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Abstract 

 

This paper describes the integration of a multidatabase system and a knowledge-base system to support 

the data-integration component of a Data Warehouse. The multidatabase system integrates various 

component databases with a common query language, however it does not provide capability for schema 

integration and other utilities necessary for Data Warehousing. The knowledge base system offers in 

addition a declarative logic language with second-order syntax but first-order semantics for integrating the 

schemes of the data sources into the warehouse and for defining complex, recursively defined materialized 

views. Furthermore, deductive rules are also used for cleaning, checking the integrity and summarizing the 

data imported into the Data Warehouse. The Knowledge Base System features an efficient incremental 

view maintenance mechanism that is used for refreshing the Data Warehouse, without querying the data 

sources. 
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1. Introduction 

A Data Warehouse is a repository that integrates information from multiple data sources, which may or 

may not be heterogeneous and makes them available for decision support querying and analysis [13]. There are 

two main advantages to data warehouses. First, they off-load decision support applications from the original, 

possibly on-line transaction, database systems. Second, they bring together information from multiple sources, 

thus providing a consistent database source for decision support queries. 

Data warehouses store materialized views in order to provide fast and uniform access to information that 

is integrated from several distributed data sources. The warehouse provides a different way of looking at the data 

than the databases being integrated. Materialized views collect data from databases into the warehouse, but 

without copying each database into the warehouse. Queries on the warehouse can then be answered using the 

views instead of accessing the remote databases. When modification of data occurs on remote databases, they are 

transmitted to the warehouse. Incremental view maintenance techniques are used to maintain the views 

consistent with the modifications. 

Multidatabase systems are confederations of pre-existing, autonomous and possibly heterogeneous 

database systems [32]. The pre-existing database systems that participate in the multidatabase are called local or 

component database systems. Usually the term "multidatabase" denotes nonfederated systems that integrate 

various heterogeneous database systems by supplying a common query language for specifying queries and 

transactions, without a global, integrated schema. On the other hand, federated database systems support partial 

or total integration of the schemata of their component database systems. 

From the above definitions, it is evident that there are many similarities between federated databases and 

data warehouses, and the former can become the infrastructure for building and maintaining the latter. However, 

before a federated database can be used for such a task, it must be supplied with powerful materialized view 

definition and maintenance tools in order to: 

• keep the data stored at the warehouse consistent with the data modifications of the component 

databases, and 

• provide for the data cleansing, integrity checking and summarizing needs of a data warehouse. 

A nonfederated database system can also be used for Data Warehousing if a schema integration 

mechanism that provides uniform and transparent access to the data of the underlying component databases is 

used. 

In this paper we argue that logic offers the desired power and flexibility to data warehousing and we 

describe the integration of a nonfederated multidatabase system [29] with a knowledge-base system [7], which 

provides the data-integration component of a Data Warehouse, fulfilling all the above requirements. It must be 

noticed that the system described in the paper is a prototype that tests the usefulness of logic in data warehousing 
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and cannot be considered as an industrial-strength warehouse system, which also requires a query and analysis 

component to support the information needs of specific end-users [37]. 

The actual contribution of this work is the integration of a logic language into the InterBase multidatabase 

[29] so that complex materialized views can be easily and efficiently defined and maintained. Furthermore, logic 

rules can be used for several data warehousing utilities, such as data cleansing, integrity checking and 

summarization. 

In addition, this paper extends the logic language presented in previous work of ours [5, 6, 7] with a 

second-order logic syntax (i.e. variables can range over class and attribute names), which is unambiguously 

translated into first-order logic (i.e. variables can range over only class instances and attribute values). Second -

order syntax proves extremely valuable for integrating heterogeneous database schemes and data models. 

At the core of the knowledge base system lays an active OODB with metaclasses [6] that supports events 

and active rules and also integrates declarative rules (deductive and production rules). These features provide: 

• Languages and efficient mechanisms for defining self-maintainable complex materialized views; 

• Rich structural and behavioral representation capabilities due to the powerful mechanism of 

metaclasses. 

The declarative rules of the knowledge base system offer a flexible, multiple purpose mechanism in the 

Data Warehouse, for: 

• Defining and maintaining a global integrated schema;  

• Defining and maintaining relational, recursive and aggregated views; 

• Constructing and using data warehousing tools, such as data cleansing, integrity constraint checking, 

and summarization. 

The outline of this paper is as follows: Section 2 presents related work concerning schema integration and 

materialized view maintenance in Data Warehouses and multidatabases; Section 3 overviews the architecture of 

the system; Section 4 describes the deductive rule mechanism for defining and maintaining complex views; 

Section 5 presents the method for translating and integrating the schemata of heterogeneous component database 

systems; and Section 6 discusses how deductive rules are used to provide for several necessary data-integration 

utilities for the Data Warehouse, such as data cleansing, integrity checking and summarization. Finally, Section 

7 concludes this paper and discusses future work. 

 

2. Related Work 

This section briefly surveys several research issues and technologies that have contributed to the 

development of the InterBaseKB framework for data warehousing, namely integration of heterogeneous data and 

materialization of views. Furthermore, the relationships of these investigations with InterBaseKB are indicated. 

Finally, we briefly discuss the relationship of InterBaseKB with our previous research. 
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2.1 Schema Integration 

There are two broad categories for integrating the schemata of individual, heterogeneous databases. 

Object-Oriented (common) data model. Most of the existing approaches for schema integration belong to 

this category [32, 21, 20, 3, 10]. The databases participating in the federation are mapped to a common data 

model, which most commonly is object-oriented that acts as an "interpreter" among them. Furthermore, a 

common view that hides the structural differences on the schemas of the heterogeneous databases offers 

integration transparency. The major problem associated with the approaches in this category is the amount of 

human participation required for obtaining the mappings between the schemas of the object-oriented common 

data model and the data models of the heterogeneous databases. 

Higher-order logics. The second approach for schema integration involves defining a higher-order 

language that can express relationships between the meta-information corresponding to the schemata of the 

individual databases [22, 25]. Thus, a common data model is not required, but the higher-order language plays 

the role of the data model. The major advantage of this approach is the declarativeness it derives from its logical 

foundation. The approaches above, however, are targeted towards the integration of heterogeneous relational 

databases into a multidatabase. 

Finally, an interesting approach that falls in between the above two categories is [4], an extensible logic-

based meta-model that is able to capture the syntax and semantics of various data models. However, the second-

order nature of this approach probably makes impractical an efficient implementation on a real database system; 

in addition the semantics are quite complex. 

Our approach, a combination of the above approaches, is targeted towards the integration of 

heterogeneous data sources with varying data models through materialized views in a data warehouse. More 

specifically, we provide a declarative logic-based language with second-order syntax, which is translated (using 

the metaclass schema of the OODB), into a set of first-order deductive rules. These deductive rules define a 

common view, which is the global schema for the integrated heterogeneous databases using the default view 

definition and incremental maintenance mechanism of the system. In this way, we combine the declarativeness 

and soundness of first-order logic and the flexibility of meta-models and second-order syntax, along with the 

rich structural and behavioral capabilities of an object-oriented data model. Finally, we efficiently implement the 

schema integration mechanism using the event-driven mechanisms of an active database. 

Another interesting use of logic in multidatabase systems is querying specification through concurrent 

logic programming languages, such as VPL [23], which provide the specification of dynamic, parallel querying 

and static, sequential schema integration. 
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2.2 Maintenance of Materialized Views 

Many incremental view maintenance algorithms have been developed, for centralized relational [19, 11, 

12], and object-oriented [24, 1] database systems, as well as for distributed systems, such as data warehouses [2, 

41, 33, 40]. The main difference of view maintenance between a centralized and a distributed system is that in 

centralized environments, base and view data are in the same place; therefore, the former are always available 

for querying in order to maintain the latter consistently. On the other hand, in a data warehouse, the maintenance 

of the views may require the querying of remote data sources [41], which may be unavailable for various 

reasons, unless self-maintainability of views is guaranteed [33]. Furthermore, the remote accesses may delay the 

process of maintenance. 

The approach of [11] (and its generalization [12]) uses multiple active rules to incrementally maintain the 

materialized views or derived data, respectively. Our approach instead translates one deductive rule into a single 

active rule using a discrimination network matching technique [5, 6]. The main advantages of our approach are 

a) easier rule maintenance, b) centralised rule selection and execution control, c) straightforward implementation 

of traditional conflict resolution strategies of KBSs, and d) net effect of events. Furthermore, the performance 

comparison of our approach with the previous approaches (in [7]) showed that under set-oriented rule execution, 

which is required for bulk warehouse updates, our approach is considerably faster. 

For the maintenance of the derived objects, we use a counting algorithm that is similar to the one 

described in [19]. However, they use the counting algorithm only for non-recursive views while for the recursive 

ones, they use a similar algorithm with [12]. In contrast, we use the counting algorithm for recursive views as 

well since the calculation of derived objects in our system always terminates even for infinite derivation trees 

[7]. 

The approaches of [2, 41, 33, 40] for view maintenance in data warehouses follow an approach similar to 

[11] although they might not use active rules explicitly. However, the functionality is the same. The work 

presented in [2, 41] is concerned with the maintenance anomalies that may arise when the maintenance 

algorithms query directly the data sources in order to maintain the views at the warehouse. The approach of [33] 

eliminates the need to query the data sources by replicating parts of the base data that are absolutely necessary 

for the maintenance of the views. The replicated base data along with the views are self-maintainable. 

Our approach also creates self-maintainable views; therefore, there is no need to be concerned with the 

maintenance anomalies of [41], when querying the data sources, as in WHIPS [37] or Heraclitus [40]. Compared 

to other approaches to self-maintainability, we do not put any special effort to infer which base data should be 

replicated [33, 27] or to calculate “view complements” [26], because all the necessary information is "stored" 

inside the memories of the two-input events of the discrimination network. 

In contrast to almost all the previous approaches in data warehousing, our approach handles also 

recursively-defined views, heir to using deductive rules and stratification for defining and maintaining them. 
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2.3 InterBaseKB Features 

In conclusion, the distinct features of InterBaseKB compared to previous approaches to data warehousing 

and view materialization are the following: 

• Combination of the declarativeness of logic and the flexibility of second-order data models and syntax, 

along with the rich structural and behavioral capabilities of an object-oriented data model for the 

schema integration of heterogeneous data sources with varying data models. 

• Efficient implementation of the schema integration mechanism using the event-driven rules of an 

active database. 

• Efficient, incremental implementation of the view materialization through the translation of deductive 

rules into one active rule and a discrimination network. 

• Termination of the calculation for infinite derivations due to the event-based mechanism. 

• Self-maintainability of views taking advantage of the discrimination network and not using source data 

replication. 

• Use of a single rule language and mechanism for various purposes in a Data Warehouse, such as data 

cleaning, integrity checking, and summarization. 

Compared to previous work of ours in multidatabases [29], InterBaseKB mainly offers a logic language and 

an efficient mechanism for defining and self-maintaining complex materialized views. In this way, the 

multidatabase system is extended to become the data-integration component of a data warehouse, since 

deductive rules are used for multiple vital purposes of data warehousing. This paper presents new techniques and 

protocols for exploiting the resources of the multidatabase system for integrating it with the knowledge base 

system. 

Finally, comparing this work with previous works of ours in knowledge base systems [5, 6, 7] InterBaseKB 

offers: 

• A second-order logic language with first-order semantics for integrating heterogeneous schemes and 

data models; 

• New uses for production and deductive rules in terms of Data Warehousing, such as data cleansing, 

integrity checking and summarization. 

The rationale for using an active OO knowledge base system to support data warehousing includes the 

following: 

• High-level, deductive rules provide simplicity, declarativeness, and ubiquity in supporting functionality 

for data warehousing, such as view definition and maintenance, heterogeneous schema integration, data 

cleansing, integrity checking, and data summarization. 

• Object-orientation offers rich data and knowledge modeling capabilities using the powerful and 

flexible mechanism of metaclasses. Specifically, the use of metaclasses in InterBaseKB contributes to 

the extensibility of the rule system [7] and the metamodeling ability that allows the translation of 
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second-order rule syntax into first-order semantics (see Section 5.2). Furthermore, we are currently 

investigating the use of versatile OO data types to implement OLAP multi-dimensionality [39]. 

• Commercial OODB systems do not offer the flexibility of metaclasses that our core Prolog-based 

OODB system [31] exhibits; therefore, the latter serves at best our purposes for fast prototyping and 

experimentation. 

• Finally, our object-oriented KBS offers a natural and seamless integration with InterBase* 

multidatabase, which is also object-oriented. 

 

3. The InterBaseKB System 

In this section we describe the architecture of the InterBaseKB system along with the functionality of each 

of its subsystems. 

The InterBaseKB system extends the InterBase* multidatabase [29, 9] with a KB module (KBM) that is 

responsible for integrating the schema of the component database systems and for running the inference engine 

that materializes the views of the component databases inside the data warehouse. The overall system 

architecture is shown in Figure 1. The components of the InterBaseKB system are the following: 

InterBaseKB Server. This server maintains data dictionaries and is responsible for processing InterSQL 

queries, as in the InterBase* system. Furthermore, it hosts the materialized views of the data warehouse and 

Knowledge Base Module (KBM) that runs the engine for creating and maintaining those views. 

Old InterBase Clients. The old InterBase* clients can still be used with InterBaseKB and issue InterSQL 

[30] queries against the component databases or the materialized views of the data warehouse which are stored 

inside the InterBaseKB server's database. 
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Figure 1. The Architecture of the InterBaseKB System 
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Knowledge Base Module (KBM). This module is part of the InterBaseKB server and includes an active 

OODB, extended with declarative rules and an inference engine for: 

• Integrating the schemes of the component databases; 

• Defining and maintaining the materialized views of the data warehouse; 

• Providing tools for data warehousing, such as data cleansing, integrity checking and summarizing. 

InterBaseKB Clients. These new clients have to be used in order to access the extended features of 

InterBaseKB, like global integrated schema, updateable materialized views, purely object-oriented database 

programming language, and declarative rules for programming expert database applications plus advanced data 

warehousing utilities, such as data cleansing, integrity checking and summarization. 

Component Database Systems (CDBSs). These are the heterogeneous systems that are integrated into the 

multidatabase. Furthermore, they are the data sources for the data warehouse. 

Component System Interfaces (CSIs). These components act as an interface for the InterBaseKB server to 

the heterogeneous CDBSs. 

 

3.1 The InterBaseKB Server 

The InterBaseKB server hosts the base data and materialized views of the data warehouse. That means that 

the users of the data warehouse need not access the source data of the CDBSs but can instead directly access 

either the base data or the views inside the warehouse. However, the old application programs written for the 

nonfederated multidatabase system (InterBase*) can still access the source data through the InterBaseKB server. 

In addition to data warehousing, the InterBaseKB server is also used to maintain data for intelligent 

applications that run on top of the Data Warehouse for Decision Support. These data are read-write and not read-

only, as the materialized views are. 

The InterBaseKB server extends the InterBase* server with triggering capabilities. This means that when an 

InterBaseKB client inserts, deletes or updates data in the InterBaseKB server's database, an event is raised that 

signals the occurrence of such a data modification action. This event is communicated to the KBM and possibly 

triggers some active or declarative rule. 

On the other hand, modifications to the data of the CDBSs are not captured by the triggering system of the 

InterBaseKB server but are handled by the CSIs as explained later, in Section 3.3. However, the changes that are 

detected at the CSIs level are propagated to the triggering subsystem of the InterBaseKB server, which is 

responsible for delegating it to the KBM for further processing. 

 

3.2 InterBase Clients 

The old InterBase clients are the clients of the nonfederated multidatabase system (InterBase*). They have 

been kept in InterBaseKB to support the old applications. They connect to the InterBaseKB server and issue 

InterSQL queries against the component databases or the materialized views of the data warehouse which are 
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stored inside the InterBaseKB server's database. They cannot be connected to the KBM because InterSQL cannot 

be translated to the fully object-oriented programming language of the KBM. 

The InterBaseKB clients are simple clients that accept user queries interactively or user programs in batch 

mode and forward them through the network to the KBM. The language used is Prolog extended with OO and 

persistence features, like OIDs, messages, etc. Notice that currently user cannot use SQL through the 

InterBaseKB clients. 

 

3.3 The Component System Interfaces 

The CSIs act as an interface between the CDBSs and the InterBaseKB server. They translate InterSQL 

queries and commands to the native query language of the CDBS, and translate back the results, therefore they 

are specific for each different type of CDBS. While this is adequate for InterBase*, in InterBaseKB it is necessary 

for the interfaces to be able to detect changes of source data that have occurred inside the CDBSs by their native 

users and inform InterBaseKB (and the KBM subsequently) that the data warehouse views might be inconsistent. 

It is the task of the KBM to decide and propagate these changes to the InterBaseKB server's database. However, it 

is the responsibility of the interface to detect the changes. 

Data changes at the data sources are detected by inspecting periodically the transaction log files of the 

CDBSs to extract “interesting” events. This technique is called “transaction shipping” [13]. CSIs have 

knowledge of the data that must be monitored for changes, i.e. those data that are used inside the warehouse. The 

inspection of the transaction log files reveals updates (transaction) of source data that must be propagated to the 

warehouse in order to keep materialized views consistent. The transactions relative to the warehouse are 

communicated from the CSIs to the InterBaseKB server and the latter is responsible to raise the corresponding 

events that trigger the view maintenance mechanism. 

The communication of source data updates is performed periodically when the data warehouse is off-line, 

i.e. when it is not used for large decision support queries but runs in a maintenance mode. In this way, the 

maintenance of materialized data does not clutter the data warehouse during its normal operation. 

 

3.4 The Knowledge Base Module 

The Knowledge Base Module (KBM) is responsible for integrating the schema of the CDBSs, for running 

the inference engine that materializes the views of the component databases inside the data warehouse, and for 

providing the data warehousing utilities (data cleansing, integrity checking, summarization). The architecture of 

the KBM is shown in Figure 2. The components of the KBM are the following: 

The Active Knowledge Base (A-KB) core. The KBM's core is an active object-oriented knowledge base 

system, called DEVICE [5, 6], which is built on top of the Prolog-based ADAM OODB [31, 18] and supports 

a) persistent objects, b) extensibility through metaclasses, and c) events and event-driven rules as first-class 

objects [15, 14]. More details on the A-KB are given later. 
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The A-KB is responsible for a) integrating the schemes of the component databases, b) defining and 

maintaining the materialized views of the data warehouse (stored at the InterBaseKB server), and c) providing the 

mechanism of deductive rules for implementing several data warehousing utilities. 

The A-KB core communicates with the rest of the InterBaseKB system through a number of interface 

components. The administrator of the warehouse directly communicates with the A-KB core and can evoke 

methods for creating/destroying, enabling/disabling declarative rules for providing all the uses mentioned in the 

previous paragraph. 

The OO-InterSQL interface. This interface translates the first-order rule definition language of A-KB into 

relational commands of InterSQL. Furthermore, it is responsible for translating simple object accessing methods 

into SQL retrieval/modification operations. 

The Triggering Interface. This interface is responsible for capturing any data modification events trapped 

by either the triggering subsystem of the InterBaseKB server or the component system interfaces. The latter are 

not communicated directly to the KBM, but through the triggering subsystem of the InterBaseKB server. 

Therefore, the triggering interface of the KBM needs to capture a single event format. The events raised by the 

component system interfaces denote changes at the source data while the events raised by InterBaseKB server 

denote changes made by the InterBaseKB clients to the application data stored inside the server. 

The Storage System. The KBM needs to store data and methods, both for the user and for internal 

purposes, such as rule and event objects. Discrimination network memories can be stored either at internal 

storage system for small-scale applications or at the InterBaseKB server for larger applications, which is usually 
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the case. ADAM, the underlying OODB system, can support both since persistence is transparent to the upper 

object layers. The storage system is currently based on the built-in storage facilities of the underlying Prolog 

system, which is either ECLiPSe or SICStus Prolog. In the future, a more robust commercial storage system may 

be used. 

 

3.5 The Active Knowledge Base Core 

At the heart of the KBM lies the DEVICE system, which is an active knowledge base system built on top 

of Prolog. DEVICE integrates high-level, declarative rules (namely deductive and production rules) into an 

active OODB that supports only event-driven rules [14]. This is achieved by translating each high-level rule into 

one event-driven rule. The condition of the declarative rule compiles down to a complex event network that is 

used as a discrimination network that incrementally matches the rule conditions against the database. 

The rationale for using DEVICE is that the enhanced functionality required for data warehousing can only 

be provided by a number of high-level features, which cannot be supported by a single rule type. Therefore, 

multiple rule types are needed for integrating schemata of heterogeneous databases, for defining and maintaining 

materialized views and for providing several utilities for data warehousing, such as data cleansing, integrity 

checking and summarization. DEVICE is unique in supporting all kinds of declarative rule types using an 

efficient event-driven mechanism. Furthermore, the rule mechanism is extensible, allowing more useful rule 

types to be added in the future [7]. 

In this section, we briefly describe the syntax and semantics for production rules, which is the basis for 

integrating other types of declarative rules in the active OODB. Deductive rules and their use for view definition 

and maintenance are more thoroughly described in Section 4. Furthermore, we discuss the issues concerning rule 

compilation and condition matching. In Section 5, we present how declarative rules can be used to provide 

useful tools for data warehousing. Further details about declarative rule integration in DEVICE can be found in 

previous work of ours [5, 6, 7]. 

 

3.5.1 Production Rule Syntax 

Production rules mainly follow the OPS5 [16] paradigm, injected with some syntactic influences from the 

OODB context of DEVICE. Rules are composed of condition and action, where the condition defines a pattern 

of objects to be detected over the database and action defines the set of updates to be performed on the database 

upon the detection of the pattern occurrence. 

Example 1. In the sequel we are going to use the database schema of Figure 3. The following rule example 

is an integrity constraint that does not allow sales of gun items in United Kingdom before year 1997: 

 IF  I@item(category='Gun') and  

   L@line(sale:SL,item=I) and 

   SL@sale(store:ST,year<1997) and 
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   ST@store(country='United Kingdom') 

 THEN delete => L 

The condition of a rule is an inter-object pattern that consists of the conjunction of one or more (either 

positive or negative) intra-object patterns. The inter-object pattern above denotes the conjunction of instances of 

classes item , line , sale  and store  that are connected to each other through their object-identifiers, denoted 

by the variables I , SL, and ST . 

The intra-object patterns consist of one or more attribute patterns. The first of the above intra-object 

patterns denotes an instance I  of class item  with attribute category  equal to 'Gun';  the third intra-object 

pattern describes a sale at store ST before year 1997; and so on so forth 

Variables in front of class names denote instances of the class. Inside the brackets, attribute patterns are 

denoted by relational comparisons, either directly with constants or indirectly through variables. Variables are 

also used to deliver values for comparison to other intra-object patterns (joins) in the same condition or to the 

action part of the rule. The variables are expressed as valid Prolog variables. 

Path expressions inside attribute patterns are also allowed. The condition of Example 1 can be re-written 

as: 

L@line(category.name='Gun', country.store.sale=’United Kingdom’, year.sale<1997) 

The innermost attribute should be an attribute of class line , i.e. the class that the instances of the intra-object 

pattern stand for. Moving to the left, attributes should belong to classes related through object-reference 

attributes of the class of their predecessor attributes. We have adopted a right-to-left order of attributes, contrary 

to the C-like dot notation that is commonly assumed because we would like to stress the functional data model 

origins of the underlying OODB [18]. Under this interpretation, the chained "dotted" attributes can be seen as 

function compositions. 

During a pre-compilation phase, each rule that contains path expressions is transformed into one that 

contains only simple attribute expressions by introducing new intra-object patterns. The above pattern is actually 

transformed into the condition of the rule in Example 1. 
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Figure 3. Example Database Schema 
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Intra-object patterns can also denote classes instead of class instances. For example, the following intra-

object pattern "checks" whether the class variable slot_desc  of the class personnel  has the value 

category : 

 personnel(slot_desc=category 1) 

The difference between the two notations is just the presence of a variable in front of the class name. During 

parsing, the above pattern is rewritten as follows: 

 personnel@faculty_A(slot_desc=category 1) 

where faculty_A  is the metaclass of personnel . The new pattern is handled as a normal intra-object 

pattern. Notice that before the ‘@’ sign a constant instead of a variable is used when the object-identifier of the 

instance of the meta-class is a known class. 

There can also be negated intra-object patterns in the condition. A negated intra-object pattern denotes a 

negative condition that is satisfied when no objects in the database satisfy the corresponding positive intra-object 

pattern. For example, the following rule does not allow a sale instance to exist, unless it has at least one line: 

 IF  SL@sale and not L@line(sale=SL) 

 THEN delete => SL 

Notice that the above is not a referential integrity constraint since sale objects are attributes of line objects and 

not vice-versa. 

Only safe rules [34] are allowed, i.e. a) variables that appear in the action must also appear at least once 

inside a non-negated condition and b) variables that are used inside a negated condition must also appear at least 

once inside a non-negated condition; otherwise they are just ignored. 

The choice for the logic-like condition language is justified by the fact that the condition is supposed to be 

a declarative specification of the state of the database, and therefore, it is not appropriate to use the procedural 

interface of the OODB as the condition language. However, the use of arbitrary Prolog or ADAM goals to 

express some small static conditions or to compute certain values is allowed in the condition through the special 

prolog{}  construct. 

The action part of the rule is expressed in an extended Prolog language, enriched with the default 

procedural data manipulation language of ADAM. In the appendix, we include the full syntax of the condition-

part language. The syntax of ADAM messages can be found in [18]. We notice here that actions are usually 

update transactions, which are hardly used in Data Warehouses. However, these examples here illustrate the 

functionality of production rules, which are the basis for implementing deductive rules, as it will be shown in the 

following sections. 

 

3.5.2 Production Rule Semantics 

When the triggering interface of the KBM raises events to the A-KB core, data updates are propagated 

throughout the discrimination network and rule conditions are tested for matching against the data sources 
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incrementally. Normally events are captured during the warehouse-refreshing period, when the CSIs detect 

changes at data sources and forward them in batch to the InterBaseKB server. Alternatively, events may be raised 

during the execution of user applications that have been written using the rule language of the warehouse. 

The warehouse administrator specifies rule checkpoints, upon which multiple rules and/or rule 

instantiations can be eligible for execution (firing). A usual checkpoint is the end of the warehouse-refreshing 

period. Alternatively, checkpoints can be specified by user applications according to the application semantics. 

The set of all triggered rule instantiations is called the conflict set. When the checkpoint event is raised, the 

production rule manager checks the conflict set and selects only one rule instantiation for execution. 

The selection is done according to a customizable rule priority mechanism, which takes into account the 

order in which the rule instantiations enter the conflict set (recency), their complexity (specificity) and their 

ability to remain in the conflict set when they have been fired (refractoriness). Furthermore, a user-defined 

scoring mechanism can be used to order rule execution further. 

When a rule is selected for firing, its actions are executed and the possible updates to the materialized 

views or to the warehouse application data are propagated to the discrimination network. This may result in new 

rule instantiations to be added into or removed from the conflict set. When all the actions of a rule are executed, 

a checkpoint is raised again to continue the production cycle until no more rule instantiations exist in the conflict 

set. After that, the control is given back to the user. 

 

3.5.3 Rule Compilation and Matching 

According to [36], there exist ways to translate production rules into ECA rules because they are not really 

completely different paradigms but rather a different view of the same aspect. In this way, one can embed 

production rules into an active database system using the primitives of the latter. 

Production rules are compiled to ECA rules, in order to be constantly monitored by the active database. 

The condition of a rule is compiled into a complex event network, which is associated with the event-part of the 

ECA rule, while the action-part of the ECA rule is the action of the production rule. The compilation method 

uses complex events to translate a production rule into only one ECA rule. For example, the following (abstract) 

production rule: 

 IF a & b THEN action ,  

is translated into the following ECA rule:  

ON ea & e b [IF true] THEN action ,  

where ea, eb are primitive events that detect the insertion of the data items a, b, respectively, and the operator & 

denotes event conjunction. Deletions and modifications of data items are also monitored to keep the 

discrimination network consistent, as discussed below. 

The complex event manager of the OODB monitors the above primitive events and combines their 

parameters in order to detect the occurrence of the complex event incrementally. The parameters of the currently 
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signaled events are always combined with the parameters of the complete history of event occurrences, which 

are kept in event memories, in order not to miss any valid rule activation. When the complex event is detected, 

the condition of the rule has been matched, and the rule manager is responsible for scheduling it to execute. 

Notice that the condition part of the ECA rule is always true  because all conditions tests have been 

incorporated into the complex event. However, some small static conditions are allowed to be checked in the 

condition part of the ECA rule through the prolog{}  construct. 

The efficient matching of production rules is usually achieved through a discrimination network, such as 

RETE [17], TREAT [28], etc. DEVICE smoothly integrates a RETE-like discrimination network into an active 

OODB system as a set of first class objects by mapping each node of the network onto a complex event object of 

the active database system. 

Each attribute pattern inside any intra-object pattern in the condition is mapped on a primitive event that 

monitors the insertion (or deletion) of values at the corresponding attribute. The insertion of data causes the 

signaling of an insertion event, while the deletion of data causes the anti-signaling of a deletion event. In both 

cases, a token (positive or negative) with the parameters of the triggering event are propagated into the complex 

event network. The modification of data emits a signal followed by an anti-signal. 

Attribute comparisons with constants are mapped onto logical events, which perform simple attribute 

tests, and they are only raised when the associated condition is satisfied. 

An intra-object pattern that consists of at least two attribute patterns is translated into a two-input intra-

object event that joins the parameters of the two input events based on the OID the message recipient objects. 

Multiple intra-object events are joined in pairs based on the shared variables into inter-object events. The last 

inter-object event of the network maps the whole rule condition, and it is directly attached to the ECA rule that 

maps the original rule. 

Two-input events receive tokens from both inputs whose behavior is symmetrical. The incoming tokens 

are stored at the input memories and are joined with the tokens of the opposite memory. According to a pre-

compiled pattern, the join produces one or more output tokens, which are propagated further to the event 

network. Stored tokens can be only explicitly deleted by the propagation of anti-signals in the network. 

Finally, when the last event in the network signals, it means that the corresponding production rule 

condition is satisfied, and it must be fired. The rule instantiation token is then forwarded to the rule manager, 

which stores it in the conflict set. The rest of the procedure has been described in the previous section. On the 

other hand, when the rule manager receives an anti-signal, it means that a rule instantiation, if it still exists, must 

be deleted from the conflict set. 
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4. Deductive Rules for View Definition and Maintenance 

Schema integration in multidatabase and heterogeneous environments is usually achieved by defining 

common views of the underlying data. In this way, details of the heterogeneous data sources are abstracted away, 

and the user transparently sees a global schema. In this and the following sections, we thoroughly describe the 

view definition language of InterBaseKB along with the techniques for maintaining and updating the views. 

In this section, we mainly focus on creating views in an OODB without taking into account the integration 

of heterogeneous data sources. In the next section, we describe how the basic view definition language is 

extended to cater for heterogeneous databases to be integrated. 

The view definition language of InterBaseKB is provided by the deductive rules of the A-KB core, based 

mainly on Datalog [34]. Deductive rules describe data that should be in the database (intentional DB) provided 

that some other data and relationships among them hold in the current database state. 

 

4.1 Deductive Rule Syntax 

The syntax of deductive rules is very similar to the syntax of production rules (section 3.5.1), especially 

concerning the condition part, which is identical. The action part of the production rule is replaced by the derived 

class template (DCT), which defines the objects that should be in the database when the condition-part is true. 

Example 2. The following deductive rule defines a derived class of the last year sales of toys in Italy: 

 IF  SL@sale(country.store=’Italy’,year=1998) and 

   L@line(sale=SL,item:I,sales_price:SP) and 

   I@item(name:N,category=’Toy’) 

 THEN last_year_sales_italy(sale:SL,line:L,item:I,name:N,price:SP) 

Class last_year_sales_italy  is a derived class, i.e. a class whose instances are derived from 

deductive rules. Only one DCT is allowed at the THEN part (head) of a deductive rule. However, there can exist 

many rules with the same derived class at the head. The final set of derived objects is a union of the objects 

derived by the multiple rules. The DCT consists of attribute-value pairs where the value can either be a variable 

that appears in the condition or a constant. The syntax is given in the appendix. 

Example 3. The following pair of deductive rules defines a derived class has_part , which defines the 

transitive closure of the part-subpart relation in a part warehouse: 

DR1: IF  P@part(subpart:S) 

 THEN has_part(superpart:P,subpart:S) 

DR2: IF  P@part(subpart:S) and  

   HP@has_part(superpart:S,subpart:S1) 

 THEN has_part(superpart:P,subpart:S1) 

The second rule in the above example is a recursive one, which uses the derived class has_part  both in 

the condition and the conclusion. 



 

16 

 

4.2 Deductive Rule Semantics 

Deductive rules are just an abstract way for defining new data in terms of existing or other derived data. 

The way the derivation is realized depends on the actual mechanism, the intended use of the derived data, and 

the frequency that the base data that they depend on are modified. In InterBaseKB we use deductive rules for 

defining and maintaining materialized views to be stored and re-used in a data warehouse independently from 

the data sources. 

The semantics of deductive rules are an extension of the semantics of production rules. When the 

condition of a deductive rule is satisfied, the object that is described by the derived class template is inserted in 

the database. When base data are modified, the rule's condition may not be any longer satisfied, therefore, 

changes to base data are propagated to the derived data. When a condition becomes false, the object that has 

been inserted in the database should be deleted. A counter mechanism is used to store the number of derivations 

for each derived object [19]. In this way, it can be checked whether the object to be deleted is still deducible by 

another rule instantiation. 

Other possible semantics for deductive rules are goal driven rules, which are activated when a query on 

the derived data is made. Deductive rules are then used to derive all the deducible objects; after the query is 

answered derived data do not persist. The set of derivable objects can be created using forward chaining 

techniques (like semi-naive evaluation, magic sets, etc.) or backward chaining, in the fashion of Prolog. 

The A-KB core supports rules with such semantics, but in InterBaseKB we only use the materialized 

deductive rules, which are most useful for data warehousing. 

 

4.3 View Materialization and Maintenance 

Deductive rules are implemented on top of production rules by extending the simple semantics of the 

latter, which are not adequate for capturing the semantics of the more high-level deductive rules. This 

inadequacy can be illustrated by the creation of a newly derived object; a derived object should be inserted in the 

database only if it does not already exist, otherwise, two distinct objects with the same attribute values will exist. 

This is a consequence of the generic differences between the OID-based OODBs and the value-based deductive 

databases [35]. 

Furthermore, when the condition of a previously verified deductive rule becomes false, the derived object 

of the head must be removed from the database. Before this is done, however, it must be ensured that the derived 

object is not deducible by another rule instantiation. For this reason, we use a counter mechanism, which stores 

the number of derivations of an object [19]. If the derived object has a counter equal to 1, it is deleted; otherwise 

the counter just decreases by 1. 

The above operational semantics of deductive rules can be modeled by the following production rules: 

IF condition and exists(object) THEN inc_counter(object) 
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IF condition and not(exists(object)) THEN create(object) 

IF counter(object)>1 and not(condition) THEN dec_counter(object) 

IF counter(object)=1 and not(condition) THEN delete(object) 

In order to integrate the semantics of the above 4 rules into a single (extended) production rule, simple 

production rules are extend with an anti_action  (or ELSE) part that hosts the derived object deletion 

algorithm. Using this extended scheme, a deductive rule can be modeled by a single production rule: 

IF condition 

THEN (if exists(object) then inc_counter(object) else create(object)) 

ELSE (if counter(object)>1 then dec_counter(object) else delete(object)) 

Furthermore, the rule manager is extended to execute the anti-action upon the receipt of an anti-signal. 

Notice that the nested if-then-else constructs in the above rule are not production rules but the usual conditional 

primitive of the host programming language (Prolog). 

The conflict resolution strategies of deductive rules also differ from production rules. The rule search 

space is navigated in a breadth-first or iterated strategy to model the set-oriented semi-naive evaluation of 

deductive rules [34], instead of the depth-first (recency) navigation of production rules. The execution order of 

rules with negation is determined by stratification, using the algorithm of [34]. 

The above deductive rule execution algorithms, combined with the incremental condition checking 

techniques and fixpoint semantics for production rules that have been described in Section 3.5, provide the 

mechanism for materializing and correctly maintaining the views over the data sources inside the data 

warehouse. 

 

4.3.1 Self-maintainable Views 

An important feature of a data warehouse is the ability to self-maintain the materialized views, i.e. to be 

able to modify a view without querying the data sources, based solely on the data kept inside the warehouse and 

the current updates propagated from the data sources [33]. 

One of the most important advantages of InterBaseKB is that views are self-maintainable (as in [33]), but 

without using any additional mechanisms due to the existence of the discrimination network. All the data needed 

in order to derive what changes need to be made to the materialized views in the warehouse when source data are 

modified can be directly found inside the memories of the two-input complex events, without the need to query 

back the data sources [41]. This is an additional benefit of using a discrimination network instead of using 

multiple active rules. 

The alternative technique that uses multiple active rules for a single deductive rule [11, 12] needs to query 

the data sources in order to derive the changes that need to be made to the view. This results in several update 

anomalies [41] that can occur, in addition to the delay or unavailability in accessing the data sources. 

To be more specific, consider the following deductive rule: 

IF a & b THEN c 
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Using multiple active rules this is translated to at least the following 2 active rules: 

ON insert(a) IF b THEN insert(c) 

ON insert(b) IF a THEN insert(c) 

When item a is inserted in the data source, the first of the above rules needs to query the data source for 

item b in order to insert item c  in the view of the data warehouse. Using a discrimination network, the 

information that item b exists is already available inside the memory of the equivalent two-input event. Some 

other approaches use the multiple rule translation scheme and store auxiliary information inside the data 

warehouse to avoid query the data source [33]. However, this approach is just an emulation of the data 

discrimination network. 

 

5. Deductive Rules for Integrating Heterogeneous Data 

In this section, we describe the mechanisms of InterBaseKB for integrating data from heterogeneous data 

sources into the Data Warehouse. First, the requirements for such a mechanism are outlined. In the following 

sections, we show how these requirements are fulfilled from extensions to the deductive rule language and 

semantics. 

The main requirements for integrating of heterogeneous data are the following. 

Schema translation of the component databases. The various component databases or data sources 

probably have their own schemata, which might have been expressed in different data models. Therefore, a 

mechanism is needed to translate the data model of each data source to the common data model of the data 

warehouse. InterBaseKB supports an object-oriented common data model [32], which is rich enough to capture 

the heterogeneity between the data models of the data sources. 

Resolution of schematic and semantic conflicts. After the homogenization of the data models, there is still 

a need to resolve the conflicts among the schemata of the data sources. There can be many kinds of conflicts 

among the local schemata [32, 21, 8], such as schematic, semantic, identity, and data conflicts. The mechanism 

for schema integration should be general enough to be able to resolve most of them. 

Integration transparency. After local schemata have been translated into the common data model and a 

single global schema exists, the users of the data warehouse should not know which data comes from which data 

source. Instead the system should distribute their requests transparently to the appropriate data source. 

Throughout the section, we will use the following example of heterogeneous data sources. 

Example 4. 

Consider a federation of faculty databases in a university, consisting of databases (either relational or 

object-oriented) faculty_A , faculty_B  and faculty_C , corresponding to each of the three faculties A, B 

and C. Each database maintains information about the faculty's departments, staff, and the total number of 

employees per staff category. The schemata of the three databases are shown in Table 1. 
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The faculty_A  database has one class, called personnel , which has one instance for each 

department and each category of staff. The database faculty_B  also has one class, also called personnel , 

but staff category names appear as attribute names and the values corresponding to them are the number of 

employees per category. Finally, faculty_C  has as many classes as there are categories and has instances 

corresponding to each department and the total number of employees for each category. 

The heterogeneity of these databases is evident. The concept of staff categories is represented as atomic 

values in faculty_A , as attributes in faculty_B , and as classes in faculty_C . We assume that the names 

of the categories are the same in each database, without loss of generality, since it is not difficult to map different 

names using our deductive rule language. [] 

 

5.1 Extensions to the Rule Syntax 

In this section, we present the extensions introduced to the deductive rule language in order to cater for the 

integration of heterogeneous data. 

 
5.1.1 External Schema References 

An external relational or OODB schema is translated into InterBaseKB as a collection of classes. The 

schema of the class is the same as the schema of the corresponding external relation or class, concerning the 

names and types of attributes. A relation/class is imported in InterBaseKB using a deductive rule for defining a 

derived class as a "mirror" of the external entity. The external (base) class is represented in the condition of the 

rule using the normal rule syntax extended with a reference to the name of the external database. 

The personnel  class of database faculty_A  (Example 4) is imported into InterBaseKB as shown in 

Figure 4. The name of the database from which the relation/class is imported appears just after the name of the 

class. The interpretation of this reference to an external database will be presented in section 5.2.1. 

Database faculty_A faculty_B 

class personnel personnel 

attributes dept: deptID dept: deptID 

 category: string category 1: integer 

 no_of_emp: integer category 2: integer 

  ... 

  category n: integer 

 

Database faculty_C    

class category 1 category 2 ... category n 

attributes dept: deptID dept: deptID  dept: deptID 

 no_of_emp: integer no_of_emp: integer  no_of_emp: integer 

Table 1. Schemata of faculty databases 
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5.1.2 Second-order Syntax 

The derived class personnel  will be also used to import personnel data from the rest of the faculty 

databases. However, the import of the other databases cannot be done in such a straightforward manner because 

the staff categories are either attribute or class names, and a second order syntax is needed. When variables of a 

deductive rule language can range over attribute or class names, we say that the rule language has a second-order 

syntax. The databases for faculty_B  and faculty_C  are imported as shown in Figure 4. 

Rule DBB has a variable C that ranges over all the attributes of the class personnel  of database 

faculty_B , except attribute dept , which is explicitly mentioned in the condition. Rule DBC has again a 

variable C that ranges over the classes of database faculty_C . Despite the second-order syntax, the above 

rules are interpreted using a set of first-order rules, as it will be described in section 5.2.2. 

 

5.2 Schema Integration 

In this section, we describe how the deductive rule language extensions are integrated in the view 

definition and maintenance mechanism of InterBaseKB providing schema integration for heterogeneous data 

sources. 

 

5.2.1 Importing External Schemata 

Each imported database is represented in InterBaseKB as a metaclass. This metaclass contains all the 

necessary information about the imported database, such as its name, type, network address of CSI and CDB, 

exported relation/classes, communication and/or storage protocols, etc. This information is copied from the 

system's data directory [29]. 

Each relation/class that is imported from an external database is an instance of the above metaclass. In this 

way, the information about the origins of a specific class can be easily traced by following the 

is_instance_of  link. Figure 5 shows how the databases and classes of Example 4 have been imported in 

InterBaseKB. It is obvious that the name of the imported database metaclass is constructed by appending the 

DBA: IF  P@personnel/faculty_A(dept:D,category:C,no_of_emp:N) 

 THEN personnel(dept:D,category:C,no_of_emp:N) 

DBB: IF  P@personnel/faculty_B(dept:D,C\=dept:N) 

 THEN personnel(dept:D,category:C,no_of_emp:N) 

DBC: IF  P@C/faculty_C(dept:D, no_of_emp:N) 

 THEN personnel(dept:D,category:C,no_of_emp:N) 

Figure 4. Deductive rules for integrating the schemata of Example 4 
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meta_class  keyword to the name of the database while the names of the imported classes are constructed by 

concatenating the original class/relation name and the name of the database. Of course, the renaming is done 

automatically by the system. The imported classes are now considered base classes when defining the common 

view for personnel data. 

 

5.2.2 Translation of the Extended Rule Syntax 

In this section, the translation of the extended rule syntax will be described. The most important and 

difficult is the translation of the second order syntax into equivalent rules with first-order semantics. In general 

outline, this is achieved by transforming: 

• Second-order references for an OODB class into first-order references to the equivalent OODB 

metaclass; 

• Deductive rules that contain second-order syntax into production rules that create first-order deductive 

rules. 

First-order syntax. The translation of rules that contain first-order constructs (e.g. DB'
A) is 

straightforward. The classes of the external databases are automatically renamed, appending the name of the 

database. 

Second-order syntax. The translation of rules with second-order syntax is based on the following 

transformations: 

• The intra-object (class) patterns of the rule conditions that contain second-order constructs are replaced 

with patterns of the corresponding metaclasses. The new metaclass patterns match their instances, 

which are the classes to be "discovered" by the second-order constructs of the original rules. 

• The attribute patterns of the original rules are transformed in attribute tests of the slot_desc  

meta_class

faculty_A
meta_class

faculty_B
meta_class

faculty_C
meta_class

personnel
faculty_A

personnel
faculty_B

category1
faculty_C

categoryn
faculty_C

. . . ...

class

personnel

is-a is-instance-of

 
Figure 5. Schema translation and integration for databases and classes of Example 4 
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attribute of the metaclass. This set-valued attribute is present in every metaclass [18] and contains the 

description (name, type, cardinality, visibility, etc.) for each attribute of its instances (classes). 

There are two cases of second-order syntax, which are treated differently: 

• When a variable in the original rule stands for an attribute name (e.g. category I  in rule DB '
B), the 

condition is directly translated into a metaclass pattern whose slot_desc  attribute is retrieved and 

propagated to the rule action. Thus, the variable (C) stands now for a value of the slot_desc  

attribute, and the second-order construct is transformed into first-order. In the specific example, the 

class name (personnel_faculty_B ) is explicit in the original rule and the instance of the 

metaclass (faculty_B_meta_class ) in the metaclass pattern is instantiated. 

• When the class name is a variable in the original rule, the same variable is the OID of the instance of 

the metaclass pattern, in the translated one (e.g. rule DB'
C). In order to match the correct instances of 

the metaclass, the attributes present in the original condition (dept , no_of_emp ) must be members 

of the slot_desc  attribute of the metaclass. (faculty_C_meta_class ). 

After the above transformations of the original rule conditions, production rules are created using the 

transformed first-order patterns. The action part of the production rules is a method call to create new deductive 

rules with a first-order syntax. Any variables that appear in the place of attributes or classes have already been 

instantiated by the condition of the transformed rule with the metaclass pattern. Figure 6 shows the translated 

deductive rules of Figure 4. 

Notice that rule DB'
C contains a call to a Prolog built-in predicate in order to construct the proper name for 

the category i  classes. Similar calls are also included in the actual implementation for creating the rule strings 

(e.g. for incorporating the variables), but are omitted here to ease the presentation. 

The production rules of Figure 6 are triggered even if they are generated after the creation of the class and 

DB'
A: IF  P@personnel_faculty_A(dept:D,category:C,no_of_emp:N) 

 THEN personnel(dept:D,category:C,no_of_emp:N) 

DB'
B: IF  personnel_faculty_B@faculty_B_meta_class(slot_desc:C\=dept) 

 THEN new_rule('IF P@personnel_faculty_B(dept:D,C:N) 

     THEN personnel(dept:D,category:C,no_of_emp:N)') 

   => deductive_rule 

DB'
C: IF  C@faculty_C_meta_class(slot_desc ⊇[dept,no_of_emp]) and 

   prolog{string_concat(C,'_faculty_C',C1)} 

 THEN new_rule('IF P@C1(dept:D, no_of_emp:N) 

     THEN personnel(dept:D,category:C,no_of_emp:N)') 

   => deductive_rule 

Figure 6. Translation of deductive rules of Figure 4 
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metaclass schema because the A-KB core includes a rule activation phase at the end of rule creation. 

Furthermore, the A-KB core creates events for every method of the OODB schema, including metaclasses. Rules 

DB'
B, DB'

C will be fired as many times as the number of categories in the respective databases and the same 

number of deductive rules will be generated. The new deductive rules will also be activated and fired based on 

the same mechanism. Rule DB'
A is a deductive rule and it will behave as described in Section 4. 

 

5.2.3 View Management 

The view that has been created using the set of deductive rules is managed exactly the same as described 

in Section 4. The user is unaware of the local schemata, and he/she is supposed to query only the top-level class 

of the view. Through this derived class, all imported databases have a common schema. This is called integration 

transparency. This common view can be used by other rules in their condition, and it will be considered as a base 

class. 

The materialization, querying, and maintenance of the view are done in the same way as for the rest of the 

views. Of course, the materialization of the base data means that all the source data are mirrored inside the data 

warehouse, which wastes a lot of space. A typical solution [33] for this is to define a common view that is 

actually used in the condition of another deductive rule, i.e. to project away all the unneeded attributes of the 

local schemata. This will reduce the space needed for materializing the source data. 

When source data are updated, the modifications are propagated to the warehouse and the relevant events 

that trigger the deductive rules are raised, and the parameters of the modifications are propagated in the 

discrimination network to keep the materialized views consistent. 

 

6. Deductive Rules as Data Integration Tools for Data Warehousing 

This section demonstrates the power of deductive rules for providing several useful data integration tools 

for data warehousing, such as data cleansing, integrity checking, calculation and summarization. It must be noted 

that such operations are closely related to resolving heterogeneity at schema integration [38]. 

 

6.1 Data Cleansing 

It is important that the data in the warehouse be correct, since a Data Warehouse is used for decision-

making [13]. However, large volumes of data from multiple sources are involved, therefore there is a high 

probability of errors and anomalies in the data. Therefore, utilities for detecting and correcting data anomalies 

can prove very useful. 

Data cleansing usually involves the following transformations of the source data: 

• Renaming of attributes; 
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• Removal of attributes; 

• Addition of attributes and supply of missing field values; 

• Transformation of field values. 

 

6.1.1 Attribute Renaming 

Attributes names for the same relations or classes that originate from different data sources may be 

different. Deductive rules that integrate and translate the schemata of the data sources can be used to homogenize 

these attribute names by renaming them to a common one. In the sequel we will use the imported classes of 

Example 4. 

The following rule imports class personnel  from the data source faculty_A  by renaming the 

employees  attribute to no_of_emp : 

 IF  P@personnel/faculty_A(dept:D,category:C,employees:N) 

 THEN personnel(dept:D,category:C,no_of_emp:N) 

Notice that a different rule for each data source is required, but all attributes of the same data source can 

be renamed in a single rule. 

 

6.1.2 Attribute Removal 

Different data sources may keep more information for certain entities than needed in the Data Warehouse. 

In this case the rules that import the data source simply omit from the derived class certain attributes of the 

imported class. In fact, any attribute of the imported class not explicitly mentioned in the condition of the rule is 

ignored. 

For example, assume that faculty’s A policy is to have one contact person per each staff category per each 

department, while the rest of the faculties do not. Then faculty_A  data source would have an extra 

contact_person  attribute in class personnel , which would not be included in the warehouse by a rule 

similar to the previous example. Actually, this type of transformation does not require any special rule. 

 

6.1.3 Attribute Addition 

Some data sources may not keep all the information needed at the warehouse. In this case, the missing 

information should be filled-in for the imported classes. As an example, assume the opposite situation of the 

previous case; all faculties but faculty A keep a contact person per each staff category per each department. Then 

class personnel  would be imported by a rule like the following: 

 IF  P@personnel/faculty_A(dept:D,category:C,no_of_emp:N) 

 THEN personnel(dept:D,category:C,no_of_emp:N,contact_person:’UNKNOWN’) 
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Different rules are required for each data source, but all new attributes can be added in a single rule for the 

same data source. 

 

6.1.4 Field Value Transformation 

Different data sources may have the same name for the same attribute but the contents (values) of the 

attributes may be represented differently. Thus, apart from attribute renaming, value transformation is also 

needed for different data sources. For example, the following rule transforms the value ‘RA’ of the attribute 

category to the value ‘Research Assistant ’: 

 IF  P@personnel/faculty_A(dept:D,category=’RA’,no_of_emp:N) 

 THEN personnel(dept:D,category:’Research Assistant’,no_of_emp:N) 

Multiple such rules are required for each different value that this attribute can take. Furthermore, a 

different set of rules is required for the translation of values of each attribute. Finally, different rules are required 

for each data source. 

 

6.2 Data Integrity Checking 

The integrity of data to be loaded into the warehouse must be checked both syntactically and semantically. 

Data that do not conform to integrity rules can either be discarded (filtered-out) or corrected before inserted in 

the warehouse. Integrity or business rules of individual data sources may not coincide to each other and to the 

integrity rules of the warehouse, therefore a common ground for the restrictions imposed on the data must be 

found by the warehouse administrator. 

The following example, loads in the warehouse only those personnel  objects of faculty A data source 

that have at least one employee per category per department: 

 IF  P@personnel/faculty_A(dept:D,category:C,no_of_emp:N>0) 

 THEN personnel(dept:D,category:C,no_of_emp:N) 

The objects that do not conform to the above rule are simply ignored. When multiple such criteria exist, 

different rules should be present. Integrity rules can also combine multiple relations/classes of the data source to 

achieve referential integrity or other semantic constraints. 

Objects that violate data can also be corrected and loaded into the warehouse instead of being discarded, 

depending on the policy of the warehouse. For example, the above integrity rule can be complemented by the 

following rule that inserts the violating personnel objects into the warehouse with their no_of_emp attribute 

corrected to 1: 

 IF  P@personnel/faculty_A(dept:D,category:C,no_of_emp:N=<0) 

 THEN personnel(dept:D,category:C,no_of_emp:1) 
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6.3 Data Calculation and Summarization 

One of the most important features of a data warehouse compared to an operational database is that the 

latter contains raw, everyday and volatile data, while the former stores derived and summarized data to help 

decision-makers. The discussion for the deductive rule language of KBM so far did not include the case for 

calculation and maintenance of derived or aggregated data. In this subsection we present the extensions to the 

deductive rule language and the underlying mechanism to provide for such features. 

 

6.3.1 Data Derivation 

Data derivation usually involves the calculation of a new attribute of a class stored in the warehouse in 

terms of attributes stored in the original classes of the data sources. Notice that the original attributes are not 

actually included in the warehouse. The main concern about derived attributes is the correct maintenance of their 

values upon the change of the values of the attributes they depend upon. 

The following example calculates the attribute no_of_emp  for the class personnel of the warehouse from 

two attributes male_emp  and female_emp  of the corresponding class of the faculty_A  data source: 

 IF  P@personnel/faculty_A(dept:D,category:C,male_emp:M,female_emp:F) and 

   prolog{N is M + F} 

 THEN personnel(dept:D,category:C,no_of_emp:N) 

The already established semantics of deductive rules causes the following actions upon the update of the 

original derivator attributes: 

• When both attributes male_emp  and female_emp  are present, then the derived attribute is calculated 

and stored. 

• When either of the attributes is deleted then the derived object is deleted as well. 

• When either of the attributes is updated then this is emulated by a deletion of the attribute followed by an 

insertion; therefore, the correct value is stored in the derived attribute. 

The above concludes that derived attributes can be supported without extending the semantics of 

deductive rules. 

 

6.3.2 Data Aggregation 

Data aggregation involves the calculation of a derived attribute of a class stored in the warehouse in terms 

of the equivalent attribute of a set of objects of the data sources that are grouped by a set of attributes (not 

including the aggregating attribute). In this way a lot of source data is not included in the warehouse but 

summarized through the aggregate attribute. Since the value of an aggregate attribute is the result of an operation 

on many objects, the changes that occur at the data sources affect the value of the aggregate attribute that should 

change accordingly. 
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The following example assumes that the personnel  class of faculty_A  data source has one extra 

attribute lab  in the schema. Each tuple/object of personnel  represents the number of employees per category 

per lab per department. When this class is integrated into the warehouse the extra categorization of employee 

categories per lab is not required and the total number of employees per category per department (regardless of 

lab) must be summed. 

 IF  P@personnel/faculty_A(dept:D,lab:L,category:C,no_of_emp:N) 

 THEN personnel(dept:D,category:C,no_of_emp:sum(N)) 

In order to maintain the aggregate attribute in the warehouse correctly, the following semantics should be 

emulated: 

• When a new personnel  object is inserted at the data source, the number of employees of the lab 

should be added to the value of the aggregate attribute at the warehouse. 

− If the new object introduces into the personnel  class a new department or employee category then 

a new personnel object for this department and category must be created. 

• When a personnel  object is deleted from the data source, then the number of employees of the lab 

should be subtracted from the value of the aggregate attribute at the warehouse. 

− If the deleted object is the last one per category per lab of the corresponding department then the 

no_of_emp attribute gets the 0 value. In this case, we choose to delete the object from the 

warehouse. 

• The update of the number of employees of a lab at the data source is emulated by a deletion followed by 

an insertion, so that the value of the aggregate attribute at the data warehouse remains consistent. 

The above semantics are emulated by the action/anti-action rule of Figure 7 (in pseudo-language). The 

above discussion is a simplified description of the mechanism of the KBM for aggregate attribute rules, which is 

actually quite more complicated for the shake of extensibility in terms of user-defined aggregate functions [7]. 

 

IF P@personnel_faculty_A(dept:D,lab:L,category:C,no_of_emp:N) 
THEN (if    P1@personnel(dept:D,category:C,no_of_emp:Prev) 
  then  (Next is Prev + N, 
   update_no_of_emp([Prev,Next]) ⇒ P1) 
  else  create(P1)) 
ELSE Next is Prev - N, 
 (if    Next > 0 
  then  update_no_of_emp([Prev,Next]) ⇒ P1 
  else  delete(P1)) 

Figure 7. Aggregate-attribute rule translation. 
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7. Conclusions and Future Work 

Data Warehouses are information repositories that integrate data from possibly heterogeneous data 

sources and make them available for decision support querying and analysis using materialized views. The latter 

need to be maintained incrementally in order to be consistent with the changes to the data sources. Multidatabase 

systems are confederations of pre-existing, autonomous, and possibly heterogeneous database systems. 

In this paper, we have presented the integration of a nonfederated multidatabase system with a knowledge-

base system (KBS) providing the data-integration component for a Data Warehouse. The multidatabase system 

integrates various heterogeneous component databases with a common query language, but does not provide 

schema integration. The KBS provides a declarative logic language, which a) offers schema integration for 

heterogeneous data sources, b) allows the definition of complex, recursively defined views in the warehouse 

over the base data of the data sources, and c) provides data-integration utilities for data warehousing, such as 

data cleansing, integrity checking and summarization. At the core of the KBS lies an active OODB that:  

• Supports metaclass hierarchies which allow the customization of schema translation and integration; 

• Supports events and event-driven rules; 

• Integrates declarative (deductive and production) rules, which allow the materialization and self-

maintenance of the complex views; 

• Provides second-order rule language extensions, which allow the declarative specification for 

integrating the schemata of heterogeneous data sources into the warehouse. 

The views are self-maintainable in a sense that the data sources need not and are not queried by the 

incremental view-maintenance mechanism, which uses only the changes to the data sources and the information 

stored at the discrimination network that selects matching deductive rules. Finally, the performance of the view 

maintenance mechanism has been studied in [7], where it is compared against other approaches. The comparison 

shows that our approach is considerably faster under set-oriented rule execution, which is required for 

maintaining a warehouse using bulk updates. 

The described prototype system supports data-integration for a data warehouse; however, it is not yet 

intended as an industrial-strength warehouse system, which also requires several query and analysis tools to 

meets the specific end-users’ information processing needs. 

We are currently investigating the extension of the described system with query and analysis tools 

(OLAP) by supporting multi-dimensional data (data cubes) in the warehouse. The essence of multi-dimensional 

data is the use of efficient implementation mechanisms, for storing, indexing, accessing, summarizing and 

querying the data cubes, along with flexible modeling capabilities. We are working out suitable extensions to the 

existing aggregation language and mechanism that were described in this paper, combined with the powerful 

object-oriented data model of the Knowledge Base System. We believe that these will provide enough 

functionality for On-Line Analytical Processing. 
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Appendix - Declarative Rule Syntax 

<rule> ::= if <condition> then <consequence> 

<condition> ::= <inter-object-pattern> 

<consequence> ::= {<action> | <derived_class_template>} 

<inter-object-pattern> ::= <condition-element> ['and' <inter-object-pattern>] 

<inter-object-pattern> ::= <inter-object-pattern> 'and' <prolog_cond> 

<condition-element> ::= ['not'] <intra-object-pattern> 

<intra-object-pattern> ::= [<inst_expr>'@']<class_expr>['('<attr-patterns>')'] 

<attr-patterns> ::= <attr-pattern>[','<attr-patterns>] 

<attr-pattern> ::= <attr-function> {':'<variable> | <predicates> |  

       ':'<variable> <predicates> } 

<predicates> ::= <rel-operator> <value> [{ & | ; } <predicates>] 

<predicates> ::= <set-operator> <set> 

<rel-operator> ::= = | > | >= | =< | < | \=  

<set-operator> ::= ⊂ | ⊆ | ⊃ | ⊇ | ⊄ | ∈ | ∉ 

<value> ::= <constant> | <variable> 

<set> ::= '[' <constant>[,<constant>] ']' 

<attr-function> ::= {[<attr-function>'.']<attribute> | <variable> } 

<prolog_cond> ::= 'prolog' '{'<prolog_goal>'}' 

<action> ::= <prolog_goal> 

<derived_class_template> ::= <derived_class>'('<templ-patterns>')' 

<templ-patterns> ::= <templ-pattern> 

<templ-patterns> ::= <templ-pattern> [',' <templ-patterns>] 

<templ-pattern> ::= {<attribute>|<variable>}':' 

         {<value> | <aggregate_function>'('<variable>')'} 

<aggregate_function> ::= count | sum | avg | max | min 

<inst_expr> ::= {<variable>|<class>} 

<class_expr> ::= <class> 

<class_expr> ::= <inst_expr>'/'<class> 

<class> ::= an existing class or meta-class of the OODB schema 

<derived_class> ::= an existing derived class or a non-existing base class of the OODB schema 

<attribute> ::= an existing attribute of the corresponding OODB class 

<prolog_goal> ::= an arbitrary Prolog/ADAM goal 

<constant> ::= a valid constant of an OODB simple attribute type 

<variable> ::= a valid Prolog variable 
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