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Abstract. Defeasible reasoning is a rule-based approach for efficient reasoning with incomplete and in-

consistent information. Such reasoning is, among others, useful for ontology integration, where conflict-

ing information arises naturally; and for the modeling of business rules and policies, where rules with ex-

ceptions are often used. This paper describes these scenarios in more detail, and reports on the 

implementation of a system for defeasible reasoning on the Web. The system is called DR-DEVICE and 

is capable of reasoning about RDF metadata over multiple Web sources using defeasible logic rules. The 

system is implemented on top of CLIPS production rule system and builds upon R-DEVICE, an earlier 

deductive rule system over RDF metadata that also supports derived attribute and aggregate attribute 

rules. Rules can be expressed either in a native CLIPS-like language, or in an extension of the OO-

RuleML syntax. The operational semantics of defeasible logic are implemented through compilation into 

the generic rule language of R-DEVICE. The paper also presents a full semantic web broker example for 

apartment renting.  
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1. Introduction 

The development of the Semantic Web [16] proceeds in layers, each layer being on top of other layers. At 

present, the highest layer that has reached sufficient maturity is the ontology layer in the form of the descrip-

tion logic based languages of DAML+OIL [20] and OWL [45].  

The next step in the development of the Semantic Web will be the logic and proof layers, and rule systems 

appear to lie in the mainstream of such activities. Moreover, rule systems can also be utilized in ontology 

languages. So, in general rule systems can play a twofold role in the Semantic Web initiative: (a) they can 

serve as extensions of, or alternatives to, description logic based ontology languages; and (b) they can be 

used to develop declarative systems on top of (using) ontologies. Reasons why rule systems are expected to 

play a key role in the further development of the Semantic Web include the following: 
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• Seen as subsets of predicate logic, monotonic rule systems (Horn logic) and description logics are or-

thogonal; thus they provide additional expressive power to ontology languages.  

• Efficient reasoning support exists to support rule languages.  

• Rules are well known in practice, and are reasonably well integrated in mainstream information technol-

ogy.  

Possible interactions between description logics and monotonic rule systems were studied in [27]. Work 

on hybrid reasoning [32] showed the computational difficulties involved in the combination of description 

logics and Horn rules. Recent works in this area include [40], [30]. 

This paper is devoted to a different problem, namely conflicts among rules. Here we just mention the main 

sources of such conflicts, which are further expanded in section 2. At the ontology layer: (a) default inheri-

tance within ontologies, (b) ontology merging; and at the logic and reasoning layers: (a) rules with excep-

tions as a natural representation of business rules, (b) reasoning with incomplete information. 

Defeasible reasoning is a simple rule-based approach to reasoning with incomplete and inconsistent in-

formation. It can represent facts, rules, and priorities among rules. This reasoning family comprises defeasi-

ble logics ([41], [6]) and Courteous Logic Programs [26]. The main advantage of this approach is the combi-

nation of two desirable features: enhanced representational capabilities allowing one to reason with 

incomplete and contradictory information, coupled with low computational complexity compared to main-

stream nonmonotonic reasoning.  

In this paper we report on the implementation of DR-DEVICE which is a defeasible reasoning system for 

the Semantic Web. The most important features of DR-DEVICE are the following: 

• It supports multiple rule types of defeasible logic, such as strict rules, defeasible rules, and defeaters. Fur-

thermore, it supports priorities among rules. 

• It supports two types of negation (strong, negation-as-failure) and conflicting (mutually exclusive) literals. 

• Its user interface is compatible with RuleML [17], the main standardization effort for rules on the Seman-

tic Web.  

• It supports direct import from the Web and processing of RDF data and RDF Schema ontologies. 

• It supports direct export to the Web of the results (conclusions) of the logic program as an RDF document. 

• It is built on-top of a CLIPS-based implementation of deductive rules ([12], [13]). The core of the system 

consists of a translation of defeasible knowledge into a set of deductive rules, including derived and ag-

gregate attributes. However, the implementation is declarative because it interprets the not operator using 

Well-Founded Semantics [23].  

As a result of the above, DR-DEVICE is a powerful declarative system supporting 

• rules, facts and ontologies; 

• major Semantic Web standards: RDF, RDFS, RuleML; 

• monotonic and nonmonotonic rules, reasoning with inconsistencies. 

In the rest of this paper we detail on various motivating cases for using conflicting rules on the Semantic 

Web in section 2; in section 3 we briefly introduce the syntax and semantics of defeasible logics; in section 4 

we present the architecture of the DR-DEVICE system, including a brief description of the R-DEVICE sys-
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tem which lies at the core. Section 5 describes the syntax of defeasible logic rules in DR-DEVICE and its 

RuleML syntax; Section 6 details the translation scheme from the defeasible logic rule language of DR-

DEVICE into the deductive rule language of R-DEVICE; Section 7 presents the performance evaluation we 

performed on DR-DEVICE using defeasible theories of various types and sizes; Section 8 presents a full use 

case of a semantic web broker that reasons about apartment renting, using defeasible logic rules. Finally, sec-

tion 9 briefly overviews related work and section 10 concludes this paper and poses future research direc-

tions. 

2. Motivation for Conflicting Rules on the Semantic Web 

In this section we describe in more detail certain scenarios that justify the need for defeasible reasoning on 

the Semantic Web. 

Reasoning with Incomplete Information. In [3] a scenario is described where business rules have to deal 

with incomplete information: in the absence of certain information some assumptions have to be made which 

lead to conclusions not supported by classical predicate logic. In many applications on the Web such as-

sumptions must be made because other players may not be able (e.g. due to communication problems) or 

willing (e.g. because of privacy or security concerns) to provide information. This is the classical case for the 

use of nonmonotonic knowledge representation and reasoning [38]. 

Rules with Exceptions. Rules with exceptions are a natural representation for policies and business rules 

[5]. And priority information is often implicitly or explicitly available to resolve conflicts among rules. Po-

tential applications include security policies ([11], [33]), business rules [2], personalization, brokering, bar-

gaining, and automated agent negotiations [22], and electronic contracts [24]. 

Default Inheritance in Ontologies. Default inheritance is a well-known feature of certain knowledge repre-

sentation formalisms. Thus it may play a role in ontology languages, which currently do not support this fea-

ture. In [25] some ideas are presented for possible uses of default inheritance in ontologies. A natural way of 

representing default inheritance is rules with exceptions, plus priority information. Thus, nonmonotonic rule 

systems can be utilized in ontology languages. 

Ontology and Knowledge Merging. When ontologies from different authors and/or sources are merged, 

contradictions arise naturally. Moreover, in domain such as legal reasoning, ontologies may be defeasible, 

that is open to potential inconsistencies, by their very nature. Predicate logic based formalisms, including all 

current Semantic Web languages, cannot cope with inconsistencies. If rule-based ontology languages are 

used (e.g. DLP [27]) and if rules are interpreted as defeasible (that is, they may be prevented from being ap-

plied even if they can fire) then we arrive at nonmonotonic rule systems. More generally, when rules (e.g. 

policies or business rules) are merged conflicts may arise easily, and a mechanism for reasoning with such 

conflicts is valuable; conflicting rules arise naturally in areas such as personalization (selection of what to 

show next), security (weighting rules for and against providing access to certain information), negotiations 

etc. A skeptical approach, as adopted by defeasible reasoning, is sensible because it does not allow for con-

tradictory conclusions to be drawn. Moreover, priorities may be used to resolve some conflicts among rules, 
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based on knowledge about the reliability of sources or on user input. Thus, nonmonotonic rule systems can 

support ontology integration. 

3. Defeasible Logics 

3.1. Basic Characteristics 

The root of defeasible logics lies on research in knowledge representation, and in particular on inheritance 

networks. Defeasible logics can be seen as inheritance networks expressed in a logical rules language. In 

fact, they are the first nonmonotonic reasoning approach designed from its beginning to be implementable.  

Being nonmonotonic, defeasible logics deal with potential conflicts (inconsistencies) among knowledge 

items. Thus they contain classical negation, contrary to usual logic programming systems. They can also deal 

with negation as failure (NAF), the other type of negation typical of nonmonotonic logic programming sys-

tems; in fact, [44] argues that the Semantic Web requires both types of negation. In defeasible logics, often it 

is assumed that NAF is not included in the object language. However, as [6], [10] show, it can be easily 

simulated when necessary. Thus, we may use NAF in the object language and transform the original knowl-

edge to logical rules without NAF exhibiting the same behavior. 

Conflicts among rules are indicated by a conflict between their conclusions. These conflicts are of local 

nature. The simpler case is that one conclusion is the negation of the other. The more complex case arises 

when the conclusions have been declared to be mutually exclusive, a very useful representation feature in 

practical applications.  

Defeasible logics are skeptical in the sense that conflicting rules do not fire. Thus consistency of drawn 

conclusions is preserved. 

Priorities on rules may be used to resolve some conflicts among rules. Priority information is often found 

in practice, and constitutes another representational feature of defeasible logics.  

The logics take a pragmatic view and have low computational complexity. This is, among others, achieved 

through the absence of disjunction and the local nature of priorities: only priorities between conflicting rules 

are used, as opposed to systems of formal argumentation where often more complex kinds of priorities (e.g. 

comparing the strength of reasoning chains) are incorporated. 

Generally speaking, defeasible logics are closely related to Courteous Logic Programs [26], [28]; the latter 

were developed much later than defeasible logics. DLs have the following advantages: 

• They have more general semantic capabilities, e.g. in terms of loops, ambiguity propagation etc.  

• They have been studied much more deeply, with strong results in terms of proof theory [6], semantics 

[36] and computational complexity [34]. As a consequence, its translation into logic programs, a cor-

nerstone of DR-DEVICE, has also been studied thoroughly [7], [37]. 

However, Courteous Logic Programs have also had some advantages: 

• They adopted the idea of mutually exclusive literals, an idea incorporated in DR-DEVICE.  
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• They allow access to procedural attachments, something we have chosen not to study in our work so 

far, although clearly procedural function calls to the underlying CLIPS system are possible in 

DR-DEVICE, at the loss of declarativity.  

In the following we discuss in more detail some of the ideas and concepts mentioned here.  

3.2. The Language 

A defeasible theory D is a triple (F, R,>) where F is a finite set of facts, R a finite set of rules, and > a superi-

ority relation on R. Rules containing free variables are interpreted as the set of their variable-free instances. 

Facts are ground atoms.  

There are three kinds of rules: Strict rules are denoted by A → p, and are interpreted in the classical sense: 

whenever the premises are indisputable then so is the conclusion. An example of a strict rule is “Professors 

are faculty members”, written formally as: professor(X) → faculty(X). Inference from strict rules 

only is called definite inference. Strict rules are intended to define relationships that are definitional in na-

ture, for example ontological knowledge.  

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence. An example of such a 

rule is faculty(X) ⇒ tenured(X) which reads as follows: “Faculty members are typically tenured”. 

Defeaters are denoted as A ~> p and are used only to prevent some conclusions, not to actively support 

conclusions. An example of such a defeater is assistantProf(X) ~> ¬tenured(X) which reads as 

follows: “Assistant professors may be not tenured”.  

A superiority relation on R is an acyclic relation > on R (that is, the transitive closure of > is irreflexive). 

When r1 > r2, then r1 is called superior to r2, and r2 inferior to r1. This expresses that r1 may override r2. For 

example, given the defeasible rules 

r:  professor(X) =>  tenured(X) 
r’: visiting(X)  => ¬tenured(X) 

which contradict one another, no conclusive decision can be made about whether a visiting professor is ten-

ured. But if we introduce a superiority relation > with r’ > r, then we can indeed conclude that a visiting pro-

fessor is not tenured. 

The system works roughly in the following way: to prove a conclusion A defeasibly, there must be a firing 

rule with A as its head (that is, all literals in the rule body have already been proved); in addition, we must 

rebut all attacking rules with head the (strong) negation of A. For each such attacking rule we must establish 

either (a) that this rule cannot fire because we have already established that one of the literals in its body 

cannot be proved defeasibly (finite failure), or (b) that there is a firing rule with head A superior to the at-

tacking rule.  

A formal definition of the proof theory is found in [6]. A model theoretic semantics is found in [36].  

3.3. Negation as Failure 

Although strong negation is more powerful than negation as failure, the latter is still useful for the Web [44]. 

For example, consider an auction where we would like to find the best bidder, i.e. the one that offered the 
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maximum bid. If we assume that bids are represented by facts in the form bid(X,Y), where X is the name of 

the bidder and Y is the amount he/she offered, then the following rule finds the maximum bidder and the 

maximum bid: 
bid(X,Y), not( bid(X1,Y1), X1≠X, Y1>Y ) => max_bid(X,Y) 

Without negation as failure multiple rules would be required in order to find the maximum bidder. 

We follow a technique based on auxiliary predicates first presented in [6], but which is often used in logic 

programming, e.g. [31]. According to this technique, a defeasible theory with NAF can be modularly trans-

formed into an equivalent one without NAF. Every rule 
 r: L1,…,Ln, not M1,…, not Mk => L 

can be replaced by the rules: 

 r: L1,…,Ln, pr => L 
   => pr 
   ~L1 => ¬pr 
   … 
   ~Ln => ¬pr 

where pr is a new propositional atom. If we restrict attention to the original language, the set of conclusions 

remains the same. In section 6.5 we present a slightly different approach that is used in DR-DEVICE due to 

the presence of arguments in literals. 

3.4. Ambiguity Blocking and Ambiguity Propagation Behavior 

A literal is ambiguous if there is a chain of reasoning that supports a conclusion that p is true, another that 

supports that ¬p is true, and the superiority relation does not resolve this conflict. We can illustrate the con-

cept of ambiguity propagation through the following example. 
r1: quaker(X) => pacifist(X) 
r2: republican(X) => ¬pacifist(X) 
r3: pacifist(X) => ¬hasGun(X) 
r4: livesInChicago(X) => hasGun(X) 
quaker(a) 
republican(a) 
livesInChicago(a) 
r3 > r4 

Here pacifist(a) is ambiguous. The question is whether this ambiguity should be propagated to the 

dependent literal hasGun(a). In one defeasible logic variant it is detected that rule r3 cannot fire, so rule r4 

is unopposed and gives the defeasible conclusion hasGun(a). This behavior is called ambiguity blocking, 

since the ambiguity of pacifist(a) has been used to block r3 and resulted in the unambiguous conclusion 

hasGun(a). On the other hand, in the ambiguity propagating variant, pacifist(a) is deemed ambiguous 

so possibly provable, thus rule r3 is not recognized as being blocked, so rule r4 cannot fire unopposed to give 

the conclusion hasGun(a). 

This question has been extensively studied in artificial intelligence, and in particular in the theory of in-

heritance networks. A preference for ambiguity blocking or ambiguity propagating behavior is one of the 

properties of nonmonotonic inheritance nets over which intuitions can clash [43]. Ambiguity propagation re-
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sults in fewer conclusions being drawn, which might make it preferable when the cost of an incorrect conclu-

sion is high. For these reasons an ambiguity propagating variant of DL is of interest.  

3.5. Conflicting Literals 

So far we have discussed only conflicts among rules with complementary heads. Namely, we considered all 

rules with head L as supportive of L, and all rules with head ¬L as conflicting. However, in applications often 

literals are considered to be conflicting, and at most one of a certain set should be derived. For example, the 

risk an investor is willing to accept may be classified in one of the categories low, medium, and high. The 

way to solve this problem is to use constraint rules of the form 
 conflict :: low, medium 
 conflict :: low, high 
 conflict :: medium, high 

Now if we try to derive the conclusion high, the conflicting rules are not just those with head ¬high, but 

also those with head low and medium. Similarly, if we are trying to prove ¬high, the supportive rules in-

clude those with head low or medium. 

Another example with arguments in literals would be price negotiation, where an offer should be made by 

the buyer. The offer can be determined by several rules, whose conditions may or may not be mutually ex-

clusive. All rules have offer(X) in their head, since an offer is usually a positive literal. However, only one 

offer should be made; therefore, only one of the rules should prevail, based on superiority relations among 

them. In this case, the conflict set is determined as follows: 

C(offer(x)) = { ¬offer(x) } ∪ { offer(y) | y ≠ x } 

In general, given a conflict :: L, M, we augment the defeasible theory by: 

ri’: q1,q2,…,qn → ¬L, ∀ri: q1,q2,…,qn → M 
ri’: q1,q2,…,qn → ¬M, ∀ri: q1,q2,…,qn → L 
ri’: q1,q2,…,qn => ¬L, ∀ri: q1,q2,…,qn => M 
ri’: q1,q2,…,qn => ¬M, ∀ri: q1,q2,…,qn => L 

The superiority relation among the rules of the defeasible theory is propagated to the “new” rules. For ex-

ample, if the defeasible theory includes the following two rules and a superiority relation among them: 
r1: q1,q2,…,qn =>  L 
r2: p1,p2,…,pn =>  M 
r1 > r2 

we will augment the defeasible theory by: 
r1’: q1,q2,…,qn =>  ¬M 
r2’: p1,p2,…,pn =>  ¬L 
r1 > r2’ 
r1’ > r2 

In section 6.4 we present a generalisation that is used in DR-DEVICE due to the presence of arguments in 

literals. 

3.6. Embedding Defeasible Logic into Logic Programming 

Defeasible Logic can be embedded into logic programs through the well-studied meta-program of [35], 

[7]. Figure 1 shows the meta-program for the ambiguity blocking version of defeasible logic, without taking 



- 8 - 

into account conflicting literals. Clauses m1 and m2 capture definite provability, which only uses facts and 

strict rules. Clauses m3-m6 capture defeasible provability. One way of proving a conclusion defeasibly is to 

prove it definitely (clause m3). Otherwise, to prove X one needs a supportive rule R with head X that fires; in 

addition, the negation of X must not be definitely provable, and R must not be overruled (clause m4). A sup-

porting rule R is overruled by a not inferior rule S with head the complement of the head of X (clause m5), 

such that S is not defeated. And a rule S is defeated if there exists an applicable rule, stronger than S and 

with a complementary literal as its head (m6). In other words, a supporting applicable rule R prevails to 

prove X defeasibly if every attacking not inferior rule S can be counterattacked by a stronger rule. 

 
m1:  definitely(X) :- fact(X). 
m2:  definitely(X) :-  
     strict(R,X,[Y1,...,Yn]), 
     definitely(Y1), ..., definitely(Yn). 
m3:  defeasibly(X) :- definitely(X). 
m4:  defeasibly(X) :-  
     not definitely(∼X), 
     supportive_rule(R,X,[Y1,...,Yn]), 
     defeasibly(Y1) ,..., defeasibly(Yn), 
     not overruled(R,X). 
m5:  overruled(R,X) :-  
     rule(S, ∼X,[U1,...,Un]), 
     defeasibly(U1), ..., defeasibly(Un), 
     not defeated(S, ∼X). 
m6:  defeated(S, ∼X) :-  
     sup(T,S), 
     supportive rule(T,X,[V1,...,Vn]), 
     defeasibly(V1),...,defeasibly(Vn). 
 
c1:  supportive_rule(Name,Head,Body):- strict(Name,Head,Body). 
c2:  supportive_rule(Name,Head,Body):- defeasible(Name,Head,Body). 
c3:  rule(Name,Head,Body):- supportive_rule(Name,Head,Body). 
c4:  rule(Name,Head,Body):- defeater(Name,Head,Body). 

Figure 1. The logic meta-program for embedding defeasible reasoning into logic. 

4. DR-DEVICE System Architecture 

The DR-DEVICE system consists of two major components (Figure 2): the RDF loader/translator and the 

rule loader/translator. The functionality of the system consists of the following steps: 

• The user submits (1) to the rule loader a rule program (a URL or a local file name) that contains: 

- One or more rules in RuleML-like syntax [17]. 

- The URL(s) of the RDF input document(s), which is forwarded to the RDF loader. 

- The names of the derived classes to be exported as results. 

- The name of RDF output document. 

• The RuleML file is transformed (2) into the native CLIPS-like syntax (3) using the Xalan XSLT proces-

sor [46] and an XSLT stylesheet. The DR-DEVICE rule program is then forwarded to the rule translator 

(4). 
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• The RDF loader downloads the input RDF documents (5), including their schemas, and it translates RDF 

descriptions into CLIPS objects (6), according to the RDF-to-object translation scheme of R-DEVICE 

[13]. 
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Figure 2. Architecture of the DR-DEVICE system. 

• The rule translator compiles the defeasible logic rules into a set of CLIPS production rules. The transla-

tion is performed in two steps: 

- First, the defeasible logic rules are translated (7) into sets of deductive, derived attribute and aggre-

gate attribute rules of the basic R-DEVICE rule language, using the translation scheme that is de-

scribed in section 0. 

- Then, all these R-DEVICE rules are translated (8) into CLIPS production rules, according to the R-

DEVICE rule translation scheme [13]. All compiled rule formats are kept into local files, so that the 

next time they are needed they can be directly loaded, increasing speed.  

• The inference engine of CLIPS performs the reasoning by running the production rules and generates the 

objects that constitute the result of the initial rule program or query (9). The compilation phase guaran-

tees correctness of the reasoning process according to the operational semantics of defeasible logic. 

• Finally, the result-objects are exported (10) to the user as an RDF/XML document through the RDF ex-

tractor. The RDF document includes: 

- The RDF Schema definitions for the exported derived classes.  



- 10 - 

- Those instances of the exported derived classes, which have been proven, either positively or nega-

tively, either defeasibly or definitely. 

4.1. The R-DEVICE System 

In this subsection we give a brief overview of the R-DEVICE system which is the basis for building DR-

DEVICE. R-DEVICE is a deductive object-oriented knowledge base system, which transforms RDF triples 

into objects [12] and uses a deductive rule language [13] for querying and reasoning about them. R-DEVICE 

imports RDF data into the CLIPS production rule system [19] as COOL objects. The main difference be-

tween the established RDF triple-based data model and our OO model is that we treat properties both as first-

class objects and as normal encapsulated attributes of resource objects. In this way properties of resources 

are not scattered across several triples as in most other RDF querying/inferencing systems, resulting in in-

creased query performance due to less joins.  

4.1.1. The RDF-to-object Mapping 

The main features of this mapping scheme are the following: 

• Resource classes are represented both as COOL classes and as direct or indirect instances of the 

rdfs:Class class. This binary representation is due to the fact that COOL does not support meta-classes. 

• All resources are represented as COOL objects, direct or indirect instances of the rdfs:Resource class. 

• Finally, properties are instances of the class rdf:Property. Furthermore, properties are defined as slots 

(attributes) of their domain class(es). The values of properties are stored inside resource objects as slot 

values. 

For example, consider the RDF document in Figure 20 (section 8) which describes available apartments 

for renting. The RDF Schema for this document lies at the URL of carlo namespace (Figure 3). The defini-

tion of the class carlo:apartment in COOL is shown in Figure 4, along with the corresponding "meta-

class" object, which is an instance of the rdfs:Class. Notice that the properties that have class 

carlo:apartment as their domain have been made slots for that class. Furthermore, each property has 

been made an instance of the rdf:Property class (e.g., property carlo:price in Figure 5). Finally, 

Figure 6 shows the COOL object that corresponds to the apartment of Figure 20. Notice that properties on 

the left column correspond either to RDF properties or RDF-related auxiliary properties, whereas properties 

on the right column correspond to auxiliary attributes that relate to the defeasible logic translation scheme 

(section 6). 

The descriptive semantics of RDF data may call for dynamic redefinitions of the OO schema, which are 

effectively handled by R-DEVICE. One example for such a re-definition is when a new property is defined 

for an existing class. Then the class schema needs to be re-defined in order to include the new property as a 

slot of the existing class. 

The RDF-to-object mapping is performed by the RDF triple loader which accepts from the Rule Loader 

(or directly from the user) requests for loading specific RDF documents (Figure 2, step 5a). The RDF docu-

ments are downloaded from the Internet (5b) and the ARP parser [39] is used (6a) to translate RDF/XML de-
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scriptions to triples in the N-triple format (6b). Both the RDF/XML and N-triple files are stored locally for 

future reference. Furthermore, each RDF document is recursively scanned for namespaces which are also 

parsed using the ARP parser. The rationale for translating namespaces is to obtain a complete RDF Schema 

in order to minimize the number of OO schema redefinitions. Fetching multiple RDF schema files will ag-

gregate multiple RDF-to-OO schema translations into a single OO schema redefinition. Namespace resolu-

tion is not guaranteed to yield an RDF schema document; therefore, if the namespace URI is not an RDF 

document, then the ARP parser will not produce triples and DR-DEVICE will make assumptions, based on 

the RDF semantics [29], about non-resolved properties, resources, classes, etc.  
 

<!DOCTYPE rdf:RDF [ 
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
 <!ENTITY carlo "http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo.rdf#"> 
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"> 
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">  
]> 
<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;" xmlns:xsd="&xsd;"  
     xmlns:carlo="&carlo;" > 
 <rdfs:Class rdf:about="&carlo;apartment" rdfs:label="apartment"> 
  <rdfs:subClassOf rdf:resource="&rdfs;Resource"/> 
 </rdfs:Class> 
 <rdf:Property rdf:about="&carlo;bedrooms" rdfs:label="bedrooms"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&xsd;integer"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;central" rdfs:label="central"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&rdfs;Literal"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;floor" rdfs:label="floor"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&xsd;integer"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;gardenSize" rdfs:label="gardenSize"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&xsd;integer"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;lift" rdfs:label="lift"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&rdfs;Literal"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;name" rdfs:label="name"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&rdfs;Literal"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;pets" rdfs:label="pets"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&rdfs;Literal"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;price" rdfs:label="price"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&xsd;integer"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;size" rdfs:label="size"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&xsd;integer"/> 
 </rdf:Property> 
</rdf:RDF> 

Figure 3. RDF Schema definition for the class carlo:apartment. 

N-triples are loaded into memory, while the resources that have a URI#anchorID or URI/anchorID 

format are transformed into a ns:anchorID format if URI belongs to the initially collected namespaces, in 
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order to save memory space. The transformed RDF triples are fed to the RDF triple translator which maps 

them into COOL objects and then deletes them. The loading/translation of N-Triples can be performed in ei-

ther a single step or in an iterative (streaming) fashion where at each iteration only a (user-defined) fragment 

of the total triples is loaded/translated. 
 

(defclass carlo:apartment 
  (is-a rdfs:Resource) 
  (multislot carlo:size (type INTEGER)) 
  (multislot carlo:price (type INTEGER)) 
  (multislot carlo:pets (type LEXEME)) 
  (multislot carlo:name (type LEXEME)) 
  (multislot carlo:lift (type LEXEME)) 
  (multislot carlo:gardenSize  
      (type INTEGER)) 
  (multislot carlo:floor (type INTEGER)) 
  (multislot carlo:central (type LEXEME)) 
  (multislot carlo:bedrooms  
      (type INTEGER))) 
 

[carlo:apartment] of rdfs:Class 
(uri carlo:apartment) 
(source rdf) 
(rdfs:isDefinedBy) 
(rdf:type [rdfs:Class]) 
(rdf:value) 
(rdfs:comment) 
(rdfs:label "apartment") 
(rdfs:seeAlso) 
(rdfs:subClassOf [rdfs:Resource]) 
(class-refs rdfs:isDefinedBy rdfs:Resource  
      rdf:type rdfs:Class  
      rdfs:seeAlso rdfs:Resource) 
(aliases rdfs:seeAlso rdfs:isDefinedBy) 

Figure 4. COOL class definition for the carlo:apartment class and corresponding instance of rdfs:Class. 

[carlo:price] of rdf:Property 
(uri carlo:price) 
(source rdf) 
(rdfs:isDefinedBy) 
(rdf:type [rdf:Property]) 
(rdf:value) 
(rdfs:comment) 
(rdfs:label "price") 
(rdfs:seeAlso) 
(rdfs:domain [carlo:apartment]) 
(rdfs:range [xsd:integer]) 
(rdfs:subPropertyOf) 

Figure 5. Instance of rdf:Property for the carlo:price property. 

[carlo_ex:a1] of carlo:apartment 
(uri carlo_ex:a1) 
(source rdf) 
(rdfs:isDefinedBy) 
(rdf:type [carlo:apartment]) 
(rdf:value) 
(rdfs:comment) 
(rdfs:label "a1") 
(rdfs:seeAlso) 
(carlo:size 50) 
(carlo:price 300) 
(carlo:pets "yes") 
(carlo:name "a1") 
(carlo:lift "no") 
(carlo:gardenSize 0) 
(carlo:floor 1) 
(carlo:central "yes") 
(carlo:bedrooms 1) 

 
(positive 2) 
(negative 0) 
(positive-derivator nil) 
(negative-derivator nil) 
(positive-support) 
(negative-support) 
(positive-overruled) 
(negative-overruled) 
(positive-defeated) 
(negative-defeated) 
 

Figure 6. COOL object for the apartment of Figure 20. 

4.1.2. The Rule Language of R-DEVICE 

R-DEVICE has a powerful deductive rule language which includes features such as normal (ground), 

unground, and generalized path expressions over the objects, stratified negation, aggregate, grouping, and 
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sorting, functions. The rule language supports a second-order syntax, where variables can range over classes 

and properties. However, second-order variables are compiled away into sets of first-order rules, using 

instantiations of the metaclasses. Users can define views which are materialized and, optionally, 

incrementally maintained by translating deductive rules into CLIPS production rules. Users can choose 

between an OPS5/CLIPS-like or a RuleML-like syntax. Finally, users can use and define functions using the 

CLIPS host language. R-DEVICE belongs to a family of previous such deductive object-oriented rule lan-

guages ([15], [14]). Examples of rules are given below, as well as in [42]. 

R-DEVICE, like DR-DEVICE, has both a native CLIPS-like syntax and a RuleML-compatible syntax. 

Here we will present a few examples using the former, since it is more concise. For example, assume that in 

addition to the RDF Schema of Figure 3 that defines an apartment class for the case study of section 8, there 

is another class carlo:owner that defines the owners of the apartments and a property carlo:has-owner 

that relates an apartment to its owner (Figure 7). 
 

 <rdfs:Class rdf:about="&carlo;owner"/> 
 <rdf:Property rdf:about="&carlo;has-owner"> 
  <rdfs:domain rdf:resource="&carlo;apartment"/> 
  <rdfs:range rdf:resource="&carlo;owner"/> 
 </rdf:Property> 
 <rdf:Property rdf:about="&carlo;lastName"> 
  <rdfs:domain rdf:resource="&carlo;owner"/> 
  <rdfs:range rdf:resource="&rdfs;Literal"/> 
 </rdf:Property> 

Figure 7. Additional RDF classes and properties for the RDF Schema of Figure 3. 

The following rule returns the names of all apartments owned by "Smith": 
(deductiverule test1 
 (carlo:apartment (carlo:name ?x) ((carlo:lastName carlo:has-owner) "Smith")) 
 => 
 (result (apartment ?x)) 
) 

The above rule has a ground path expression (carlo:lastName carlo:has-owner) where the right-

most slot name (carlo:has-owner) is a slot of the "departing" class carlo:apartment. Moving to the 

left, slots be-long to classes that represent the range of the predecessor slots. In this example, the range of 

carlo:has-owner is carlo:owner, so the next slot carlo:lastName has domain carlo:owner. The 

value expression in the above pattern (e.g. constant "Smith") actually describes a value of the left-most slot 

of the path (carlo:lastName). Notice that we have adopted a right-to-left order of attributes, contrary to 

the left-to-right C-like dot notation that is commonly assumed, because we consider path expressions as fu-

nction compositions, if we assume that each property is a function that maps its domain to its range.  

Another example that demonstrates aggregate function in R-DEVICE is the following rule, which returns 

the number of apartments owned by each owner: 
(deductiverule test2 
 (carlo:apartment (carlo:name ?x) ((carlo:lastName carlo:has-owner) ?o)) 
 => 
 (result (owner ?o) (apartments (count ?x))) 
) 
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Function count is an aggregate function that returns the number of all the different instantiations of the 

variable ?x for each different instantiation of the variable ?o. There are several other aggregate functions, 

such as sum, avg, list, etc.  

5. The Syntax of the Rule Language of DR-DEVICE 

DR-DEVICE has two syntaxes: a native CLIPS-like one and a RuleML-compatible one. In this section we 

briefly introduce the former, concentrating mostly on the latter. There are three types of rules in DR-

DEVICE, closely reflecting defeasible logic: strict rules, defeasible rules, and defeaters. Rule type is de-

clared with keywords strictrule, defeasiblerule, and defeater, respectively. For example, the fol-

lowing rule construct (in CLIPS-like notation) represents the defeasible rule r4: bird(X) => flies(X).  
(defeasiblerule r4 
  (bird (name ?X)) 
 => 
  (flies (name ?X))) 

Predicates have named arguments, called slots, since they represent CLIPS objects. The same rule is rep-

resented in RuleML [17] notation (version 0.85) as follows: 
<imp> 
 <_rlab ruleID="r4" ruletype="defeasiblerule"> 
  <ind>r4</ind> 
 </_rlab> 
 <_head> 
   <atom> 
    <_opr> 
     <rel>bird</rel> 
    </_opr> 
    <_slot name="name"> 
     <var>X</var> 
    </_slot> 
   </atom> 
 </_head> 
 <_body> 
  <atom> 
   <_opr> 
    <rel href="flies"/> 
   </_opr> 
   <_slot name="name"> 
    <var>X</var> 
   </_slot> 
  </atom> 
 </_body> 
</imp> 

We have tried to re-use as many features of the "official" RuleML syntax as possible. However, several 

features of the DR-DEVICE rule language could not be captured by the existing RuleML DTDs (0.851); 

therefore, we have developed a new DTD (Figure 8) using the modularization scheme of RuleML, extending 

the Datalog with strong negation and negation as failure DTD. Notice that the DTD in Figure 8 does not 

autonomously capture the full syntax of DR-DEVICE rules, since it is an extension of an existing "official" 

                                                      
1 In the future we will upgrade to newer XSD-based versions of RuleML (e.g. 0.87). 
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DTD (http://www.ruleml.org/0.85/dtd/nafneg/nafnegurdatalog.dtd), which is dynamically 

included in the DR-DEVICE DTD (see boldface in Figure 8). 
 

<!ENTITY % LABELs "IDREFS"> 
<!ENTITY % CLASSes "NMTOKENS"> 
<!ATTLIST _rlab ruleID ID #REQUIRED 
        ruletype (strictrule | defeasiblerule | defeater) #REQUIRED 
        superior %LABELs; #IMPLIED > 
<!ELEMENT calc %_calc.cont;>   <!ENTITY % _calc.cont "(function_call+)"> 
<!ENTITY % _head.content " (calc?, (atom | neg))"> 
<!ENTITY % _body.content "(atom | neg | and | or)"> 
<!ENTITY % imp.content "(  (_rlab, ( (_head, _body?) |  (_body?, _head) )) |  
                           (_head, ( (_rlab, _body?) | (_body, _rlab?) )) |  
                           (_body?, ( (_rlab, _head) | (_head, _rlab?) ))    )"> 
<!ENTITY % naf.content "(atom|and)"> 
<!ENTITY % pos_term "(ind | var | function_call)"> 
<!ELEMENT function_call ((%pos_term;)*)> 
<!ATTLIST function_call  name CDATA #REQUIRED > 
<!ENTITY % term "(_not | %pos_term;)"> 
<!ELEMENT _not (ind | var)> 
<!ELEMENT _or (%term;, (%term;)+)>   <!ELEMENT _and (%term;, (%term;)+)> 
<!ENTITY % constraint "(_not | _or | _and)"> 
<!ENTITY % _slot.content "(ind | var | %constraint;)"> 
<!ENTITY % rulebase.content "(((_rbaselab, (imp | fact | query | competing_rules)*) |  
              ((imp | fact | query | competing_rules)+, _rbaselab?))?)"> 
<!ELEMENT _crlab (ind)> 
<!ENTITY % competing_rules.content "(_crlab)"> 
<!ELEMENT competing_rules %competing_rules.content;> 
<!ATTLIST competing_rules  c_rules IDREFS #REQUIRED 
              slotnames NMTOKENS #IMPLIED > 
<!ENTITY % nafnegurdatalog_include SYSTEM  
              "http://www.ruleml.org/0.85/dtd/nafneg/nafnegurdatalog.dtd"> 
%nafnegurdatalog_include; 
<!ATTLIST rulebase   rdf_import %URI; #IMPLIED 
          rdf_export_classes %CLASSes; #IMPLIED 
          rdf_export CDATA #IMPLIED > 

Figure 8. DTD for the RuleML syntax of the DR-DEVICE rule language. 

For example, rules have a unique (ID) ruleID attribute in their _rlab element, so that superiority of one 

rule over the other can be expressed through an IDREF attribute of the superior rule. For example, the fol-

lowing rule r5 is superior to rule r4 that has been presented above. 
(defeasiblerule r5 
  (declare (superior r4)) 
  (penguin (name ?X)) 
 => 
  (not (flies (name ?X)))) 

In RuleML notation, there is a superiority attribute in the rule label.  
<imp> 
 <_rlab ruleID="r5" ruletype="defeasiblerule" superior="r4"> 
  <ind>r5</ind> 
 </_rlab> 
... 
</imp> 

Although there are extensions to RuleML that represent the superiority relation between two rules, exter-

nal to rules [24], we have adopted this more encapsulated representation scheme that leads to a more effi-

cient translation scheme. However, it is not difficult to implement (at the RuleML level) an external superi-

ority relation and then during translation to encapsulate this relation inside the superior rule. Furthermore, 
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even using our scheme it is easy to discover superior and inferior rules using appropriate XPATH expres-

sions. For example, the expression //imp/_rlab[@ruleID="r2"]/@superior returns all the rules that 

are inferior to rule r2, while the expression //imp/_rlab[contains(@superior,"r10")]/@ruleID 

returns all rules that are superior to rule r10. 

Strong negation and negation as failure can be expressed in DR-DEVICE rule conditions. Furthermore, 

strong negation can also occur in the rule head. The strong negation operator is neg in the RuleML syntax, 

and not in CLIPS syntax. The negation-as-failure operator is naf in both syntaxes. 

Classes and objects (facts) can also be declared in DR-DEVICE; however, the focus in this paper is the 

use of RDF data as facts. The input RDF file(s) are declared in the rdf_import attribute of the rulebase 

(root) element of the RuleML document. There exist two more attributes in the rulebase element: the 

rdf_export attribute that declares the address of the RDF file with the results of the rule program to be ex-

ported, and the rdf_export_classes attribute that declares the derived classes whose instances will be 

exported in RDF/XML format. Further extensions to the RuleML syntax, include function calls that are used 

either as constraints in the rule body or as new value calculators at the rule head. Furthermore, multiple con-

straints in the rule body can be expressed through the logical operators: _not, _and, _or. Finally, conflict-

ing literals rules can be declared in DR-DEVICE by a competing_rules construct which groups together 

all rules which compete for a unique positive conclusion. Examples of all these can be found in the section 

6.4 (Figure 21, Figure 22). 

6. The Translation of DR-DEVICE Rules into R-DEVICE Rules 

The translation of defeasible rules into R-DEVICE rules is based on the translation of defeasible theories into 

logic programs through meta-program of Figure 1. In that program, clauses c1 to c4 define the predicates of 

the classes of rules. Specifically, strict and defeasible rules are considered supportive rules, because they can 

support the derivation of a conclusion, whereas defeaters can only block the derivation of a conclusion. Fur-

thermore, all rule types are collectively considered as rules. These definitions are reflected in the OO schema 

definition for rule objects of DR-Device, shown in Figure 9. 

defeasible-
logic-rule 

supportive-
rule 

defeater 

strict-rule defeasible-
rule 

 

Figure 9. Class hierarchy for DR-DEVICE rules. 

The clauses m1 to m6 of the meta-program in are not used directly at run-time. Instead they are used to 

guide defeasible rule compilation. Therefore, at run-time only first-order rules exist. Another big difference 
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of the meta-program with our translation scheme is that the meta-program expresses the operational seman-

tics of propositional logic, whereas the language of DR-DEVICE supports the use of first-order variables, 

which range over the values of object attributes, or RDF resource properties, if we consider resources 

equivalent to objects, as in R-DEVICE.  

6.1. Structure of Defeasible Objects 

The use of predicate logic complicates things, because each argument in Figure 1 that refers to the head of a 

rule does not refer to a predicate (i.e. class in our case), which are usually few in a program, but rather must 

refer to individual ground literals (i.e. specific objects in our case). Therefore, the objects of DR-DEVICE 

must keep additional auxiliary information (in addition to the user-defined attributes) in order to keep track 

of this relation to the various rule types that refer to them in their heads. Before going into the details of the 

translation we briefly present the auxiliary system attributes of each object in DR-DEVICE: 

• positive, negative: These numerical slots hold the proof status of the defeasible object. A value of 1 

at the positive slot denotes that the object has been defeasibly proven; whereas 2 denotes definite 

proof. Equivalent values in the negative slot denote an equivalent proof status for the negation of the de-

feasible object. A 0 value for both slots denotes that there has been no proof for either the positive or the 

negative conclusion (ambiguity). Facts and input RDF meta-data are treated as definitely proved objects, 

as dictated by clause m1 in the meta-program of Figure 1. 

• positive-support, negative-support: These attributes hold the rule ids of the rules that can poten-

tially prove positively or negatively the object. This means that for each supportive rule in the form: 
(supportive-rule name 
  Condition 
 => 
  (Class Slot-Assignments)) 

all objects of Class whose attribute values are compatible with Slot-Assignments have the id 

[name] of this rule in their positive-support attribute. An equivalent scheme holds for rules that 

have a negative conclusion. 

• positive-overruled, negative-overruled: These attributes hold the rule ids of the rules that have 

overruled the positive or the negative proof of the defeasible object. For example, in the rules r4 and r5 

that were presented in section 5, rule r5 has a negative conclusion that overrides the positive conclusion 

of rule r4. Therefore, if the condition of rule r5 is satisfied then its rule id is stored at the positive-

overruled slot of the corresponding derived object. 

• positive-defeated, negative-defeated: These attributes hold the rule ids of the rules that can de-

feat overriding rules when the former are superior to the latter. For example, rule r5 is superior to rule r4. 

Therefore, if the condition of rule r5 is satisfied then its rule id is stored at the negative-defeated slot 

of the corresponding derived object along with the rule id of the defeated rule r4. Then, even if the condi-

tion of rule r4 is satisfied, it cannot overrule the negative conclusion derived by rule r5 (as it is suggested 

by the previous paragraph) because it has been defeated by a superior rule. 
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For example, assume that there is a penguin (also a bird) named Tweety and the rules r4 and r5. Tweety 

does not fly since it is a penguin. Therefore, while rule r4 alone concludes that Tweety flies, rule r5 refutes 

it. Since r5 is superior to r4 the conclusion for the ability of Tweety's ability to fly should be negative. 

Figure 10 shows the COOL object [fliestweety] that corresponds to this conclusion. Notice that the 

negative slot is 1, while the positive slot is 0, which means that the conclusion has been defeasibly 

proven negatively. Furthermore, the negative-derivator slot points to rule r5, because this conclusion 

is due to this rule. Slots positive-support and negative-support point to rules r4 and r5, respec-

tively, because these two rules could potentially prove the positive or negative conclusion. The slot posi-

tive-overruled contains the pair r5-overruled r4, because the positive conclusion of rule r4 has 

been overruled by the rule r5-overruled, since r5 is a superior rule (see next sub-section). Finally, the 

slot positive-defeated contains the pair r5-defeated r4, because the positive conclusion of rule r4 

has been defeated by the rule r5-defeated, since rule r4 and r5 have contradictory conclusions (see next 

sub-section). 
 

[fliestweety] of flies 
(positive 0) 
(negative 1) 
(positive-derivator nil) 
(negative-derivator r5) 
(positive-support r4) 
(negative-support r5) 

 
(positive-overruled r5-overruled r4) 
(negative-overruled) 
(positive-defeated r5-defeated r4) 
(negative-defeated) 
(name tweety) 

Figure 10. Example of a defeasible object. 

6.2. Translation Scheme 

In this subsection we present how DR-DEVICE rules are translated into R-DEVICE rules, using the defeasi-

ble object structure presented above. We first present the translation of defeasible rules, and then we explain 

how this scheme differs for strict rules and defeaters.  

6.2.1. Defeasible Rules 

In the following, we assume that defeasible rules are in the following form: 
(defeasible-rule pos-name 
  (declare (superior Inferior-Rules)) 
  Condition 
 => 
  (Class Slot-Assignments)) 

The above rule has a positive conclusion. Rules with a negative conclusion are assumed to be in the fol-

lowing general form: 
(defeasible-rule neg-name 
  (declare (superior Inferior-Rules)) 
  Condition 
 => 
  (not (Class Slot-Assignments))) 

Each defeasible rule in DR-DEVICE is translated into a set of 5 R-DEVICE rules: 

• A deductive rule 
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• A "support" rule (aggregate attribute rule) 

• A "defeasibly" rule (derived attribute rule) 

• An "overruled" rule (derived attribute rule) 

• A "defeated" rule (derived attribute rule) 

The deductive rule 

The deductive rule generates a derived defeasible object when the condition of the defeasible rule is met. The 

proof status slots of the derived objects are initially set to 0. 
(deductiverule pos-name-deductive  
  Condition 
 => 
  (Class Slot-Assignments (positive 0) (negative 0))) 

Notice that the exactly same rule is generated for negative rules, since the negation of the conclusion does 

not have to do with the existence of the object. 
(deductiverule neg-name-deductive  
  Condition 
 => 
  (Class Slot-Assignments (positive 0) (negative 0))) 

For example, for rule r5 the following deductive rule is generated: 
(deductiverule r5-deductive  
  (penguin (name ?X)) 
 => 
  (flies (name ?X) (positive 0) (negative 0))) 

Rule r5-deductive states that if an object of class penguin with slot name equal to ?X exists, then cre-

ate a new object of class flies with a slot name with value ?X. The derivation status of the new object (ac-

cording to defeasible logic) is unknown since both its positive and negative truth status slots are set to 0. No-

tice that if a flies object already exists with the same name, it is not created again. This is ensured by the 

value-based semantics of the R-DEVICE deductive rules. 

At run-time, if the fact of Figure 11 is present at the working memory, then rule r5-deductive will gen-

erate the defeasible object of Figure 10. However, both its positive and negative slots would be 0 and 

all the other slots would have null values. 
 

[penguintweety] of penguin  
(positive 2)  
(negative 0)  
(positive-support r2)  
(negative-support)  
 

 
(positive-overruled)  
(negative-overruled)  
(positive-defeated)  
(negative-defeated)  
(animal-name tweety) 

Figure 11. A sample fact. 

The support rule 

The “support” rule is an aggregate attribute rule that stores in ...-support slots the rule ids of the rules 

that can potentially prove positively or negatively an object. In the following, list is an aggregate function 

that just collects values in a list. 
(aggregateattrule pos-name-support 
  Condition 
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  ?var <- (Class Slot-Conditions) 
 => 
  ?var <- (Class (positive-support (list pos-name)))) 

In the above rule, Slot-Conditions are the conditions that correspond to the Slot-Assignments of 

the original rules.  

A similar translation occurs for negative rules; the only difference is the name of slot that the rule id is 

stored. 
(aggregateattrule neg-name-support 
  Condition 
  ?var <- (Class Slot-Conditions) 
 => 
  ?var <- (Class (negative-support (list neg-name)))) 

For example, for rule r5 the following “support” rule is generated: 
(aggregateattrule r5-support 
  (penguin (name ?X)) 
  ?gen23 <- (flies (name ?X)) 
 => 
  ?gen23 <- (flies (negative-support (list r5)))) 

Rule r5-support states that if there is a penguin object named ?X, and there is a flies object with the 

same name, then derive that rule r5 could potentially support the defeasible negation of the flies object 

(slot negative-support). 

At run-time, if the object in Figure 11 is present and after the rule r5-deductive generates the corre-

sponding flies object, rule r5-support adds r5 to the negative-support multislot (Figure 10). 

The defeasibly rule 

The “defeasibly” rule is a derived attribute rule that defeasibly proves either positively or negatively an ob-

ject by storing the value of 1 in the positive or negative slots, if the rule condition has been at least de-

feasibly proven (Defeasible-Condition), if the opposite conclusion has not been definitely proven 

(negative ~2) and if the rule has not been overruled by another rule (positive-overruled condition). 

This is the exact semantics of the clause m4 of the meta-program in Figure 1. 
(derivedattrule pos-name-defeasibly  
  Defeasible-Condition 
  ?var <- (Class Slot-Conditions  
            (negative ~2)  
            (positive-overruled $?x&:(not (member$ pos-name $?x)))) 
 =>  
  ?var <- (Class (positive 1))) 

In the above rule, Defeasible-Condition is a transformation of the original Condition, where each 

object condition element is required to be defeasibly proven. An object is defeasibly proven (or not proven) 

if its positive (or negative) slot has a value of at least 1; this includes objects that are definitely proven 

(or not proven), whose positive (or negative) slot equals 2. Here, we actually make use of the clause m3 

of the meta-program in Figure 1. Specifically, each positive condition element (Classi Slot-

Conditionsi) is transformed to: 
(Classi Slot-Conditionsi (positive ?ps&:(>= ?ps 1))) 

whereas each negative condition element (not (Classj Slot-Conditionsj)) is transformed to: 



- 21 - 

(Classj Slot-Conditionsj (negative ?ns&:(>= ?ns 1))) 

A similar translation occurs for negative rules; the only difference being the names of the slots involved, 

which are exactly the opposite ones from the positive rule. 
(derivedattrule neg-name-defeasibly  
  Defeasible-Condition 
  ?var <- (Class Slot-Conditions  
            (positive ~2)  
            (negative-overruled $?x&:(not (member$ neg-name $?x)))) 
 =>  
  ?var <- (Class (negative 1))) 

For example, for rule r5 the following “defeasibly” rule is generated: 
(derivedattrule r5-defeasibly  
 (penguin (name ?X) (positive ?gen29&:(>= ?gen29 1))) 
 ?gen23 <- (flies (name ?X) (positive ~2)  
          (negative-overruled $?gen25&:(not (member$ r5 $?gen25)))) 
 =>  
 ?gen23 <- (flies (negative 1))) 

Rule r5-defeasibly states that if it has been defeasibly proven that a penguin object named ?X exists, 

and there is a flies object with the same name that is not already strictly-positively proven and rule r5 has 

not been overruled (check slot negative-overruled), then derive that the flies object is defeasibly-

negatively proven. 

At run-time, if the object in Figure 11 is present and the rule r5-deductive generates the corresponding 

flies object and rule r5 has not been overruled by a stronger positive rule, since negative-overruled 

slot is empty in Figure 10, then rule r5-defeasibly changes the value of slot negative to 1. 

The overruled rule 

The “overruled” rule is a derived attribute rule that stores in ...-overruled slots the rule id (pos-name-

overruled) of the rule that has overruled the positive or the negative proof of the defeasible object, along 

with the ids of the rules that support the opposite conclusion (negative-support $?x1), if the rule con-

dition has been at least defeasibly proven (Defeasible-Condition), and if the rule has not been defeated 

by a superior rule (positive-defeated condition). This is the exact semantics of the clause m5 of the 

meta-program in Figure 1. 
(derivedattrule pos-name-overruled  
  Defeasible-Condition 
  ?var <- (Class Slot-Conditions 
            (negative-support $?x1) 
            (negative-overruled $?x2) 
            (positive-defeated $?x3&:(not (member$ pos-name $?x3)))) 
 =>  
  (calc (bind $?x4 (create$ pos-name-overruled $?x1 $?x2))) 
  ?var <- (Class (negative-overruled $?x4))) 

In the above rule notice the calc expression, through which arbitrary user-defined calculations (through 

the functional language of CLIPS) are performed in R-DEVICE. In this case, the rule ids of the negative-

support slot ($?x1 variable) are concatenated with the rule ids already stored in the negative-

overruled slot of the object ($?x2 variable) and the result ($?x4 variable) is stored back at the nega-

tive-overruled slot. 
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A similar translation occurs for negative rules; the only difference being the names of the slots involved, 

which are exactly the opposite ones from the positive rule. 
(derivedattrule neg-name-overruled 
  Defeasible-Condition 
  ?var <- (Class Slot-Conditions 
            (positive-support $?x1) 
            (positive-overruled $?x2) 
            (negative-defeated $?x3&:(not (member$ neg-name $?x3)))) 
 =>  
  (calc (bind $?x4 (create$ neg-name-overruled $?x1 $?x2))) 
  ?var <- (Class (positive-overruled $?x4))) 

For example, for rule r4 the following “overruled” rule is generated: 
(derivedattrule r5-overruled  
 (penguin (name ?X ) (positive ?gen29 &:(>= ?gen29 1))) 
 ?gen23 <- (flies (name ?X) (positive-support $?gen26)  
          (positive-overruled $?gen27)  
          (negative-defeated $?gen25&:(not (member$ r5 $?gen25)))) 
=>  
 (calc (bind $?gen28 (create$ r5-overruled $?gen26 $?gen27))) 
 ?gen23 <- (flies (positive-overruled $?gen28))) 

Rule r5-overruled actually overrules all rules that can support the positive derivation of flies, includ-

ing rule r4. Specifically, it states that if it has been defeasibly proven that a penguin object named ?X ex-

ists, and there is a flies object with the same name that can be potentially positively supported by rules in 

the slot positive-support (such as rule r4), then derive that rule r5-overruled overruled those “posi-

tive supporters” (slot positive-overruled), unless it has been defeated (check slot negative-

defeated). 

At run-time, if the object in Figure 11 is present and the rule r5-deductive generates the corresponding 

flies object and this object can be positively supported by rule r4 (Figure 10) and rule r5 has not been de-

feated, since negative-defeated slot is empty in Figure 10, then rule r5-overruled adds the pair r5-

overruled r4 to the multislot positive-overruled (see Figure 10). 

The defeated rule 

The “defeated” rule is a derived attribute rule that stores in ...-defeated slots the rule id (neg-name-

defeated) of the rule that has defeated overriding rules (along with the defeated rule ids - Inferior-

Rules) when the former is superior to the latter and if the rule condition has been at least defeasibly proven 

(Defeasible-Condition). A “defeated” rule is generated only for rules that have a superiority relation, 

i.e. they are superior to others. This is the exact semantics of the clause m6 of the meta-program in Figure 1. 
(derivedattrule pos-name-defeated  
  Defeasible-Condition 
  ?var <- (Class Slot-Conditions (negative-defeated $?x1)) 
 =>  
  (calc (bind $?x2 (create$ pos-name-defeated Inferior-Rules $?x1))) 
  ?var <- (Class (negative-defeated $?x2))) 

In the above rule the calc expression concatenates the rules ids of the inferior rules (Inferior-Rules) 

with the rule ids already stored in the negative-defeated slot of the object ($?x1 variable) and the re-

sult ($?x2 variable) is stored back at the negative-defeated slot. 
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A similar translation occurs for negative rules; the only difference being the names of the slots involved, 

which are exactly the opposite ones from the positive rule. 
(derivedattrule neg-name-defeated  
  Defeasible-Condition 
  ?var <- (Class Slot-Conditions (positive-defeated $?x1)) 
 =>  
  (calc (bind $?x2 (create$ neg-name-defeated Inferior-Rules $?x1))) 
  ?var <- (Class (positive-defeated $?x2))) 

For example, for rule r5 the following “defeated” rule is generated: 
(derivedattrule r5-defeated  
  (penguin (name ?X) (positive ?gen29&:(>= ?gen29 1))) 
  ?gen23 <- (flies (name ?X) (positive-defeated $?gen26)) 
=>  
  (calc (bind $?gen25 (create$ r5-defeated r4 $?gen26))) 
  ?gen23 <- (flies (positive-defeated $?gen25))) 

Rule r5-defeated actually defeats rule r4, since r5 is superior to r4. Specifically, it states that if it 

has been defeasibly proven that a penguin object named ?X exists, and there is a flies object with the 

same name then derive that rule r5-defeated defeats rule r4 (slot positive-defeated). 

At run-time, if the object in Figure 11 is present and the rule r5-deductive generates the corresponding 

flies object, then rule r5-defeated adds the pair r5-defeated r4 to the multislot positive-

defeated (see Figure 10). 

6.2.2. Strict rules 

Strict rules are handled in the same way as defeasible rules, with an addition of a derived attribute rule 

(called definitely rule) that definitely proves either positively or negatively an object by storing the value of 2 

in the positive or negative slots, if the condition of the strict rule has been definitely proven (Defi-

nite-Condition), and if the opposite conclusion has not been definitely proven (negative ~2). This is 

the exact semantics of the clause m2 of the meta-program in Figure 1. 

Consider the following general form for a strict rule: 
(strict-rule pos-name 
  Condition 
 => 
  (Class Slot-Assignments)) 

The "definitely" rule for the above general form of strict rule is the following: 
(derivedattrule pos-name-definitely  
  Definite-Condition 
  ?var <- (Class Slot-Conditions (negative ~2)) 
 =>  
  ?var <- (Class (positive 2))) 

In the above rule, Definite-Condition is a transformation of the original Condition, where each ob-

ject condition element is required to be definitely proven. An object is definitely proven (or not proven) if its 

positive (or negative) slot has exactly value 2. Specifically, each positive condition element 

(Classi Slot-Conditionsi) is transformed to: 
(Classi Slot-Conditionsi (positive 2)) 

whereas each negative condition element (not (Classj Slot-Conditionsj)) is transformed to: 
(Classj Slot-Conditionsj (negative 2)) 
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A similar translation occurs for negative rules; the only difference being the names of the slots involved, 

which are exactly the opposite ones from the positive rule. 
(derivedattrule neg-name-definitely  
  Definite-Condition 
  ?var <- (Class Slot-Conditions (positive ~2)) 
 =>  
  ?var <- (Class (negative 2))) 

For example, for the strict rule r3: 
(strict-rule  
  (penguin (name ?X) 
 => 
  (bird (name ?X))) 

the following “definitely” rule is generated: 
(derivedattrule r3-definitely  
  (penguin (name ?X) (positive 2)) 
  ?gen9 <- (bird (name ?X) (negative ~2)) 
 =>  
  ?gen9 <- (bird (positive 2))) 

Rule r3-definitely states that if it has been definitely proven that a penguin object named ?X exists, 

and there is a bird object with the same name that is not already strictly-negatively proven, then derive that 

the bird object is definitely-positively proven. 

At run-time, if the object in Figure 11 is present and the corresponding "deductive" rule r3-deductive 

has generated the corresponding bird object (Figure 12), then rule r3-definitely changes the value of 

slot positive to 2 (see Figure 12). 
 

[birdtweety] of bird 
(positive 2) 
(negative 0) 
(positive-support r3) 
(negative-support) 

 
(positive-overruled) 
(negative-overruled) 
(positive-defeated) 
(negative-defeated) 
(animal-name tweety) 

Figure 12. A strongly proven object. 

6.2.3. Defeaters 

Defeaters are much weaker rules that can only overrule a conclusion, according to the semantics of clause m5 

of the meta-program in Figure 1. Therefore, for a defeater only the “overruled” rule is created, along with a 

deductive rule to allow the creation of derived objects, even if their proof status cannot be supported by de-

featers. 

6.3. Execution Order 

The order of execution of all the above rule types is as follows: “deductive”, “support”, “definitely”, “de-

feated”, “overruled”, “defeasibly”. Moreover, rule priority for stratified defeasible rule programs is deter-

mined by stratification. Finally, for non-stratified rule programs rule execution order is not determined. 

However, in order to ensure the correct result according to the defeasible logic theory for each derived at-

tribute rule of the rule types “definitely”, “defeated”, “overruled” and “defeasibly” there is an opposite “truth 
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maintenance” derived attribute rule that undoes (retracts) the conclusion when the condition is no longer met. 

In this way, even if rules are not executed in the correct order, the correct result will be eventually deduced 

because conclusions of rules that should have not been executed can be later undone.  

The general form for these truth-maintenance rules is the following: 
(derivedattrule rule-name-...-dot  
  ConclusionOfDerivedAttributeRule 
  (not ConditionOfDerivedAttributeRule) 
 =>  
  UndoConclusionOfDerivedAttributeRule) 

For example, the following rule undoes the “defeasibly” rule of rule r5 when either the condition of the 

defeasible rule is no longer defeasibly satisfied, or the opposite conclusion has been definitely proven, or if 

rule r5 has been overruled. 
(derivedattrule r5-defeasibly-dot  
  ?gen23 <- (flies (name ?X) (negative 1) (negative-support $? r5 $?)) 
  (not  
   (and  (penguin (name ?X) (positive ?gen29&:(>= ?gen29 1))) 
      ?gen23 <- (flies (positive ~2)  
               (negative-overruled $?g&:(not (member$ r5 $?g)))) 
   ) 
  ) 
 =>  
  ?gen23 <- (flies (negative 0))) 

6.4. Conflicting Literals 

The mechanism for dealing with conflicting (mutually exclusive) literals, as presented in section 3.5, is in-

corporated in DR-DEVICE. In addition, the system also implements a mechanism for dealing with predicate 

arguments in non-propositional theories. In particular, it handles the case where a predicate c may take at 

most one value (that is, in case it is functional). In this case, the conflict set is {(c(x),c(d) | x≠d}. 

For example, suppose that there exist two competing rules r1 and r2, where r2 is superior, i.e. its conclu-

sion prevails over the conclusion of r1: 
r1: a(X) => c(X) 
r2: b(X) => c(X) 
r2 > r1 

DR-DEVICE rewrites the above rule set into the following: 
r1: a(X) => c(X) 
r2: b(X) => c(X) 
r1_r2: a(X'), b(X), X≠X' => ~c(X) 
r2_r1: b(X'), a(X), X≠X' => ~c(X) 
r2 > r1_r2 
r2_r1 > r1 

When both rules r1 and r2 fire for a different value of X, also do rules r1_r2 and r2_r1. However, rule 

r2 is superior to rule r1_r2 and its conclusion is positively proved. Furthermore, rule r2_r1 blocks (over-

rules) the conclusion of rule r1. Finally, only the conclusion of rule r2 is proved.  

It is easy to see how the above scheme is generalized to multiple competing rules. For each pair of com-

peting rules ri, rj, a new pair of rules ri_rj, rj_ri, is generated with negated heads. The conditions of the 

new rules contain the conditions of both competing rules, with changed variable names for all variables 
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shared with the conclusion. The original superiority relations rj>ri become rj>ri_rj. Finally, the new rules 

are compiled using the translation scheme described above in this section. Notice that competing rules are 

explicitly declared by the user through a competing_rules construct (section 5). 

6.5. Negation as Failure 

DR-DEVICE supports negation as failure by re-writing each rule that contains a naf operator into a set of 

rules that contain only strong negation, by adapting the emulation technique presented in section 3.3 to han-

dle arguments in literals. For simplicity, we assume that there exists a rule r with one naf operator (although 

the same method can be extended to several naf operators per rule): 
r: a(X), naf(b(X)) => c(X) 

DR-DEVICE rewrites the above rule into the following rule set: 
r: a(X), r_naf(X) => c(X) 
r_naf_pos: a(X) => r_naf(X) 
r_naf_neg: a(X), b(X) => ~r_naf(X) 

where r_naf(X) is a system-generated literal. The above rule set exhibits the desired behaviour of negation 

as failure, because if b(X) is not satisfied, while a(X) is satisfied, then r_naf(X) is concluded by rule 

r_naf_pos and c(X) is concluded by rule r. If b(X) is satisfied then rule r_naf_neg defeats rule 

r_naf_pos and rule r does not conclude c(X), because its condition is not satisfied. The above approach is 

generalized to handle multiple naf operators similarly to the approach of section 3.3. 

7. Performance Evaluation 

DR-DEVICE has been extensively tested for correctness and performance using a tool that generates scal-

able test defeasible logic theories that comes with Deimos, a query answering defeasible logic system [37]. 

Figures 5-10 show the performance of DR-DEVICE in running theories of various types and sizes. Perform-

ance has been measured on a Pentium 4 PC (2GHz) with WinXP Professional and 1GB main memory.  

The various theory types explore various aspects of defeasible logic operational semantics. For example, 

chain theories of size n start with a fact a0 and continue with a chain of n defeasible rules of the form 

ai-1 => ai. A defeasible proof of an will use all of the rules and the fact. A variant chains uses only strict 

rules. Moreover, levels theories of size n consist of a cascade of 2n+2 disputed conclusions ai, 

i ∈ [0 .. 2n+1]. For each i, there are rules => ai and ai+1 => ¬ai. For each odd i a priority asserts that the 

latter rule is superior. A final rule => a2n+2 gives uncontested support for a2n+2. A defeasible proof of a0 will 

use every rule and priority. A variant levels− omits the priorities. More details about the various theory 

types can be found in [37]. Notice that in our performance evaluation the theory sizes refer to the number of 

R-DEVICE rules generated from our translation scheme described in section 0.  

Results (Figures 5-10) show that DR-DEVICE can handle inferences with thousands of rules within few 

seconds. In almost all cases the inference time per clause is less than few milliseconds. The performance 

scalability of DR-DEVICE is equivalent to that of Deimos. However, DR-DEVICE offers a broader range of 
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functionality, namely predicate logic, instead of propositional logic, support for inference over RDF meta-

data, RuleML compliance, conflicting literals, negation as failure, etc. 
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Figure 13. Performance in theories chain, chains 
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Figure 15. Performance in theory teams 
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Figure 16. Performance in theory tree 
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Figure 17. Performance in theory dag 
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Figure 18. Performance in theory mix 

8. A Brokered Trade Example 

In this section we present a full example of using DR-DEVICE rules in a brokered trade application that 

takes place via an independent third party, the broker. The broker matches the buyer’s requirements and the 

sellers’ capabilities, and proposes a transaction when both parties can be satisfied by the trade. In our case, 

the concrete application (which has been adopted from [8]) is apartment renting and the landlord takes the 

role of the abstract seller.  
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Available apartments reside in an RDF document (Figure 20). The requirements of a potential renter, 

called e.g. Carlo, are shown in Figure 19. These requirements are expressed in defeasible logic as explained 

below, in a logic-like syntax. More specifically, the following predicates are used to describe properties of 

apartments: 

• size(x,y), where y is the size of apartment x (in m2) 

• bedrooms(x,y), where apartment x has y bedrooms 

• price(x,y), where y is the price for x 

• floor(x,y), where apartment x is on the y-th floor 

• gardenSize(x,y), where apartment x has a garden of size y 

• lift(x), meaning that there is an elevator in the house of x 

• pets(x), meaning that pets are allowed in x 

• central(x), meaning that x is centrally located 

 

1. Carlos is looking for an apartment of at least 45m2 with at least 2 bedrooms. If it is on the 3rd floor or 
higher, the house must have an elevator. Also, pet animals must be allowed. 

2. Carlos is willing to pay $300 for a centrally located 45m2 apartment, and $250 for a similar flat in the 
suburbs. In addition, he is willing to pay an extra $5 per m2 for a larger apartment, and $2 per m2 for a 
garden. 

3. He is unable to pay more than $400 in total. If given the choice, he would go for the cheapest option. His 
2nd priority is the presence of a garden; lowest priority is additional space. 

Figure 19. Verbal description of Carlo’s (a potential renter) requirements. 

<!DOCTYPE rdf:RDF [ 
  ... 
  <!ENTITY carlo "http://.../dr-device/carlo/carlo.rdf#">  
  <!ENTITY carlo_ex "http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo_ex.rdf#"> 
]> 
<rdf:RDF ... xmlns:carlo="&carlo;" xmlns:carlo_ex="&carlo_ex;"> 
 <carlo:apartment rdf:about="&carlo_ex;a1"> 
   <carlo:bedrooms rdf:datatype="&xsd;integer">1</carlo:bedrooms> 
  <carlo:central>yes</carlo:central> 
  <carlo:floor rdf:datatype="&xsd;integer">1</carlo:floor> 
  <carlo:gardenSize rdf:datatype="&xsd;integer">0</carlo:gardenSize> 
  <carlo:lift>no</carlo:lift> 
  <carlo:name>a1</carlo:name> 
  <carlo:pets>yes</carlo:pets> 
  <carlo:price rdf:datatype="&xsd;integer">300</carlo:price> 
  <carlo:size rdf:datatype="&xsd;integer">50</carlo:size> 
 </carlo:apartment> 
 ... 
</rdf:RDF> 

Figure 20. RDF document for available apartments 

Also the following predicates are used: 

• acceptable(x), meaning that flat x satisfies Carlos’s requirements 

• offer(x,y), meaning that Carlos is willing to pay $ y for flat x 

Any apartment is a priori acceptable. 
r1: => acceptable(X) 

However, Y is unacceptable if one of Carlos’s requirements is not met (exceptions to rule r1). 
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r2: bedrooms(X,Y), Y < 2 => ¬acceptable(X) 
r3: size(X,Y), Y < 45 => ¬acceptable(X) 
r4: ¬pets(X) => ¬acceptable(X) 
r5: floor(X,Y), Y > 2, ¬lift(X) => ¬acceptable(X) 
r6: price(X,Y), Y > 400 => ¬acceptable(X) 
r2 > r1, r3 > r1, r4 > r1, r5 > r1, r6 > r1 

The price Carlos is willing to pay for an apartment is calculated as follows: 
r7: size(X,Y), Y ≥ 45, garden(X,Z), central(X) => offer(X, 300 + 2Z + 5(Y−45)) 
r8: size(X,Y), Y ≥ 45, garden(X,Z),¬central(X) => offer(X, 250 + 2Z + 5(Y−45)) 

An apartment is only acceptable if the amount Carlos is willing to pay is not less than the price specified 

by the landlord. 
r9: offer(X,Y), price(X,Z), Y < Z => ¬acceptable(X) 
r9 > r1 

In addition to identifying the apartments acceptable to Carlos it is also possible to reduce the number fur-

ther, even down to a single apartment, by taking further preferences into account. Carlos’s preferences are 

based on price, garden size, and size, in that order, represented as follows: 
r10: cheapest(X) => rent(X) 
r11: cheapest(X), largestGarden(X) => rent(X) 
r12: cheapest(X), largestGarden(X), largest(X) => rent(X) 
r11 > r10, r12 > r10, r12 > r11 

Since at most one apartment can be rented, literals rent(X) are conflicting. This is represented using con-

flict sets: C(rent(x)) = {¬rent(x)} ∪ {rent(y) | y ≠ x} 

The prerequisites of these rules can be derived from the set of acceptable apartments using further rules. 

For example, cheapest(X) can be calculated by the following rule that makes use of negation as failure 

(operator not): 

rc: acceptable(X), price(X,Z), not(acceptable(Y), Y ≠ X, price(Y,W), W < Z) 
    => cheapest(X) 

Similar rules exist for largestGarden(X) and largest(X), as well. 

Some of the rules of the very same defeasible logic program in the RuleML-compatible syntax of DR-

DEVICE are shown in Figure 21. In the DR-DEVICE version, each apartment is considered a distinct RDF 

resource (Figure 20) (or object in CLIPS terms) and its properties are RDF properties (or object slots). 

Things to notice are the following: 

• The separate competing_rules element to declare that rule r10, r11, and r12 are competing, i.e. that 

their conclusions are conflicting literals.  

• The input RDF document and the RDF document that will host the program results are included as attrib-

utes of the rulebase element, at the beginning of the RuleML document.  

• Results include classes acceptable and rent, meaning that all their instances will be included in the 

export RDF document.  

• The expression of complex constraints on the value of a slot based on logical operators and functions calls, 

which are directly expressed in XML (rule r2).  

The complete document can be found in http://lpis.csd.auth.gr/systems/dr-device.html. 

 



- 30 - 

<!DOCTYPE rulebase SYSTEM "http://lpis.csd.auth.gr/systems/dr-device/dr-device.dtd"> 
<rulebase rdf_import="http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo.rdf#" 
    rdf_export_classes="acceptable rent" 
    rdf_export="http://lpis.csd.auth.gr/systems/dr-device/carlo/export-carlo.rdf"> 
 <_rbaselab><ind type="defeasible">carlo-rules</ind></_rbaselab> 
 <competing_rules c_rules="r10 r11 r12"> 
  <_crlab> <ind href="&carlo_rb;cr1">cr1</ind> </_crlab> 
 </competing_rules> 
 <imp> <_rlab ruleID="r1" ruletype="defeasiblerule"> <ind href="&carlo_rb;r1">r1</ind> </_rlab> 
    <_head>  <atom> <_opr> <rel>acceptable</rel> </_opr> 
            <_slot name="apartment"><var>x</var></_slot> </atom> </_head> 
    <_body>  <atom> <_opr> <rel href="carlo:apartment"/> </_opr> 
            <_slot name="carlo:name"><var>x</var></_slot> </atom> </_body> 
 </imp> 
 <imp> <_rlab ruleID="r2" ruletype="defeasiblerule" superior="r1"> 
     <ind href="&carlo_rb;r2">r2</ind> </_rlab> 
    <_head> <neg> <atom> <_opr> <rel>acceptable</rel> </_opr> 
              <_slot name="apartment"><var>x</var></_slot></atom></neg></_head> 
    <_body> <atom>  <_opr> <rel href="carlo:apartment"/> </_opr> 
           <_slot name="carlo:name"><var>x</var></_slot> 
          <_slot name="carlo:bedrooms"> 
            <_and> <var>y</var> 
               <function_call name="&lt;"> 
                <var>y</var> 
                <ind>2</ind></function_call> </_and></_slot></atom></_body> 
 </imp> 
 ... 
 <imp> <_rlab ruleID="r7" ruletype="defeasiblerule"><ind href="&carlo_rb;r7">r7</ind></_rlab> 
    <_head>  <calc> <function_call name="bind"> 
             <var>a</var> 
             <function_call name="+"> 
              <ind>300</ind> 
              <function_call name="*"> 
               <ind>2</ind> 
               <var>z</var> </function_call> 
             <function_call name="*"> 
              <ind>5</ind> 
              <function_call name="-"> 
               <var>y</var> 
               <ind>45</ind> </function_call></function_call></function_call> 
            </function_call> </calc> 
        <atom> <_opr><rel>offer</rel></_opr> 
            <_slot name="apartment"><var>x</var></_slot> 
            <_slot name="amount"><var>a</var></_slot></atom></_head> 
    <_body>  <atom> <_opr> <rel href="carlo:apartment"/> </_opr> 
            <_slot name="carlo:name"><var>x</var></_slot> 
            <_slot name="carlo:size"> 
             <_and> <var>y</var> 
                <function_call name=">="> 
                 <var>y</var> 
                 <ind>45</ind></function_call></_and></_slot> 
            <_slot name="carlo:gardenSize"><var>z</var></_slot> 
            <_slot name="carlo:central"><ind>"yes"</ind></_slot></atom></_body> 
 </imp> 
 ... 
</rulebase> 

Figure 21. Part of Carlo’s requirements in the RuleML-compatible DR-DEVICE syntax. 

After the rule document in Figure 21 is loaded into DR-DEVICE, it is transformed into the native DR-

DEVICE syntax (see section 5). DR-DEVICE rules are further translated into R-DEVICE rules, as presented 

in the previous section, which in turn are translated into CLIPS production rules. All compiled rule formats 

are kept into local files, so that the next time they are needed they can be directly loaded, increasing speed. 

Then the RDF document(s) of Figure 20 is loaded and transformed into CLIPS (COOL) objects. Finally, the 

reasoning can begin, which ends up with 3 acceptable apartments and one suggested apartment for renting, 

according to Carlo’s requirements and the available apartments [8].  

The results (i.e. objects of derived classes) are exported in an RDF file according to the specifications 

posed in the RuleML document (Figure 21). Figure 22 shows an example of the result exported for class ac-
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ceptable (acceptable or not apartments) and class rent (suggestions to rent a house or not). Notice that 

both the positively and negatively proven (defeasibly or definitely) objects are exported. Objects that cannot 

be at least defeasibly proven, either negatively or positively, are not exported, although they exist inside DR-

DEVICE. Furthermore, the RDF schema of the derived classes is also exported. 

 
<!DOCTYPE rdf:RDF [ ... <!ENTITY dr-device "http://.../export-carlo.rdf#"> ]> 
<rdf:RDF ... xmlns:dr-device='&dr-device;'> 
 <rdfs:Class rdf:about='&dr-device;DefeasibleObject'/> 
 <rdf:Property rdf:about='&dr-device;truthStatus'> 
  <rdfs:domain rdf:resource='&dr-device;DefeasibleObject'/> 
  <rdfs:range  rdf:resource='rdfs:Literal'/> 
 </rdf:Property> 
 <rdfs:Class rdf:about='&dr-device;rent'> 
  <rdfs:label rdf:resource='rent'/> 
  <rdfs:subClassOf rdf:resource='&dr-device;DefeasibleObject'/> 
 </rdfs:Class> 
 <rdf:Property rdf:about='&dr-device;apartment'> 
  <rdfs:domain rdf:resource='&dr-device;rent'/> 
  <rdfs:range  rdf:resource='rdfs:Literal'/> 
 </rdf:Property> 
... 
 <dr-device:acceptable rdf:about="&dr-device;acceptable2"> 
  <dr-device:apartment>a2</dr-device:apartment> 
  <dr-device:truthStatus>defeasibly-not-proven</dr-device:truthStatus> 
 </dr-device:acceptable> 
 <dr-device:acceptable rdf:about="&dr-device;#acceptable5"> 
  <dr-device:apartment>a5</dr-device:apartment> 
  <dr-device:truthStatus>defeasibly-proven</dr-device:truthStatus> 
 </dr-device:acceptable> 
... 
 <dr-device:rent rdf:about="&dr-device;rent1"> 
  <dr-device:apartment>a5</dr-device:apartment> 
  <dr-device:truthStatus>defeasibly-proven</dr-device:truthStatus> 
 </dr-device:rent> 
... 
</rdf:RDF> 

Figure 22. Results of defeasible reasoning exported as an RDF document 

Concerning the performance of this test case, Table 1 shows the time measured on a Pentium 4 PC (2GHz) 

with WinXP Professional and 1GB main memory. Times exclude network latencies, i.e. all files are stored 

locally. Each line shows the time for each task that DR-DEVICE performs. The last line excludes from the 

total time the execution time of external programs, i.e. the Xalan XSLT processor and the ARP2 RDF parser. 

When rules are already compiled the time needed to perform the reasoning is 5 times faster (including exter-

nal programs) or 9 times faster (excluding external programs). In this test case we have included 7 apart-

ments and a total of 15 defeasible rules.  

Finally, Figure 23 shows a screenshot from the graphical run-time environment of DR-DEVICE, running 

the brokered trade example. Specifically, the central window is the main window where the input RuleML 

file is displayed (can be edited, as well). On the left, the run trace window is shown, whereas on the right the 

exported results in RDF/XML are shown (in a browser). 
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Table 1. Performance measurement for the demo 

Execution Time (sec) 
Task Un-compiled 

Rules 
Compiled 

Rules 
Loading DR-DEVICE system 0.769 0.769 
Translating RuleML syntax to DR-DEVICE native syntax (Xalan) 0.934 - 
Translating DR-DEVICE rules to R-DEVICE rules 0.604 - 
Parsing RDF files (ARP2)  1.868 1.868 
Loading RDF into CLIPS 0.220 0.220 
Loading R-DEVICE rules 6.648 0.330 
Translating R-DEVICE rules 5.659 - 
Running R-DEVICE rules 0.275 0.275 
Extracting results ~0 ~0 
Total Execution time 16.978 3.462 
Total DR-DEVICE Execution time 14.176 1.593 

 

 

Figure 23. Screenshots of the brokered trade example in DR-DEVICE. 

9. Related Work 

There exist several previous implementations of defeasible logics. In [21] the historically first implementa-

tion, D-Prolog, a Prolog-based implementation is given. It was not declarative in certain aspects (because it 

did not use a declarative semantic for the not operator), therefore it did not correspond fully to the abstract 

definition of the logic. Also, D-Prolog supported only one variation thus it lacked the flexibility of the im-

plementation we report on. Finally it did not provide any means of integration with Semantic Web layers and 

concepts, a central objective of our work. 

Deimos [37] is a flexible, query processing system based on Haskell. It implements several variants, but 

not conflicting literals nor negation as failure in the object language. Also, it does not integrate with Seman-

tic Web (for example, there is no way to treat RDF data and RDFS/OWL ontologies; nor does it use an 
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XML-based or RDF-based syntax for syntactic interoperability). Thus it is an isolated solution. Finally, it is 

propositional and does not support variables. 

Delores [37] is another implementation, which computes all conclusions from a defeasible theory (the 

only system of its kind known to us). It is very efficient, exhibiting linear computational complexity. Delores 

only supports ambiguity blocking propositional defeasible logic; so, it does not support ambiguity propaga-

tion, nor conflicting literals, variables and negation as failure in the object language. Also, it does integrate 

with other Semantic Web languages and systems, and is thus an isolated solution.   

Another Prolog-based implementation of defeasible logics is in [4], which places emphasis on complete-

ness (covering full defeasible logic) and flexibility (covering all important variants). DR-DEVICE is superior 

in its ability to use many non-logical features of the underlying system CLIPS, thus it is expected to integrate 

more easily into mainstream IT.  

SweetJess [28] is another implementation of a defeasible reasoning system (situated courteous logic pro-

grams) based on Jess. It integrates well with RuleML. However, SweetJess rules can only express reasoning 

over ontologies expressed in DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on arbitrary 

RDF data and ontologies, like DR-DEVICE. Furthermore, SweetJess is restricted to simple terms (variables 

and atoms). This applies to DR-DEVICE to a large extent. However, the basic R-DEVICE language [12] can 

support a limited form of functions in the following sense: (a) path expressions are allowed in the rule condi-

tion, which can be seen as complex functions, where allowed function names are object referencing slots; (b) 

aggregate and sorting functions are allowed in the conclusion of aggregate rules. Both of these have been 

presented in subsection 4.1.2. 

Further advantages of DR-DEVICE over SweetJess include the following. SweetJess is more limited in 

flexibility, in that it implements only one reasoning variant (it corresponds to ambiguity blocking defeasible 

logic). Finally, DR-DEVICE has a firm formal foundation , as the formal properties of the undelying defea-

sible logics have been studied extensively and deeply ([6], [7], [9], [34], [35], [36], [37]). These works range 

from formal properties and formal semantics to correctness proofs for transformations used.  

10. Conclusions and Future Work 

In this paper we described reasons why conflicts among rules arise naturally on the Semantic Web. To ad-

dress this problem, we proposed to use defeasible reasoning which is known from the area of knowledge rep-

resentation. And we reported on the implementation of a system for defeasible reasoning on the Web based 

on CLIPS production rules. It features: 

• Full implementation of defeasible logic, including strict and defeasible rules and defeaters, priorities 

among rules, conflicting literals, two types of negation and multiple variants regarding ambiguity. 

• Therefore reasoning with incomplete and inconsistent information. 

• Compatibility with the RuleML syntax and processing of information in the Semantic Web standards of 

RDF and RDF Schema.  

• Efficiency, due to the low computational complexity of the formalism.  
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The system is freely available for downloading and experimentation (including the test case presented above) 

at the following address: http://lpis.csd.auth.gr/systems/dr-device.html.  

 Planned future work includes: 

• Implementing load/upload functionality in conjunction with an RDF repository, such as RDF Suite [1] 

and Sesame [18]. 

• Developing a visual editor for the RuleML-like rule language.  

• Deploying the reasoning system as a Web Service. 

• Studying in more detail integration of defeasible reasoning with description logic based ontologies. Start-

ing point of this investigation will be the processing of the Horn definable part of OWL [27]. 

• Applications of defeasible reasoning and the developed implementation for brokering, bargaining, auto-

mated agent negotiation, and personalization. 
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