best sum of the above metrics, which can be seen in

Table 6.

For dealing with situations where the rule system could only set part of the parameters,

but not all of them, we repeated the above calculations for each planner parameter individually, in

order to find out if there is a relationship between individual settings and planner performance.

Again for each parameter we recorded the value with the best sum of the average normalized

steps and time. These settings are illustrated in Table 6.

Name Best Configuration Best Individual Value
Direction 0 0
Heuristic 1 1
Weights (w1 and w2) 2 2
Penalty 10 100
Agenda 100 10
Equal_estimation 1 1
Remove 0 1

Table 6: Best combined and individual values of parameters

In the future we will explore the possibility to utilize learned rules that predict bad

performance as integrity constraints that guide the selection of the unset planner parameters in

order to avoid inappropriate configurations.

The rule configurable version of HAP, which is outlined in Figure 4 contains two additional

modules, compared to the manually configurable version of the system, that are run in a pre-

planning phase. The first module, noted as Problem Analyzer, uses the problem’s representation,

constructed by the Parser, to calculate the values of the 35 problem characteristics used by the

rules. These values are then passed to the Rule System module, which tunes the planning

parameters based on the embedded rule base and the default values for unset parameters. The

values of the planning parameters along with the problem’s representation are then passed to the

planning module, in order to solve the problem.

Figure 4. HAPRC Architecture

k Nearest Neighbors

Apart from the rule-based approaches, we also experimented with other learning methodologies,

mainly in order to overcome several limitations of the former. A very interesting learning

approach, which could be easily adapted to our problem, is the k Nearest Neighbors (kNN)

algorithm. According to this approach, when the planner is faced with a new problem, it

identifies the k nearest instances from the set of training problems, aggregates the performance

results for the different planner configurations and selects the one with the best average

performance.

Problem file Domain file

Parser

Problem Analyzer

Rule system

Planner

Problem representation

Values of A1 to A35

Values of planning parameters

This is the most basic instance-based learning method for numerical examples. The

nearest neighbors of an instance are defined in terms of some distance measure for the vectors of

values of the examples. Considering the following instance x, that is described by the attributes:

() () ()1 1, ,..., nx x xα α α

where r(x) denotes the value of the instance for the rth attribute. Then the distance d of two

instances x1, x2 can be measured using any suitable L norm:

() () ()
1

,
n L

L
i j r i r j

r

d x x a x a x
=

= −∑

For L=1 we get the Manhattan distance, while for L=2 we get the Euclidean distance.

When a new instance requires classification, the k nearest neighbor approach first

retrieves the k nearest instances to this one. Then it selects the classification that most of these

instances propose.

Preparing the Training Data

According to the methodology previously described, the system needs to store two kinds of

information: a) the values for the 35 attributes for each one of the 450 problems in the training set

in order to identify the k closest problems to a new one and b) the performance (steps and time)

of each one of the 864 planner configurations for each problem in order to aggregate the

performance of the k problems and then find the best configuration.

The required data were initially in the flat file produced by the preparation process

described in a previous section. However, they were later organized as a multi-relational data set,

consisting of 2 primary tables, problems (450 rows) and parameters (864 rows), and a relation

table performances (450*864 rows), in order to save storage space and enhance the search for the

k nearest neighbors and the retrieval of the corresponding performances. The tables were

implemented as binary files, with the performances table being sorted on both the problem id and

the parameter id.

Online Planning Mode

Given a new planning problem, HAPNN first calculates the values of the problem characteristics.

Then the kNN algorithm is engaged in order to retrieve the ids of the k nearest problems from the

problems file. The number of neighbors, k, is a user-defined parameter of the planner. In the

implementation of kNN we use the Euclidean distance measure with the normalized values of the

problem attributes to calculate the nearest problem.

Using the retrieved ids and taking advantage of the sorted binary file, HAPNN promptly

retrieves the performances for all possible configurations in a k*864 two-dimensional matrix. The

next step is to combine these performances in order to suggest a single parameter configuration

with the optimal performance, based on past experience of the k nearest problems. The optimal

performance for each problem is calculated using the Mij criterion, where the two weights ws and

wt are set by the user.

We can consider the final k*864 2-dimensional matrix as a classifier combination

problem, consisting of k classifiers and 864 classes. We can combine the decisions of the k

classifiers, using the average Bayes rule, which essentially comes down to averaging the planner

scores across the k nearest problems and selecting the decision with the largest average. Thus, the

parameter configuration j (j=1..864) with the largest C is the one that is proposed and used.

1

1 k

j ij
i

C M
k =

= ∑

The whole process for the online planning mode of HAPNN is depicted in Figure 5. It is

worth noting that HAPNN actually outputs an ordering of all parameter configurations and not just

one parameter configuration. This can be exploited for example in order to output the top 10

configurations and let the user decide amongst them. Another useful aspect of the ordering, is that

when the first parameter configuration fails to solve the problem within certain time, then the

second best could be tried. Another interesting alternative in such a case is the change of the

weight setting so that time has a bigger weight. The effect of the weights in the resulting

performance is empirically explored in the experimental results section that follows.

criteria weights

ws, wt

new problem

Problems,

performances,
parameters

k nearest
neighbor

k*
86

4
n

o
rm

al
iz

ed

st
ep

s
an

d
ti

m
e

multicriteria

weighted
average k*

86
4

sc
o

re
s

average
Bayes
rule

HAP

b
es

t
sc

o
re

d
 p

ar
am

et
er

s

Figure 5. Online planning mode

Offline Incremental Training Mode

HAPNN can be trained incrementally with each new planning problem that arises. Specifically,

the planner stores each new examined planning problem, so that it can later train from it offline.

As in the training data preparation phase, training consists of running the HAP planner on the

batch of newly stored problems using all 864 value combinations of the 7 parameters. For each

run, the features of the problem, the performance of the planner (steps of the resulting plan and

required planning time) and the configuration of parameters are recorded.

The incremental training capability is an important feature of HAPNN, stemming from the

use of the kNN algorithm. As the generalization of the algorithm is postponed for the online

phase, learning actually consists of just storing past experience. This is an incremental process

that makes it possible to constantly enhance the performance of the adaptive planner with the

advent of new problems.

EXPERIMENTAL RESULTS

We have conducted four sets of comprehensive experiments in order to evaluate the potential

gain in performance offered by the adaptive way in which the planner parameters are configured

and to compare the two different approaches (rule-based and kNN). For the experiments

presented below we used HAPNN with the value of k set to 7.

All the runs of the planning systems (static and adaptive), including those used in the

statistical analysis and the machine learning process, were performed on a SUN Enterprise Server

450 with 4 ULTRA-2 processors at 400 MHz and 2 GB of shared memory. The Operating system

of the computer was SUN Solaris 8. For all experiments we counted CPU clocks and we had an

upper limit of 60 sec, beyond which the planner would stop and report that the problem is not

solved.

Adapting to problems of known domains

This experiment aimed at evaluating the generalization of the adaptive planners’ knowledge to

new problems from domains that have already been used for learning. Examining this learning

problem from the viewpoint of a machine learner we notice that it is quite a hard problem. Its

multi-relational nature (problem characteristics and planner parameters) resulted in a large

dataset, but the number of available problems (450) was small, especially compared to the

number of problem attributes (35). This gives rise to two problems with respect to the evaluation

of the planners: a) Since the training data is limited (450 problems), a proper strategy must be

followed for evaluating the planners’ performance, b) evaluating on already seen examples must

definitely be avoided, because it will lead to rather optimistic results due to overfitting.

For the above reasons we decided to perform 10-fold cross-validation. We have split the

original data into 10 cross-validation sets, each one containing 45 problems (3 from each of the

15 domains). Then we repeated the following experiment 10 times: In each run, one of the cross-

validation sets was withheld for testing and the 9 rest were merged into a training set. The

training set was used for learning the models of HAPRC and HAPNN and the test set for measuring

their performance. Specifically, we calculated the sum of the average normalized steps and time.

In addition we calculated the same metric for the best static configuration based on statistical

analysis of the training data (HAPMC), in order to calculate the gain in performance. Finally, we

calculated the same metric for the best configuration for any given problem (HAPORACLE) in order

to compare with the maximum performance that the planners could achieve if it had an oracle

predicting the best configuration. The results of each run were averaged and thus a proper

estimation was obtained, which is presented in Table 7.

Fold HAPMC HAPORACLE HAPRC HAPNN

1 1,45 1,92 1,60 1,74

2 1,63 1,94 1,70 1,73

3 1,52 1,94 1,60 1,70

4 1,60 1,94 1,70 1,75

5 1,62 1,92 1,67 1,73

6 1,66 1,92 1,67 1,76

7 1,48 1,91 1,69 1,72

8 1,47 1,91 1,57 1,74

9 1,33 1,91 1,47 1,59

10 1,43 1,92 1,65 1,73

 Average 1,52 1,92 1,63 1,72

Table 7. Comparative results for adapting to problems of known domains

Studying the results of Table 7 we notice that both adaptive versions of HAP significantly

outperformed HAPMC. The difference in the performance between HAPRC and HAPMC was 0.11

on average, which can be translated as a 7% average gain combining both steps and time. HAPNN

performed even better, scoring on average 0.2 more (13% gain) than the static version. Moreover,

the auto-configurable versions outperformed the static one in all folds, exhibiting a consistently

good performance. This shows that the learning methodologies we followed were fruitful and

resulted in models that successfully adapt HAP to unknown problems of known domains.

Adapting to problems of unknown domains

The second experiment aimed at evaluating the generalization of the adaptive planners’

knowledge to problems of new domains that have not been used for learning before. In a sense

this would give an estimation for the behavior of the planner when confronted with a previously

unknown problem of a new domain.

This is an even harder learning problem considering the fact that there are very few

domains that have been used for learning (15), especially compared again to the 35 problem

attributes. To evaluate the performances of HAPRC and HAPNN we used leave-one-(domain)-out

cross-validation. We split the original data into 15 cross-validation sets, each one containing the

problems of a different domain. Then we repeated the following experiment 15 times: In each

run, one of the cross-validation sets was withheld for testing and the 14 rest were merged into a

training set. As in the previous experiment, the training set was used for learning the models and

the test set for measuring its performance.

The results show that all the planners performed worse than the previous experiment. Still

HAPRC and HAPNN managed to increase the performance over HAPMC, as it can be seen in Table

8.

We notice a 3% average gain of HAPRC and 2% average gain of HAPNN over the static

version in the combined metric. This is a small increase in performance, but it is still a success

considering that there were only 15 domains available for training. The enrichment of data from

more domains will definitely increase the accuracy of the models, resulting in a corresponding

increase in the performance of the adaptive systems.

Test Domain HAPMC HAPORACLE HAPRC HAPNN

Assembly 1,31 1,89 1,46 1,08

Blocks 1,13 1,98 1,10 1,77

Blocks_3op 1,69 1,99 1,52 1,81

Driver 1,52 1,92 1,49 1,45

Ferry 1,03 2,00 1,66 1,41

Freecell 1,43 1,96 1,39 1,70

Gripper 1,75 1,99 1,62 1,61

Hanoi 1,08 1,87 1,03 1,10

Logistics 1,66 1,91 1,69 1,75

Miconic 1,79 1,96 1,71 1,07

Mystery 1,21 1,97 1,11 0,88

Sokoban 1,20 1,96 1,57 1,45

Tsp 1,56 1,74 1,56 1,29

Windows 1,30 1,78 1,26 1,55

Zeno 1,26 1,93 1,34 1,35

Average 1,39 1,92 1,43 1,42

Table 8. Comparative results for adapting to problems of unknown domains

Scalability of the methodology

The third experiment aimed at showing the ability of the adaptive systems to learn from easy

problems (problems that require little time to be solved) and to use the acquired knowledge as a

guide for difficult problems. It is obvious that such a behavior would be very useful, since

according to the methodology, each problem in the training set must be attacked with every

possible combination of the planner’s parameters and for hard problems this process may take

enormous amounts of time.

In order to test the scalability of the methodology, we have split the initial data set into

two sets: a) the training set containing the data for the 20 easiest problems from each domain and

b) the test set containing the 10 hardest problems from each domain. The metric used for the

discrimination between hard and easy problems was the average time needed by the 864 different

planner setups to solve the problem. We then used the training set in order to learn the models

and statistically find the best static configuration of HAP and tested the two adaptive planners

and HAPMC on the problems of the test set. For each problem we have also calculated the

performance of HAPORACLE in order to show the maximum performance that could have been

achieved by the planner.

The results of the experiments, which are presented in Table 9, are quite impressive. The

rule based version managed to outperform the best static version in 11 out of the 15 domains and

its performance was approximately 40% better on average. Similarly HAPNN was better in 11

domains too and the average gain was approximately 33%. There are some very interesting

conclusions that can be drawn from the results:

• With the exception of a small number of domains, the static configurations which are

effective for easy problems do not perform well for the harder instances of the same

domains.

• There are some domains (e.g. Hanoi) where there must be great differences between the

morphology of easy and hard problems and therefore neither the statistical nor the

learning analyses can effectively scale up.

• It is clear that some domains present particularities in their structure and it is quite

difficult to tackle them without any specific knowledge. For example, in Freecell all the

planners and specifically HAPRC and HAPMC that were trained from the rest of the

domains only, did not perform very well (see Table 8), while the inclusion of Freecell’s

problems in their training set, gave them a boost (see Table 9).

• There are domains where there is a clear trade-off between short plans and little planning

time. For example, the low performance of HAPORACLE in the Tsp domain shows that the

configurations that result in short plans require a lot of planning time and the ones that

solve the problems quickly produce bad plans.

• The proposed learning paradigms can scale up very well and the main reason for this is

the general nature of the selected problem attributes.

Test Domain HAPMC HAPORACLE HAPRC HAPNN

Assembly 0,91 1,86 1,64 1,80

Blocks 0,91 1,86 1,64 1,72

Blocks_3op 1,86 1,98 1,72 1,86

Driver 1,22 1,92 1,72 1,51

Ferry 0,31 2,00 1,89 1,85

Freecell 1,86 1,96 1,87 1,84

Gripper 1,68 1,99 1,76 1,96

Hanoi 0,45 1,80 1,19 0,50

Logistics 1,68 1,87 1,80 1,81

Miconic 1,93 1,96 1,93 1,93

Mystery 0,67 1,94 1,73 1,52

Sokoban 0,79 1,92 1,66 1,47

Tsp 1,35 1,54 1,32 1,46

Windows 1,52 1,65 1,49 1,42

Zeno 0,89 1,91 1,77 1,29

Average 1,20 1,88 1,68 1,60

Table 9. Scalability of the methodology

Ability to learn a specific domain

The fourth experiment aimed at comparing general models, which have been learned from a

variety of domains versus specific models that have been learned from problems of a specific

domain. The reason for such an experiment is to have a clear answer to the question whether the

planning system could be adapted to a target domain by using problems of solely this domain.

The rationale behind this is that a general-purpose domain independent planner can be used

without having to hand code it in order to suit the specific domain. Furthermore, the experiment

can also show how disorienting can the knowledge from other domains be.

In order to carry out this experiment, we created 15 train sets, each one containing the 20

easiest problems of a specific domain and 15 test sets with the 10 hardest instances. The next step

was to learn specific models for each domain, and test them on the hardest problems of the same

domain. For each domain we compared the performance of the specialized models versus the

performance of general models, which have been trained from the 20 easier problems from all 15

domains (see previous subsection). The results from the experiment are presented in Table 10,

where:

• HAPMC corresponds to the manually configured version according to the statistical

analysis on the 20 easy problems of each domain,

• specific HAPRC and HAPNN correspond to the adaptive versions trained only from the 20

easier problems of each domain,

• general HAPRC and HAPNN correspond to the adaptive versions trained from the 300

problems (20 easier problems from each one of the 15 domains) and

• HAPOracle corresponds to the ideal configuration.

According to the results presented in Table 10, HAPRC outperforms the best static one in

13 out of the 15 domains and on average it is approximately 7% better. This shows that we can

also induce efficient models that perform well in difficult problems of a given domain when

solely trained on easy problems of this domain. However, this is not the case for HAPNN, whose

not very good performance indicates that the methodology requires more training data, especially

because there is a large number of attributes.

Comparing the specialized models of HAPRC with the general ones, we see that it is on

average 4% better. This shows that in order to adapt to a single domain, it is better to train the

planner exclusively from problems of that domain, although such an approach would

compromise the generality of the adaptive planner. The results also indicate that on average there

is no actual difference between the performance of the general and the specific versions of

HAPNN. To some extend this behavior is reasonable and can be justified by the fact that most of

the nearest neighbors of each problem belong to the same domain and no matter how many

redundant problems are included in the training set, the algorithm will select the same problems

in order to learn the model.

 HAPRC HAPNN

Test Domain HAPMC HAPORACLE specific general specific general

Assembly 1,68 1,86 1,72 1,64 1,84 1,80

Blocks 1,68 1,86 1,74 1,64 1,64 1,72

Blocks_3op 1,85 1,98 1,88 1,72 1,89 1,86

Driver 1,68 1,92 1,78 1,72 1,22 1,51

Ferry 1,83 2,00 1,85 1,89 1,85 1,85

Freecell 1,88 1,96 1,85 1,87 1,84 1,84

Gripper 1,66 1,99 1,78 1,76 1,96 1,96

Hanoi 1,00 1,80 1,38 1,19 0,50 0,50

Logistics 1,80 1,87 1,81 1,80 1,81 1,81

Miconic 1,93 1,97 1,93 1,93 1,93 1,93

Mystery 1,65 1,94 1,83 1,73 1,52 1,52

Sokoban 1,61 1,92 1,88 1,66 1,57 1,47

Tsp 1,36 1,54 1,38 1,32 1,46 1,46

Windows 1,35 1,65 1,48 1,49 1,46 1,42

Zeno 1,43 1,91 1,80 1,78 1,44 1,29

Average 1,63 1,88 1,74 1,68 1,60 1,60

Table 10. General vs. specialized models

DISCUSSION AND CONCLUSION

This chapter presented our research work in the area of using Machine Learning techniques in

order to infer and utilize domain knowledge in Automated Planning. The work consisted of two

different approaches: The first one utilizes classification rules learning and a rule-based system

and the second one uses a variation of the k-Nearest Neighbors learning paradigm.

In the first approach the learned knowledge consists of rules that associate specific values

or value ranges of measurable problem attributes with the best values for one or more planning

parameters, such as the direction of search or the heuristic function. The knowledge is learned

offline and it is embedded in a rule system, which is utilized by the planner in a pre-processing

phase in order to decide for the best setup of the planner according to the values of the given

problem attributes.

The second approach is also concerned with the automatic configuration of planning

systems in a pre-processing phase, but the learning is performed on-line. More specifically, when

the system is confronted with a new problem, it identifies the k nearest instances from a database

of solved problems and aggregates the planner setups that resulted in the best solutions according

to the criteria imposed by the user.

The model of the first approach is very compact and it consists of a relatively small

number (less than 100) of rules that can be easily implemented in the adaptive system. Since the

size of the model is small it can be easily consulted for every new problem and the overhead

imposed to the total planning time is negligible. However, the inference of the model is a

complicated task that involves many subtasks and requires a significant amount of processing

time. Therefore, the model cannot be easily updated with new problems. Furthermore, if the user

wishes to change the way the solutions are evaluated (e.g. emphasizing more on plan size) this

would require rebuilding the whole model.

On the other hand, the model of the k Nearest Problems approach is inferred on-line every

time the system is faced with a new problem. The data that are stored in the database of the

system are in raw format and this allows incremental expansion and easy update. Furthermore,

each run is evaluated on-line and the weights of the performance criteria (e.g. planning time or

plan size) can be set by the user. However, since the system maintains raw data for all the past

runs, it requires a significant amount of disk size which increases as new problems are added in

the database. Moreover, the overhead imposed by the processing of data may be significant,

especially for large numbers of training problems.

Therefore, the decision on which method to follow strongly depends on the application

domain. For example, if the planner is used as a consulting software for creating large plans, e.g.

for logistics companies, then neither the size requirements or the few seconds overhead of the k

Nearest Problems would be a problem. On the other hand, if the planner must be implemented as

a guiding system on a robot with limited memory then the rule based model would be more

appropriate.

According to the experimental results, both systems have exhibited promising

performance that is on average better than the performance of any statistically found static

configuration. The speedup improves significantly when the system is tested on unseen problems

of known domains, even when the knowledge was induced by far easier problems than the tested

ones. Such a behavior can prove very useful in customizing domain independent planners for

specific domains using only a small number of easy-to-solve problems for training, when it

cannot be afforded to reprogram the planning system.

The speedup of our approach compared to the statistically found best configuration can be

attributed to the fact that it treats planner parameters as associations of the problem

characteristics, whereas the statistical analysis tries to associate planner performance with planner

settings, ignoring the problem morphology.

In the future, we plan to expand the application of Machine Learning to include more

measurable problem characteristics in order to come up with vectors of values that represent the

problems in a unique way and manage to capture all the hidden dynamics. We also plan to add

more configurable parameters of planning, such as parameters for time and resource handling and

enrich the HAP system with other heuristics from state-of-the-art planning systems. Moreover, it

is in our direct plans to apply learning techniques to other planning systems, in order to test the

generality of the proposed methodology.

In addition, we will explore the applicability of different rule-learning algorithms, such as

decision-tree learning that could potentially provide knowledge of better quality. We will also

investigate the use of alternative automatic feature selection techniques that could prune the

vector of input attributes thus giving the learning algorithm the ability to achieve better results.

The interpretability of the resulting model and its analysis by planning experts will also be a point

of greater focus in the future.

REFERENCES

Ambite, J. L., Knoblock, C., & Minton, S. (2000). Learning Plan Rewriting Rules. Proceedings

of the 5th International Conference on Artificial Intelligence Planning and Scheduling, 3-12.

Bonet, B., and Geffner, H. (1999). Planning as Heuristic Search: New Results, Proceedings of the

5th European Conference on Planning, 360-372.

Bonet, B., Loerincs, G., and Geffner, H. (1997). A robust and fast action selection mechanism for

planning. Proceedings of the 14th International Conference of AAAI, 714-719.

Borrajo, D., & Veloso, M. (1996). Lazy Incremental Learning of Control Knowledge for

Efficiently Obtaining Quality Plans. Artificial Intelligence Review. 10, 1-34.

Carbonell, J. G. (1983). Learning by Analogy: Formulating and generalizing plans from past

experience. Machine Learning: An Artificial Intelligence Approach. Tioga Press, 137-162.

Carbonell, J., Knoblock, C. & Minton, S. (1991). PRODIGY: An integrated architecture for

planning and learning, Architectures for Intelligence. Lawrence Erlbaum Associates, 241-278.

Cardie, C. (1994). Using decision trees to improve case-based learning. Proceedings of the 10th

International Conference on Machine Learning, 28-36.

Clark, P. & Niblett, R. (1989). The CN2 induction algorithm. Machine Learning. 3(4), 261-284.

Cohen, W. & Singer Y. (1999). A Simple, Fast, and Effective Rule Learner, Proceedings of the

16th Conference of AAAI, 335-342.

Cohen, W. (1995). Fast Effective Rule Induction, Proceedings of the 12th International

Conference on Machine Learning, 115-123.

Ellman, T. (1989). Explanation-based learning: A survey of programs and perspectives.

Computing Surveys. 21(2), 163-221.

Edelkamp, S., & Helmert, M. (2001). The Model Checking Integrated Planning System. AI-

Magazine. Fall, 67-71.

Etzioni, O. (1993). Acquiring Search-Control Knowledge via Static Analysis. Artificial

Intelligence. 62 (2). 265-301.

Fikes, R., Hart, P., & Nilsson, N. (1972). Learning and Executing Generalized Robot Plans.

Artificial Intelligence. 3, 251-288.

Furnkranz J. & Widmer G. (1994). Incremental reduced error pruning. Proceedings of the 11th

International Conference on Machine Learning, 70-77.

Gerevini, A., Saetti, A. & Serina, I. (2003). Planning through Stochastic Local Search and

Temporal Action Graphs. Journal of Artificial Intelligence Research. 20, 239-290.

Gopal, K. (2000). An Adaptive Planner based on Learning of Planning Performance. Master

Thesis, Office of Graduate Studies, Texas A&M University.

Hammond, K. (1989). Case-Based Planning: Viewing Planning as a Memory Task. Academic

Press.

van Harmelen, F. & Bundy, A. (1988). Explanation-based generalization = partial evaluation.

Artificial Intelligence. 3(4), 251-288.

Hoffmann, J., & Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through

Heuristic Search. Journal of Artificial Intelligence Research. 14, 253-302.

Howe, A., & Dahlman, E. (1993). A critical assessment of Benchmark comparison in Planning.

Journal of Artificial Intelligence Research. 1, 1-15.

Howe, A., Dahlman, E., Hansen, C., vonMayrhauser, A., & Scheetz, M. (1999). Exploiting

Competitive Planner Performance. Proceedings of the 5th European Conference on Planning, 62-

72.

Jones, R. & Langley, P. (1995). Retrieval and Learning in Analogical Problem Solving.

Proceedings of the 7th Conference of the Cognitive Science Society, 466-471.

Kambhampati, S., & Hendler, H. (1992). A Validation-Structure-Based Theory of Plan

Modification and Reuse. Artificial Intelligence. 55, 193-258.

Knoblock, C. (1990). Learning Abstraction Hierarchies for Problem Solving. Proceedings of the

8th National Conference on Artificial Intelligence, 923-928.

Kolodner, J. L. (1993). Case-based Reasoning. Morgan Kaufmann.

Kuipers, B. (1994). Qualitative Reasoning: Modeling and Simulation with Incomplete

Knowledge. MIT Press.

Langley, P., & Allen, J. A. (1993). A Unified Framework for Planning and Learning. Machine

Learning Methods for Planning, S. Minton ed. Morgan Kaufman, 317-350.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating Classification and Association Rule Mining.

Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining

(Plenary Presentation).

Martin, M., & Geffner, H. (2000). Learning Generalized Policies in Planning Using Concept

Languages. Proceedings of the 7th International Conference on Knowledge Representation and

Reasoning, 667-677.

Michalski, R. S., Mozetic, I., Hong, J. & Lavrac, H. (1986). The Multi-Purpose Incremental

Learning System AQ15 and its Testing Application to Three Medical Domains. Proceedings of

the 5th National Conference on Artificial Intelligence, 1041-1045.

Minton, S., (1996). Automatically Configuring Constraint Satisfaction Programs: A Case Study.

Constraints. 1(1/2), 7-43.

Minton, S. (1988). Learning search control knowledge: An explanation-based approach. Kluwer

Academic Publishers.

Mitchell, T. (1977). Machine Learning. McGraw-Hill.

Refanidis, I., and Vlahavas, I. (2001). The GRT Planner: Backward Heuristic Construction in

Forward State-Space Planning. Journal of Artificial Intelligence Research. 15, 115-161.

Rivest, R. (1987). Learning Decision Lists. Machine Learning. 2(3), 229-246.

Sutton, R. (1990). Integrated Architectures for learning, planning and reacting based on

approximating dynamic programming. Proceedings of the 7th International Conference on

Machine Learning, 216-224.

Sutton, R. S. & Barto A.G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Tsoumakas, G., Vrakas, D., Bassiliades, N., & Vlahavas, I. (2004). Using the k nearest problems

for adaptive multicriteria planning. Proceedings of the 3d Hellenic Conference on Artificial

Intelligence, 132-141.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrating

planning and learning: The PRODIGY architecture. Journal of Experimental and Theoretical

Artificial Intelligence. 7(1), 81-120.

Vrakas, D., & Vlahavas, I., (2001). Combining progression and regression in state-space heuristic

planning. Proceedings of the 6th European Conference on Planning, 1-12.

Vrakas, D. & Vlahavas, I. (2002). A heuristic for planning based on action evaluation.

Proceedings of the 10th International Conference on Artificial Intelligence: Methodology,

Systems and Applications, 61-70.

Vrakas, D., Tsoumakas, G., Bassiliades, N., & Vlahavas, I., (2003a). Learning rules for Adaptive

Planning. Proceedings of the 13th International Conference on Automated Planning and

Scheduling, 82-91.

Vrakas, D., Tsoumakas, G., Bassiliades, N., & Vlahavas, I., (2003b). Rule Induction for

Automatic Configuration of Planning Systems. Technical Report TR-LPIS-142-03 , LPIS Group,

Dept. of Informatics, Aristotle University of Thessaloniki, Greece.

Wang, X., (1996). A Multistrategy Learning System for Planning Operator Acquisition.

Proceedings of the 3rd International Workshop on Multistrategy Learning, 23-25.

Zimmerman, T., & Kambhampati, S., (2003). Learning-Assisted Automated Planning: Looking

Back, Taking Stock, Going Forward. AI Magazine. 24(2), 73-96.

