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ABSTRACT 

In this paper we present R-DEVICE, a deductive object-oriented knowledge base system for reasoning over 

RDF metadata. R-DEVICE imports RDF documents into the CLIPS production rule system by transforming 

RDF triples into COOL objects and uses a deductive rule language for reasoning about them. R-DEVICE is 

based on an OO RDF data model, different than the established triple-based model, which maps resources 

to objects and encapsulates properties inside resource objects, as traditional OO attributes. In this way, 

fewer joins are required to access the properties of a single resource resulting in better inferencing/querying 

performance, as it is experimentally shown in the paper. Furthermore, RDF can interoperate seamlessly 

with other web data models and languages. The descriptive semantics of RDF may call for dynamic redefi-

nitions of resource classes, which are handled by R-DEVICE effectively. Furthermore, R-DEVICE features 

a powerful deductive rule language for reasoning on top of RDF metadata. The rule language includes fea-

tures such as normal and generalized path expressions, stratified negation, aggregate, grouping, and sorting, 

functions. The rule language supports a second-order syntax, which is efficiently translated into sets of first-

order logic rules using metadata, where variables can range over classes and properties, so that reasoning 

over the RDF schema can be made. Users can define views which are materialized and incrementally main-

tained by translating deductive rules into CLIPS production rules that preserve truth. Users can choose be-

tween an OPS5/CLIPS-like and a RuleML-like syntax. Finally, users can define and use functions through 

the CLIPS host language.  
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1 Introduction 

The Semantic Web is the next step of evolution for the World Wide Web [13], where information is given well-

defined meaning, enabling computers and people to work in better cooperation. Currently, information found on 

the Web is mainly for human consumption and is not machine-understandable. It is quite difficult to automate 

things on the Web, and because of the volume of information the Web contains, it is even more difficult to man-

age it manually. The solution proposed by the WWW Consortium is to use metadata to describe the data con-

tained on the Web [12]. The Resource Description Framework (RDF) is a foundation for processing metadata; it 

provides interoperability between applications that exchange machine-understandable information on the Web 

[31]. 
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RDF is actually a general-purpose language for representing information in the World Wide Web. However, it is 

particularly intended for representing metadata about Web resources, such as the title, author, etc. RDF general-

izes the concept of a "Web resource", so it can be used to represent information about anything that can be iden-

tified on the Web. The RDF model is based on sets of statements or triples, each of which can be thought of as a 

directed labelled graph in which nodes are called resources (or literals) and edges are called properties. The 

source node of an edge of the directed graph is the subject of the statement and the target is the object. The edge 

is labeled with the predicate. Furthermore, RDF has a schema definition language (RDFS) [15], for creating 

types for graph nodes (called classes) and edges (called properties). Finally, RDF has an XML syntax for ex-

pressing metadata and schemas in a form that is both human readable and machine understandable. 

Conveying the content of documents is just a first step for achieving the full potential of the Semantic Web. Ad-

ditionally, it is very important to be able to reason with and about information spread across the WWW, so that 

intelligent agents can automatically perform complicated tasks on the Web, on a user's behalf. Rules provide the 

natural and widely-accepted mechanism to perform automated reasoning, with mature and available theory and 

technology. This has been identified as a Design Issue for the Semantic Web, as clearly stated in [12].  

Rules and rule mark-up languages, such as RuleML [14], will play an important role in the success of the Se-

mantic Web. Rules will act as a means to draw inferences, to express constraints, to specify policies, to react to 

events/changes, to transform data, etc. Rule mark-up languages will allow enriching web ontologies by adding 

definitions of derived concepts, to publish rules on the web, to exchange rules between different systems and 

tools, etc. The applications include electronic commerce, data integration and sharing, information gathering, 

security access and control, law, diagnosis, B2B, and of course, to modelling of business rules and processes.  

It seems natural to add rules “on top” of web ontologies. However, as it is argued in [2], putting rules and de-

scription logics together poses many problems, and may be overkill, both computationally and linguistically. 

Another possibility is to start with RDF/RDFS, and extend it by adding rules. 

One solution to implement such a rule system is to start from scratch and build inference engines that draw con-

clusions directly on the RDF data model. However, such an approach tends to throw away decades of research 

and development of efficient and robust rule engines. In this paper we follow a different approach: we re-use an 

existing rule system (CLIPS [17]) for reasoning on top of RDF data. However, before an existing rule system is 

used, careful consideration must be given to how RDF data and semantics are going to be treated in the host 

system.  

The semantics of the RDF data model differ from those of traditional data structures, such as the object data 

model, that are used in existing rule systems. Specifically, RDF is an assertional language, according to its se-

mantics [26], i.e. each assertion declares that certain information about resources is true, including schema in-

formation, and its meaning is not changed by future assertions. This kind of semantics is called descriptive and 

is based on the Open-World Assumption of the Semantic Web. Traditional data models define certain constraints 

in their schema definitions and schema instances have to obey these constraints, i.e. no information entry that 

violates these constraints is allowed. This kind of semantics is called prescriptive and is based on the Closed-

World Assumption of logic programming systems and databases. 
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A challenging task, in order to re-use existing query and inference systems with prescriptive semantics, is to be 

able to capture the descriptive RDF semantics in a traditional data model. In this paper, we present a deductive 

object-oriented knowledge base system, called R-DEVICE, which transforms RDF triples into objects and uses a 

deductive rule language for querying and reasoning about them.  

R-DEVICE employs a novel OO-RDF model [5] that maps RDF documents into COOL objects inside the 

CLIPS production rule system [17]. The main difference between the RDF triple-based model and our OO-RDF 

model is that we treat properties mainly as attributes encapsulated inside resource objects, as in traditional OO 

programming languages. In this way properties about a single resource are gathered together in one object, re-

sulting in superior inference/query performance compared to a triple-based model, as it is experimentally shown 

in this paper. Most other RDF inferencing/querying systems that are based on a triple model scatter resource 

properties across several triples and they require several joins to access the properties of a single resource. Fur-

thermore, RDF data can interoperate seamlessly with other web data models and languages, as it is discussed in 

eh conclusions. The descriptive semantics of RDF data may call for dynamic redefinitions of resource classes 

and objects, which are handled by R-DEVICE effectively. 

R-DEVICE features a powerful deductive rule language [7] which is able to draw inferences both on the RDF 

schema and data. The rule language includes features such as ground and generalized path expressions, stratified 

negation, aggregate, grouping, and sorting functions. All these can be combined with second-order syntax, 

where variables can range over classes and properties. Such variables are grounded at compile-time using meta-

data so second-order rules are safely and efficiently translated into sets of first-order rules. Furthermore, users 

can define views with R-DEVICE rules which are materialized and incrementally maintained by translating de-

ductive rules into CLIPS production rules that preserve truth. Users can use built-in functions of CLIPS or can 

define their own arbitrary functions. The syntax of R-DEVICE rules follows the OPS5/CLIPS paradigm. Fur-

thermore, an XML syntax is provided that extends RuleML [14] and especially the version that supports OO 

features and negation-as-failure.  

Regarding potential applications, R-DEVICE could be used as an inference mechanism on top of an RDF re-

pository. The RDF data would be pre-loaded into R-DEVICE and external users would submit rule programs 

into the system either through a form-based HTML interface or using R-DEVICE remotely as a Web-service 

through SOAP messaging. Changes to the base RDF metadata of the repository would be incrementally propa-

gated to R-DEVICE, as well. Another use for R-DEVICE could be an on-the-fly RDF inferencing service, pro-

vided that the queried RDF documents are not very large, since parsing very large RDF/XML documents into 

triples at run-time and then importing them into R-DEVICE would not be very efficient. 

In the rest of this paper we present the architecture of the system in Section 2. Section 3 describes in detail how 

RDF triples are mapped into CLIPS objects. Section 3.6 describes the R-DEVICE rule language. Section 5 pre-

sents some performance results of R-DEVICE queries and compares them to the results obtained by a triple-

based query model of RDF, in our system. Section 6 briefly reviews related work in querying and reasoning 

about RDF metadata, and finally, section 7 concludes this paper and discusses future work. 
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2 System Architecture 

The R-DEVICE system consists of the following major components (Figure 1):  

• The Rule Program Loader 

• The RDF Triple Loader 

• The RDF Triple Translator 

• The Deductive Rule Translator 

• The RDF Extractor 
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Figure 1. Architecture of the R-DEVICE system. 

The Rule Program Loader accepts from the user a URL (or a local file name) that contains a deductive rule pro-

gram in RuleML notation [14]. The RuleML document may also contain the URLs of the input RDF documents 

on which the rule program will run on, which is forwarded to the RDF Triple Loader. The RuleML program is 

translated into the native R-DEVICE rule notation using the Xalan XSLT processor [42] and an XSLT 

stylesheet. The R-DEVICE rule program is then forwarded to the Deductive Rule Translator. 

The RDF Triple Loader accepts from the Rule Program Loader (or directly from the user) requests for loading 

specific RDF documents, downloads them from the Internet and uses the ARP parser [32] to translate them to 

triples in the N-triple format. Both the RDF/XML and RDF/N-triple files are stored locally for future reference. 

N-triples are loaded into memory. Resources that have a URI#anchorID or URI/anchorID format are trans-

formed into a namespace:anchorID format, in order to save memory space. Of course, URI must either belong 
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to the namespaces declared in the current RDF document or be a namespace that is already known to the system 

by previously loaded documents. More on namespace treatment is discussed in section 3.4. 

The transformed RDF triples are fed to the RDF Triple Translator which maps them into COOL objects, accord-

ing to the mapping schema that is described in the next section. Notice that when an RDF triple is consumed (i.e. 

translated) it is deleted. The loading/translation of N-Triples can be performed in either a single step or in an 

iterative (streaming) fashion where at each iteration only a (user-defined) fragment of the total triples is 

loaded/translated. It has been found experimentally (see section 5) that a fragment that leads to good overall per-

formance and scalability is around 10,000 triples. A complete example of an RDF document and its translation 

into objects can be found in section 3.5. 

The Deductive Rule Translator accepts from the Rule Program Loader a set of R-DEVICE rules and translates 

them into a set of CLIPS production rules. Details about the translation scheme are given in section 4.2. Com-

piled rules are kept in local files, so that the next time they are needed they can be directly loaded, increasing 

speed. After the translation of deductive rules or the loading of compiled rules, CLIPS runs the production rules 

and generates the objects that constitute the result of the initial rule program. Finally, the result-objects are ex-

ported to the user as an RDF/XML document through the RDF Extractor. An example of the results produced 

by an R-DEVICE rule can be found in section 4.3. 

3 The Object-Oriented RDF Model 

In this section we describe how the RDF data model is mapped onto the COOL object-oriented model of the 

CLIPS language [17]. Figure 2 shows the top levels of the class hierarchy of R-DEVICE. Class USER is a sys-

tem-defined class in COOL, which serves as the root of the user-defined class hierarchies. Class RDF-CLASS 

(also considered system-defined) is the root of the R-DEVICE classes, which defines system slots and methods 

shared by all RDF classes (Figure 3). The main features of this mapping scheme are discussed in the following 

subsections.  

RDF-CLASS

USER

rdfs:Resource

rdfs:Class 

rdf:Property

rdf:Statement

rdfs:Container
 

Figure 2. The class hierarchy of R-DEVICE. 
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3.1 Resources and Classes 
RDF Schema classes are represented both as COOL classes and as (direct or indirect) instances of the 

rdfs:Class class. This dual representation is due to the fact that COOL does not support meta-classes, so the 

role of meta-classes is played by the rdfs:Class class, whose instances are considered as meta-classes of the 

corresponding classes. Class names follow the namespace:anchorID format, if their URI can be resolved in 

this way, while their corresponding instances have an object identifier with the same name, surrounded by 

square brackets. Figure 3 shows the definition for rdfs:Resource both as a class (subclass of RDF-CLASS) 

and as an instance of class rdfs:Class. Notice that when a resource class does not have an explicit superclass 

it is made a subclass of rdfs:Resource (entailment rule rdfs8 in [26]). 

Inheritance issues of class hierarchies are not explicitly treated in R-DEVICE, since we rely on the class-

inheritance mechanism of COOL for inheriting properties from superclasses to subclasses, for including the ex-

tensions of subclasses to the extensions of the superclasses (entailment rule rdfs9) and for the transitivity prop-

erty of the rdfs:subClassOf property (entailment rule rdfs11). 

(defclass RDF-CLASS 
 (is-a USER) 
 (role concrete) (pattern-match reactive) 
 (slot uri (type STRING)) 
 (slot source (type SYMBOL) (default rdf)) 
) 
 
(defclass rdfs:Resource 
 (is-a RDF-CLASS) 
 (multislot rdfs:isDefinedBy (type INSTANCE-NAME)) 
 (multislot rdf:type (type INSTANCE-NAME)) 
 (multislot rdf:value) 
 (multislot rdfs:comment (type LEXEME)) 
 (multislot rdfs:label (type LEXEME)) 
 (multislot rdfs:seeAlso (type INSTANCE-NAME)) 
) 
 
(definstances rdf_classes 
   ... 
 ([rdfs] of rdfs:Resource  
  (rdfs:isDefinedBy [rdfs]) 
  (rdf:type [rdfs:Resource]) 
  (uri "http://www.w3.org/2000/01/rdf-schema#") 
  (rdfs:comment "RDF Schema Vocabulary namespace") 
  (rdfs:label rdfs) 
  (rdfs:seeAlso [rdfs-more]) 
 ) 
   ... 
 ([rdfs:Resource] of rdfs:Class  
  (rdfs:isDefinedBy [rdfs]) 
  (rdf:type [rdfs:Class]) 
  (rdfs:label Resource) 
  (rdfs:comment "The class resource") 
  (class-refs  rdfs:isDefinedBy rdfs:Resource 
        rdf:type rdfs:Class 
        rdfs:seeAlso rdfs:Resource ) 
  (aliases    rdfs:seeAlso rdfs:isDefinedBy) 
 ) 
   ... 
 ([rdfs:isDefinedBy] of rdf:Property  
  (rdfs:isDefinedBy [rdfs]) 
  (rdf:type [rdf:Property]) 
  (rdfs:domain [rdfs:Resource]) 
  (rdfs:range [rdfs:Resource]) 
  (rdfs:subPropertyOf [rdfs:seeAlso]) 
  (rdfs:label isDefinedBy) 
  (rdfs:comment "Namespace of a resource") 
 ) 
   ...  
) 

Figure 3. Various COOL definitions of RDF elements. 
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All resources are represented as COOL objects, which are (direct or indirect) instances of the rdfs:Resource 

class. The identifier of a resource object is either in namespace:anchorID format, if its URI can be resolved in 

this way, or its complete address otherwise. R-DEVICE also represents the documents of the namespaces as 

resource objects, storing their URI in the uri slot. Figure 3 shows the definition of the rdfs namespace as a 

resource object.  

Blank nodes are handled as first-class resources. However, since the ARP parser guarantees the uniqueness of 

their names only within each document, R-DEVICE has an extra mechanism during the loading of a document 

that augments the name of each blank node with a unique file ID. In this way, blank nodes a globally have 

unique ID within R-DEVICE. Notice that the semantics of each type of blank node (e.g. lists, sequences, strati-

fied statements, etc.) are left to the user who provides appropriate rules for interpreting them. However, the 

processing of such RDF constructs can benefit from certain optimizations within the CLIPS system. For exam-

ple, lists and containers could be condensed into multislots for faster access. Such optimizations are currently 

implemented into an OWL-aware extension of R-DEVICE [34]. 

The specific class of each resource object depends on the rdf:type property of the resource. When a resource 

has multiple rdf:type properties then the resource object belongs to multiple classes. This cannot be handled 

directly in COOL (and in most object-oriented programming languages), therefore a dummy class is generated 

which is a subclass of all the classes that the object should belong to. Then the resource object is made an in-

stance of this class. The slot source indicates whether an object is a proper RDF resource or a system-generated 

object. For example, consider the following RDF triples that define a resource ex:A with two types: 

ex:A rdf:type ex:P . 
ex:A rdf:type ex:Q . 

R-DEVICE will create a dummy class gen1 that is a subclass of classes ex:Q and ex:P as Figure 4 shows. Ob-

ject ex:A becomes an instance of this class; however, in the slot rdf:type of this object the original types are 

kept and not the system-generated class. Furthermore, the meta-data of class gen1 (instance [gen1] of class 

rdfs:Class) records in slot system that this is a system-generated class. 

(defclass gen1 
   (is-a ex:Q ex:P) 
   ...  
) 
([gen1] of rdfs:Class 
   (source system) 
   (rdf:type [gen1]) 
) 
([ex:A] of gen1 
   (source rdf) 
   (rdf:type [ex:Q] [ex:P]) 
) 

Figure 4. Example of a resource with two types in R-DEVICE. 

3.2 Properties 
Properties are (direct or indirect) instances of the rdf:Property class. Furthermore, properties whose domain 

is a single class are defined as slots (attributes) of this class. Figure 3 shows property rdfs:isDefinedBy 

whose domain is class rdfs:Resource. The values of properties are stored inside resource objects as slot val-

ues. Actually, RDF properties are multislots, i.e. they store lists of values, because a resource can have multiple 

(different) values for the same property. 
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When a property has multiple domains, then a dummy class is generated which is a subclass of all the classes of 

the property domain. The property is then made a slot of this dummy class, since resource objects that have this 

property must be instances of all the classes in the domain. For example, the following set of triples defines a 

new property ex:Property1 with two domains, classes ex:P and ex:Q. Figure 5 shows how a system-

generated class gen1 is created in order to "host" this property. 

ex:P rdf:type rdfs:Class . 
ex:Q rdf:type rdfs:Class . 
ex:Property1 rdf:type rdf:Property . 
ex:Property1 rdfs:domain ex:P . 
ex:Property1 rdfs:domain ex:Q . 

Properties with no domain constraint must be attached to all resource objects, therefore they should become slots 

of the rdfs:Resource class, which is the root of the resource object hierarchy. However, the rdfs:Resource 

class is already defined by the system, which means that it should be dynamically re-defined. This is due to RDF 

descriptive semantics which may add new properties to already existing classes and is treated in R-DEVICE by 

re-defining classes at run-time, which is discussed in section 3.3.7. 

([ex:Property1] of rdf:Property 
   (rdf:type [rdf:Property]) 
   (rdfs:domain [gen1]) 
) 
([gen1] of rdfs:Class 
   (source system) 
   (rdf:type [gen1]) 
) 
(defclass gen1 
   (is-a ex:P ex:Q) 
   (multislot ex:Property1) 
   ... 
) 

Figure 5. Example of a property with two domains in R DEVICE. 

Similar dynamic re-definitions occur on a couple other occasions in R-DEVICE, since new triples can be incre-

mentally added in the knowledge base. For example, when an existing class gets a new rdfs:subClassOf 

property, then the above dynamic class re-definition occurs to alter the class hierarchy. Another case is when an 

existing object is given a new rdf:type property then the object is deleted and re-created under the scheme of 

multiple types described above. One reason for giving a new rdf:type property to an existing object is when a 

property is attached to an object, but the object does not belong to the domain (or the range) of the property. 

According to the descriptive semantics of RDF Schema (entailment rules rdfs2and rdfs3 in [26]), the type of this 

object should be the domain (or range) of the property. For example, consider the following RDF test case 3 of 

the rdf-containers-syntax-vs-schema issue1. The _:bar resource has type foo:Bar according to the first triple. 

In addition, the same resource must also be of type rdfs:Container because this is the domain of rdf:_XX 

properties. 

_:bar rdf:type foo:Bar . 
_:bar rdf:_1 "1" . 
_:bar rdf:_2 "2" . 

Generally speaking, R-DEVICE does not reject any RDF triple because every asserted triple is considered to be 

true. Notice that this behaviour is compatible with the Open-World Assumption of RDF and Semantic Web in 

general, where every statement is considered to be true. Under the Closed-World Assumption some statements 

                                                                 
1 http://www.w3.org/2000/03/rdf-tracking/#rdf-containers-syntax-vs-schema 
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would cause a consistency violation error. Such behaviour could be very easily implemented in R-DEVICE, 

since production rule environments like CLIPS are based on the Closed-World Assumption. However, this was a 

design choice for R-DEVICE. An alternative would be to leave on the user the choice on which assumption to 

base the RDF transformation. 

The rdfs:range constraint of properties defines the type of the values of slots. Specifically, when this con-

straint is absent, then there is no type constraint for the slots, while if the value of the constraint is 

rdfs:Literal then the corresponding slot is of type STRING or SYMBOL (called LEXEME in COOL). Further-

more, we have catered for mapping some of the XML Schema data types to the COOL data types, through the 

rdfs:Datatype class. More specifically, xsd:integer, xsd:long, etc. are casted to INTEGER, xsd:float, 

xsd:decimal, etc. are casted to FLOAT, while all other data types are treated as either CLIPS strings or sym-

bols. Each of these datatypes is automatically made a subclass of rdfs:Literal (entailment rule rdfs13 in 

[26]). However, notice that datatype classes are not real classes, in the sense that they do not have instances, but 

they are mere instances of rdfs:Class.  

When the value of the range constraint is the name of a resource class (object property), the type of the slot is 

INSTANCE, the COOL datatype for object referencing slots, i.e. slot values are OIDs of resource objects. When 

there are multiple range constraints, R-DEVICE creates a dummy class (similarly to the case of multiple domain 

constraints) which becomes the type of the slot. In COOL, reference slots cannot be constrained to take as val-

ues instances of a specific class, therefore the referenced class information must be kept via a separate mecha-

nism. Actually, since classes are not first-class objects in COOL (e.g. they cannot have class variables) we had 

to devise a mechanism to keep the types of reference slots. This was achieved in COOL through a multislot, 

called class-refs, which is kept inside the meta-class of each class, which is actually the rdfs:Class in-

stance of each class (Figure 3). Values in this slot come in pairs; the first member of the pair is the name of a 

reference slot, while the second is the type (class) of the reference slot. Each class in the hierarchy has its own 

value. When a new class is created, it inherits the value of this slot of its superclass and adds the slot-class pairs 

for its own slots. 

Finally, when there is no range constraint, the property can have as a value anything, i.e. either a resource or a 

literal. The corresponding slot definition in COOL simple does not have a type constraint. 

Lastly, we discuss how property hierarchies are treated in R-DEVICE. When property A is a subproperty of B, 

then property B can be used wherever property A can be used, but not vice-versa (entailment rule rdfs7 in [26]). 

Therefore, we can consider that property B can be an alias for property A. The aliasing mechanism is imple-

mented in a way similar to the class references described above. Specifically, there is an alias multislot kept 

inside the meta-class (Figure 3). Values inside this slot come in pairs; the first member of the pair is the name of 

a superproperty while the second is the name of the subproperty. Actually, this slot contains the explicit transi-

tive closure of the property hierarchy, since a property is transitively a subproperty of all the properties in the 

property hierarchy (entailment rule rdfs5). When a property is about to be added as a slot in a class, the property 

hierarchy is navigated upwards and all the superproperties are added in the alias slot as aliases of the new 

property. Furthermore, when a new class is created the value of the alias slot of its superclass(es) is inherited. 



 10

Aliases are used by the deductive rule compiler to augment a rule base with rules that refer to superproperties 

(see section 4.2). 

3.3 The RDF Triple Translator 
In this subsection we present the RDF Triple Translator in more detail. The RDF Triple Translator is imple-

mented as a CLIPS production rule program. Some production rules consume RDF triples and create COOL 

resource objects, filling up their slots with properties, while other rules examine these resource objects and en-

force RDF model theory, i.e. they create COOL classes and they treat property hierarchies using the aliasing 

mechanism. Actually, the translator rule base is clustered into rule groups that treat several aspects of the transla-

tion that have been mentioned above. Figure 6 illustrates the workflow among the various rule groups and sub-

groups of the RDF translator, which are described in detail in the following sub-subsections. 

Repeat - Until no untreated triples exist 
  Repeat - Until no more RDF triples are consumed 
    1. Create resource objects 
     1.1 Create Objects with single type 
     1.2 Create Objects with multiple types 
     1.3 Change type of existing object 
    2. Put slot values 
     2.1 Assert new type for existing object 
    3. Inherit property domains/ranges 
    4. Treat properties with multiple domains/ranges 
     4.1 Create dummy classes 
    5. Create classes 
     5.1 Insert superclasses 
     5.2 Insert slot definitions 
     5.3 Treat property hierarchy (aliasing) 
  6. Prepare re-definitions of existing classes 
     6.1 Find new superclasses for existing classes 
     6.2 Find new properties for existing classes 
  If there exist classes that need re-definition then 
    For each class that needs re-definition 
      7. Re-define class 
       7.1 Backup class 
         7.1.1 Backup subclasses 
         7.1.2 Backup instances 
       7.2 Undefine class 
         7.2.1 Undefine subclasses 
         7.2.2 Delete instances 
         7.2.3 Undefine class definition 
       7.3 Redefine class 
         7.3.1 Insert new superclasses 
         7.3.2 Insert new slots 
         7.3.3 Redefine class definition 
         7.3.4 Restore subclasses 
         7.3.5 Restore instances 
    Put slot values (same as step 2) 
  8. Treat remaining triples 
   8.1 Generate container membership properties 
   8.2 Assert type of non-existing properties 
   8.3 Assert type of non-existing triple subjects 
     8.3.1 Assert new type for existing subjects 
   8.4 Assert type of non-existing triple objects 

Figure 6. RDF triple translator algorithm. 

3.3.1. Create Resource Objects 

When a triple (Resource1 rdf:type Resource2) is found, then it means that the object Resource1 of class Re-

source2 must be created. However, before this is done, the following things must be checked first: 

• If the class Resource2 does not yet exist, then the creation of object Resource1 must be postponed until this 

is done. 
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• If the object Resource1 already exists, then this means that a new triple has been added that gives the object 

a new (extra) type. This is treated by re-creating the object under a class that is subclass of both of its cur-

rent and new classes. If this class does not yet exist, it is created on-the fly. 

Notice that the object Resource1 is not immediately created when the above triple is found, because there may 

exist more such triples, giving Resource1 more types. Instead, a temporary construct is created that gathers all 

types for Resource1. When no more such types exist, then the object is actually created. The treatment of single- 

versus multi-type resource objects has been described in subsection 3.1. 

3.3.2. Put Slot Values 

When a triple (Resource Property Value) is found, then if the object Resource has already been created, its slot 

Property can be filled with the value Value. If object Resource does not yet exist, then the fill-up of the slot is 

postponed. If slot Property does not yet exist in the class of Resource, then the fill-up of the slot is postponed, 

until the class is re-defined (see section 3.3.6). Multi-slots have already been discussed. Before the value is in-

serted, it is checked if it is already there. 

If Value is a literal then it is transformed to an appropriate CLIPS data type, as explained in section 3.2. On the 

other hand, if Value is a resource then the object Value must have already been created, otherwise referential 

integrity is at risk. If object Value does not exist, then the fill-up of the slot is postponed. Finally, if object Value 

belongs to a type (class) that is not compatible with the range restrictions of Property, then the fill-up of the slot 

is postponed and a new triple that asserts a new (extra) type for object Value is created. This new type will be 

handled by the "Create Resource Objects" task (see section 0) in the next cycle of the algorithm: the object 

Value will be re-created with an extra type and the slot will finally be filled-up with Value. 

3.3.3. Inherit Property Domains/Ranges 

Inheritance for property hierarchies is not treated by COOL (as it is for class hierarchies), therefore an explicit 

treatment is needed. The inheritance algorithm is straightforward: for each superproperty-subproperty pair each 

domain and range of the superproperty is "copied" to the subproperty (entailment rules ext3, ext4 in [26]). No-

tice that the domains and ranges of the properties are explicitly stored at the corresponding property objects. The 

treatment of the properties as slots of classes is explained in the "Create Classes" task (section 3.3.5). 

3.3.4. Treat Properties with Multiple Domains/Ranges 

After domain/range property inheritance has been performed, properties with multiples domains/ranges are 

treated, according to the scheme described in section 3.2. Specifically, system classes are generated which are 

subclasses of the classes of the multiple domains/ranges. These new classes (in the case of multiple domains) 

host the properties with the multiple domains. Notice that new classes are created only if they do not already 

exist. Furthermore, if inside the set of multiple classes some classes are subsumed by others also in the set, then 

only the most specific classes remain in the set. 

3.3.5. Create Classes 

The step of class creation does not rely on triple consumption but on instances of rdfs:Class, which have 

been created by step "Create Resource Objects" (section 0) and filled-up with property values by step "Put Slot 
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Values" (section 3.3.2). All such instances that do not yet correspond to classes and have superclasses that have 

already been created are candidate classes for creation. This creation, however, is performed in two steps: in the 

first step all the necessary information for the new class is collected in a temporary construct, and in the second 

step this construct is used to create the new class.  

The information collected for the new class includes the names of its direct superclasses and the names/types of 

its properties/slots. For each of the superclasses, the aliases and reference types of the inherited properties (see 

section 3.2) are recursively collected and locally kept. Furthermore, for each new property of the new class the 

correct slot definition is created that includes the name of the property and its COOL datatype, based on the 

range restriction (section 3.2). In the case of a resource property, the class(-es) of the range restriction are kept 

along with the inherited reference property types. Finally, if the new property does have superproperty(-ies) the 

property inheritance mechanism keeps the class aliases consistent. 

Notice that the phase of class creation should normally proceed the phase of resource creation (section 3.3.1). 

However, in R-DEVICE this is the other way around, simply because even normal user-defined RDF classes are 

themselves first-class objects, instances of rdfs:Class. Therefore, in order to iterate over the instances of 

rdfs:Class and create the appropriate COOL classes, these instances must first have been created. Therefore, 

during the first iteration of the internal loop of Figure 6 only the user-defined classes will be created; the in-

stances of these classes will be created during the second iteration. 

If the RDF Schema contains further levels of meta-classes, more iteration will be needed. For example, the fol-

lowing triples define a meta-class ex:mc which is a subclass of rdfs:Class. Then it defines class ex:A as an 

instance of this meta-class. Finally, it defines resource ex:aaa as an instance of class ex:A. During the first 

iteration the object [ex:mc] and the class ex:mc will be created. During the second iteration the object [ex:A] 

and the class ex:A will be created. Finally, in the third iteration the object [ex:aaa] will be created.  

ex:mc rdf:type rdfs:Class 
ex:mc rdfs:subClassOf rdfs:Class 
ex:A rdf:type ex:mc 
ex:aaa rdf:type ex:A 

This treatment of meta-classes is achieved because rules of this phase treat both direct and indirect instances of 

rdfs:Class similarly. 

3.3.6. Prepare Re-definitions of Existing Classes 

When no more triples can be consumed this usually means that existing objects cannot store new property values 

simply because their classes do not have the appropriate slots. This calls for a re-definition of the class schema, 

as discussed in section 3.2. The actual re-definition process is described in section 3.3.7. In this sub-subsection 

we describe how R-DEVICE prepares the re-definition by collecting appropriate information about new proper-

ties and/or superclasses of existing classes. Actually the class definition is backed-up in a temporary construct 

that holds the name of the class, the names-types of its existing slots, its current superclasses, the reference types 

of its properties (including inherited ones), and the property hierarchy (aliases) of properties (including inherited 

ones).  

For each new property, the above construct is augmented with the appropriate information for the new property, 

such as name, type, alias, etc., in a way very similar to the actual "Create Classes" task (section 3.3.5). Further-
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more, each new superclass is also kept in the construct taking into account class subsumption. Finally, for each 

new superclass, the aliases and reference types of the inherited properties are recursively collected and augment 

the current class definition. 

Here we notice that after class re-definition a "Put Slot Values" task is re-performed in order to fill up the newly 

created properties of classes-objects with values and consume the remaining triples. 

3.3.7. Dynamic Class Re-definition 

Dynamic class re-definition occurs only if the previous step decides it is needed and requires the following 

steps: 

• Back-up to a file all instances of the re-defined class. 

- Recursively back-up all the subclasses of the re-defined class. 

• Back-up to a main-memory construct the definition of the class and its subclasses. These definitions are 

needed to re-build the classes later. The information to be backed-up has been described in section 3.3.6. 

• Delete all instances of the re-defined class. 

- Recursively delete all instances of all the subclasses of the re-defined class. 

• Un-define the re-defined class. 

- Recursively un-define all the subclasses of the re-defined class (in a bottom-up manner). 

• Re-define the class. 

- Add the new superclass(-es) and the new property(-ies). Actually, augment the class definition that was 

backed-up in a main-memory construct (see above) and re-build the class using the augmented defini-

tion. The process has been described in section 3.3.6. 

- Recursively re-create all the subclasses of the re-defined class (in a top-down manner). Use the backed-

up in main-memory constructs definitions. 

- Re-insert the backed-up instances into the re-defined class and all its subclasses. 

Due to the fact that multiple dynamic class re-definitions can be costly, R-DEVICE tries to keep them to a mini-

mum by gathering together all such needed re-definitions and postponing their application until the triple load-

ing/translation cannot continue without re-defining the schema (see Figure 6). A schema import mechanism that 

is in conformance to the above principle is also described in section 3.4. In section 5 we include a performance 

comparison between having and not having dynamic class re-definition which shows that schema re-definition 

does not incur a very high overhead as a fraction of the total triple import time. 

3.3.8. Treat Remaining Triples 

Finally, when all the above tasks have been performed and unconsumed triples still exist one of the following 

things happens: 

• A triple (S P O) cannot be consumed because its subject S cannot be created as a COOL object. This hap-

pens when the subject S does not have a type. In this case the domain D of the property P is assumed to be 

the type of S and a new triple (S rdf:type D) is asserted that makes this assumption explicit (entailment rule 

rdfs2 in [26]). If property P does not have a domain restriction, then S is assumed to be of type 



 14

rdfs:Resource (entailment rule rdfs4a). Notice that when a property has multiple domains, then resource 

S will have multiple types (see section 3.1). Furthermore, if multiple such triples for the same resource S ex-

ist, then the set of the types of S will be the union of the domains of the properties of all such triples. 

• Exactly the same situation occurs when the object O of the triple cannot be created. In this case the range 

restriction is used to assert the type of the resource (entailment rules rdfs3 and rdfs4b). 

• A triple (S P O) cannot be consumed when its subject S does not have a slot named P. This can happen 

when the domain restriction D of P is incompatible with the type of S. In this case, S is assumed to have a 

new extra type, i.e. the domain restriction of the property and the triple (S rdf:type D) is asserted (entailment 

rule rdfs2). Under the Closed-World Assumption this case would cause a consistency violation error. How-

ever, in R-DEVICE we have chosen to stick with the Open-World Assumption, as already discussed. 

• A triple (S P O) cannot be consumed when its property P does not exist at all as a COOL object, therefore it 

could not be possibly be a slot of any class. This can happen when there is no triple that asserts that the cer-

tain resource P is of type rdf:Property; therefore, the triple (P rdf:type rdf:Property) is asserted (entail-

ment rule rdf1). Furthermore, if the object O has a literal datatype DT (i.e. O ≡ Val ^^ DT), then datatype 

DT is assumed to be the range constraint of the property and a new triple (P rdfs:range DT) is asserted. This 

is not explicitly stated in [26], but we believe it is a reasonable assumption. 

• A special situation similar to the above occurs when the property is of rdf:_XX type (container-

membership property). In this case two triples are asserted: the first (rdf:_XX rdf:type rdfs:Container-

MembershipProperty) states that the property is of type rdfs:ContainerMembershipProperty (RDFS 

axiomatic triples in [26]), and the second (rdf:_XX rdfs:subPropertyOf rdfs:member) that the property is a 

subproperty of rdfs:member (entailment rule rdfs12). 

After all the above triples are checked, the triple translation algorithm starts from the beginning and continues 

until all the triples both original and asserted have been consumed. 

3.4 RDF Schema Import 
RDF documents usually refer to existing RDF Schema documents through the namespace mechanism. Although 

the semantics of an RDF document is precisely defined by the RDF semantics [26], the knowledge of the RDF 

Schema that an RDF document follows provides better understanding of its content both for the human and the 

machine (reasoning engine). Furthermore, the knowledge of the schema allows for more knowledgeable (and 

thus more efficient) rules/queries over the contents of the RDF document.  

For all the above reasons, we argue that when an RDF document is loaded into R-DEVICE it is preferable to 

also load its schema. For this reason, RDF documents are scanned for namespaces that have not already been 

imported/translated into the system. Some of the untranslated namespaces may already exist on the local disk, 

while others are fetched from the Internet. All namespaces (both fetched and locally existing) are recursively 

scanned for namespaces, which are also fetched if not locally stored. Finally, all untranslated namespaces are 

parsed using the ARP parser and are loaded and imported into R-DEVICE using the mechanisms described in 

this section. Notice that the RDF Schema import phase precedes RDF document import phase. 

The rationale for recursively translating all namespaces is to minimize the number of OO schema redefinitions. 

Fetching multiple RDF schema files will aggregate multiple RDF-to-OO schema translations into a single OO 
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schema redefinition. Namespace resolution is not guaranteed to yield an RDF schema document; therefore, if the 

namespace URI is not an RDF document, then the ARP parser will not produce triples and R-DEVICE will 

make assumptions, based on the RDF semantics, about non-resolved properties, resources, classes, etc. 

Notice that the scheme we use is "nondeterministic", because if a resource is temporarily unavailable, then when 

loading an RDF document its namespace (i.e. RDF Schema) will not be fetched and the RDF descriptions will 

be translated differently than if the schema were available. However, we find that this "nondeterminism" is com-

patible with the unstable nature of the Web.  

Of course, the above automatic namespace/schema handling may not be desired by the user. In this case, the 

feature can be simply turned off. Users can then manually and explicitly import RDF Schema documents before 

the loading of the actual RDF instance documents. This explicit import of a schema is not available in RDF/S, 

but the issue is resolved in OWL [33], where explicit import of remote ontologies is supported. Furthermore, we 

are currently developing an integrated visual rule-base development environment for R-DEVICE [4], where the 

user can exert very fine control over the imported RDF ontologies, by explicitly selecting only those that he/she 

wishes to import. The development environment employs a similar "namespace hunting" mechanism where the 

user is prompted with all the collected namespaces and selects only the desired ones (Figure 7). 

 

Figure 7. Namespace selection. 

3.5 Example of RDF Document Import 
Here we present a complete example of loading/translating an RDF document into R-DEVICE. Figure 8 shows 

an example of an RDF/XML document from the ODP metadata (see section 5) that is imported into R-DEVICE 

with the interaction shown in Appendix D. Notice that the Dublin Core namespace is assumed to be already 

loaded into the system. Figure 9 shows the classes that correspond to this RDF document, namely dmoz:Topic 

and dmoz:ExternalPage. Furthermore, class rdfs:Resource had to be re-defined (Figure 9) to add new 

properties, such as dmoz:narrow and dmoz:link, which do not have a specific domain, therefore their default 

domain is rdfs:Resource. Finally, Figure 10 shows all the objects that are created in R-DEVICE specifically 

for the RDF document of Figure 8. The RDF Extractor is described after the R-DEVICE rule language in section 

4.3, because its description depends on the understanding of the deductive rule syntax and semantics. 

<!DOCTYPE rdf:RDF [ 
  <!ENTITY dmoz "http://directory.mozilla.org/rdf/">  
]> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:dc="http://purl.org/dc/elements/1.1/" 
         xmlns:dmoz="&dmoz;"> 
  <dmoz:Topic rdf:about="&dmoz;Top"> 
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    <dmoz:catid>1</dmoz:catid> 
    <dc:title>Top</dc:title> 
    <dmoz:narrow rdf:resource="&dmoz;Top/Arts"/> 
  </dmoz:Topic> 
  <dmoz:Topic rdf:about="&dmoz;Top/Arts"> 
    <dmoz:catid>2</dmoz:catid> 
    <dc:title>Arts</dc:title> 
    <dmoz:link rdf:resource="http://www3.bc.sympatico.ca/PHILLIPSHOTGLASS/GlassPage.html"/> 
  </dmoz:Topic> 
  <dmoz:ExternalPage rdf:about="http://www3.bc.sympatico.ca/PHILLIPSHOTGLASS/GlassPage.html"> 
    <dc:title>John Phillips Blown glass</dc:title> 
    <dc:description>A small display of glass by John Phillips</dc:description> 
  </dmoz:ExternalPage> 
</rdf:RDF> 

Figure 8. Sample RDF/XML document. 

(defclass rdfs:Resource 
   (is-a RDF-CLASS) 
   (multislot dmoz:narrow) 
   (multislot dmoz:catid) 
   (multislot dmoz:link) 
   (multislot dc:title) 
   ... 
   (multislot rdf:type (type INSTANCE-NAME)) 
   ... 
) 

(defclass dmoz:ExternalPage 
   (is-a rdfs:Resource) 
) 
 
(defclass dmoz:Topic 
   (is-a rdfs:Resource) 
) 
 

Figure 9. R-DEVICE classes that correspond to the RDF document of Figure 8. 

([dmoz] of rdfs:Resource 
   (uri "http://directory.mozilla.org/rdf/") 
   (source system) 
   (rdfs:isDefinedBy [dmoz]) 
   (rdf:type [rdfs:Resource]) 
   (rdfs:label dmoz) 
) 

([dmoz:narrow] of rdf:Property 
   (source rdf) 
   (rdf:type [rdf:Property]) 
   (rdfs:domain) 
   (rdfs:range) 
   (rdfs:subPropertyOf) 
) 

([dmoz:catid] of rdf:Property 
   (source rdf) 
   (rdf:type [rdf:Property]) 
   (rdfs:domain) 
   (rdfs:range) 
   (rdfs:subPropertyOf) 
) 

([dmoz:link] of rdf:Property 
   (source rdf) 
   (rdf:type [rdf:Property]) 
   (rdfs:domain) 
   (rdfs:range) 
   (rdfs:subPropertyOf) 
) 

([dmoz:Topic] of rdfs:Class 
   (source rdf) 
   (rdf:type [rdfs:Class]) 
   (rdfs:subClassOf) 
) 

([dmoz:ExternalPage] of rdfs:Class 
   (source rdf) 
   (rdf:type [rdfs:Class]) 
   (rdfs:subClassOf) 
) 

([dmoz:Top] of dmoz:Topic 
   (source rdf) 
   (dmoz:narrow [dmoz:Top/Arts]) 
   (dmoz:catid "1") 
   (dmoz:link) 
   (dc:title "Top") 
   (rdf:type [dmoz:Topic]) 
) 

([dmoz:Top/Arts] of dmoz:Topic 
   (source rdf) 
   (dmoz:narrow) 
   (dmoz:catid "2") 
   (dmoz:link [http://www3.../GlassPage.html]) 
   (dc:title "Arts") 
   (rdf:type [dmoz:Topic]) 
) 

([http://www3.../GlassPage.html] of dmoz:ExternalPage 
   (source rdf) 
   (dmoz:narrow) 
   (dmoz:catid) 
   (dmoz:link) 
   (dc:description "A small display of glass by John Phillips") 
   (dc:title "John phillips Blown glass") 
   (rdf:type [dmoz:ExternalPage]) 
) 

Figure 10. R-DEVICE objects that correspond to the RDF document of Figure 8. 

3.6 Completeness of the Translation 
In this sub-section we discuss completeness issues of the RDF-to-object translation scheme of R-DEVICE. We 

claim that R-DEVICE is complete with respect to both RDF and RDFS reasoning because it covers all of the 

RDF and RDFS entailment rules in [26]. Furthermore, we have tested the system with the W3C RDF Test Cases 

[22] and it can currently handle all the approved ones. Table 1 summarizes how R-DEVICE treats the RDF and 
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RDFS entailment rules by referring to the appropriate sections of the paper where each entailment rule is dis-

cussed. 

Table 1. Treatment of RDF/RDFS entailment rules in R-DEVICE. 

Entailment 
Rule Treatment in R-DEVICE Entailment 

Rule Treatment in R-DEVICE 

rdf1 section 3.3.8 rdfs7 sections 3.2, 4.2 

rdf2 Similar to simple entailment rules. rdfs8 section 3.1 

rdfs1 Similar to simple entailment rules. rdfs9 section 3.1 

rdfs2 sections 3.2, 3.3.8 rdfs10 Trivial. 
Handled by production rule language. 

rdfs3 sections 3.2, 3.3.8 rdfs11 section 3.1 

rdfs4a section 3.3.8 rdfs12 section 3.3.8 

rdfs4b section 3.3.8 rdfs13 section 3.2 

rdfs5 section 3.2 ext3 section 3.3.3 

rdfs6 Trivial. 
Handled by production rule language. 

ext4 section 3.3.3 

 

Simple entailment rules, such as generalization-instantiation rules and datatype entailment rules, are trivial and 

they are implicitly handled by the semantics of the object-oriented language of CLIPS (COOL) and by the pro-

duction rule language of CLIPS. This is also true for entailment rules rdf2 and rdfs1 in Table 1, which comple-

ment literal generalization rules. Furthermore, entailment rules rdfs6 and rdfs10, which suggest that sub-property 

and subclass relations are reflective, are also trivial and they are implicitly handled by the semantics of the pro-

duction rule language of CLIPS. Finally, R-DEVICE supports extensional entailment rules ext3 and ext4 which 

suggest that domains and ranges of properties are inherited by their sub-properties. 

4 The Rule Language 

R-DEVICE belongs to the family of deductive object-oriented rule languages ([6], [8], [10], [9]). There are three 

types of rules in R-DEVICE: deductive rules, derived attribute rules and aggregate attribute rules. In the follow-

ing subsections we present the syntax and semantics of R-DEVICE rules (section 4.1) and the translation of 

R-DEVICE rules in CLIPS production rules (section 4.2). Finally, in section 4.3 we present the extraction of the 

results of the R-DEVICE reasoning process as an RDF document. 

4.1 The Rule Syntax 
The syntax of R-DEVICE rules is a variation of the syntax for CLIPS production rules [17] and can be found in 

Appendix A. In the following sub-subsections we present the syntax and semantics of each one of the three rule 

types. Furthermore, we present its RuleML compliant syntax. 

4.1.1. Deductive Rules 

The deductive rule language of R-DEVICE supports reasoning over RDF data represented as objects and deriva-

tion of materialized views. The conclusions of deductive rules represent derived classes, i.e. classes whose ob-

jects are generated by evaluating these rules over the current set of objects. The derived objects can be main-
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tained incrementally if the user wants. There are two types of rules: truth-maintainable and non truth-

maintainable. The truth-maintainable rules preserve truth of derivations: should any of the condition elements 

that supports a conclusion becomes false, the derived conclusion is deleted, based on a support list mechanism 

explained in section 4.2. The non truth-maintainable rules support conclusions that are no longer true, trading 

off performance vs. accuracy. Of course, certain applications do not require truth maintenance, but require speed 

instead. 

Furthermore, the rule language supports recursion, stratified negation, path expressions over the objects, and 

generalized path expressions (i.e. path expressions with an unknown number of intermediate steps). Finally, 

users can call out to arbitrary built-in or user-defined functions of the host language (CLIPS). However, all the 

above features supported by the R-DEVICE rule language are compiled away during a pre-compilation phase 

into a basic first-order logic rule language that supports named attributes (called slots), similarly to F-Logic [29]. 

The semantics of our rule language is similar to that of function-free Datalog with stratified negation. 

The following is an example of an R-DEVICE deductive rule with name q6 (Appendix B) stating that when 

there is a rss:item resource with a property rss:title that contains "RDQL" as a sub-string and a property 

rss:link with value ?link (a variable), then derive an object of class result with a property link whose 

value equals ?link. 

(deductiverule q6 
 (rss:item (rss:title ?title & :(str-index "RDQL" ?title))) (rss:link ?link) 
  => 
 (result (link ?link)) 
) 

Although R-DEVICE uses COOL objects, the syntax of rules is as if deductive rules reason about CLIPS tem-

plates (i.e. structured facts), because the syntax is simpler. Specifically, each condition element follows the fol-

lowing format: 

?OID <- (classname (path-expr value-expr) ...) 

where ?OID is the (optional) object identifier (or instance name, not address) of an object of class classname, 

and (path-expression value-expression) are zero, one, or more conditions to be tested on each object 

that matches this pattern.  

When the name of the class is unknown, a variable can be used in place of a concrete class name. For example, 

in the following rule doc-title we seek for the titles of documents created by "John Smith".  
(deductiverule doc-title 
 ?x <- (? (dc:title ?t) (dc:creator "John Smith")) 
  => 
 (result (document ?t))) 

However, since the DC namespace is universal, the rule does not require the resources to belong to a certain 

class, i.e. it ranges over all resources found in the KB. Notice that in this way R-DEVICE can support queries 

related to properties and not to classes, overcoming the encapsulation of properties inside classes that is caused 

by the RDF-to-object translation scheme of R-DEVICE (section 3). 

Class names can consist of a namespace prefix followed by a colon and a local part name. R-DEVICE allows the 

use of variables in both the namespace prefix and the local part name. For example, the following condition ele-

ment applies to instances of classes of the rss namespace. 
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(rss:?c (rss:title ?t)) 

A value expression can be a constant or a variable or a constraint or a combination of those, as defined by 

CLIPS rule syntax. Examples of value expressions are given below. 

A path expression is an extension of CLIPS's single ground slot expression. Specifically, in R-DEVICE a path 

expression can be one of the following: 

• A single slot of the class classname. For example, the following rule q5 contains a single condition ele-

ment (shown in bold) that queries slots rss:title and rss:link of objects of class rss:item: 

(deductiverule q5 
 (rss:item (rss:title ?title) (rss:link ?link)) 
  => 
 (result (title ?title) (link ?link))) 

• A single variable denoting any slot of class classname. For example the following condition element 

searches for a resource object with an unknown slot whose value is "Smith". 
(rdfs:Resource (?s "Smith")) 

• A ground path that consists of a list of multiple slots surrounded by parentheses. The following rule q7 con-

tains such a path (shown in bold) in the first condition element: 

(deductiverule q7 
 ?x <- (? (dc:title ?tt) (dc:description ?dd) ((etbthes:ETBT dc:subject) ?ss2)  
      (dc:identifier ?identifier) ((dcq:RFC1766 dc:language) ?language)) 
 ?tt <- (? (rdf:value ?t_val) ((dcq:RFC1766 dc:language) ?t_lang)) 
 ?ss2 <- (? (rdf:value ?subject_val) ((dcq:RFC1766 dc:language) ?subj_lang)) 
 ?dd <- (? (rdf:value ?desc_val) ((dcq:RFC1766 dc:language) ?desc_lang)) 
  => 
 (result (title_value ?t_val) (title_language ?t_lang) (subj_val ?subject_val)  
     (subj_lang ?subj_lang) (desc_value ?desc_val) (desc_lang ?desc_lang) 
     (language ?language)(identifier ?identifier))) 

The right-most slot (dc:language) should be a slot of the "departing" class. Moving to the left, slots be-

long to classes that represent the range of the predecessor slots. The value expression in such a pattern (e.g. 

variable ?language) actually describes a value of the left-most slot of the path. 

• A path that contains one or more single-field variables, i.e. a path whose length is known but some of the 

steps are not. The above ground path can be turned into such a path: 
((dcq:RFC1766 ?x) ?language) 

• A generalized path that contains one or more multi-field variables, i.e. variables that their value is a list. 

These non-ground paths have an unknown length. The path below can have at least two steps and at most 

four (given the specific example): 
((dcq:RFC1766 dc:language $?p) ?x) 

• A path that contains an encapsulated recursive sub-path, i.e. a sub-path that is traversed an unknown num-

ber of times. The following path contains the recursive sub-path (dcq:references) which recursively 

follows resources that reference each other: 
((dc:title (dcq:references)) ?t) 

Recursive paths can be used to express transitive closure queries. For example, the following rule collects 

all resources (pages) recursively referenced by a certain resource. 

(deductiverule collect_refs 
  (? (uri "http://lpis.csd.auth.gr") ((uri (dcq:references)) ?uri)) 
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 => 
  (result (uri ?uri)) 
) 

Notice that URIs that are reachable following many paths will only be included once in the result and that infi-

nite loops will be avoided, due to the support list mechanism (see section 4.2). 

Recursive sub-paths can be implicitly included in a path of unknown length. For example in the following gen-

eralized path, the multifield variable $?p can represent both linear and recursive sub-paths: 

((dc:title $?p) ?t) 

Multifield variables can also occur as a value expression, since all RDF properties are treated as multislots. For 

example, the following pattern retrieves in a list $?l all the values for the rss:link property of a resource ob-

ject: 
(rss:link $?l) 

On the other hand, if we know that a resource object has many values for one property and we want to iterate 

over them, the pattern should be: 
(rss:link $? ?l $?) 

which means that variable ?l will eventually become instantiated with all the values of the property rss:link. 

This retrieval pattern is so common that a shortcut is provided which expands to the above pattern during a 

macro expansion phase. 
(rss:link ??l) 

When the value of a specific variable is of no interest then an anonymous variable '?' can be used, which is re-

placed by a singleton system-generated variable during the macro expansion phase. 

Selection conditions can be placed inside value expressions, as in CLIPS. For example, the following pattern 

retrieves the family name in a variable and, at the same time, tests if the slot value does not equal "Smith": 
(vcard:Family ?last&~"Smith") 

Conditions can also express disjunction and negation. Only stratified negation is allowed. 

The rule conclusion can also contain a set of function calls that calculate the values to be stored at the slots of 

the derived object. Such calls are placed inside a calc construct before the derived class template. For example, 

the following variation of rule q2 retrieves the given and family name of a resource object and, using a CLIPS 

function, concatenates them into a single string that is stored in the slot full-name of the derived objects of 

class person. 

(deductiverule q2-variation 
 (? (vcard:Family ?f) (vcard:Given ?v)) 
  => 
 (calc (bind ?full (str-cat ?v " " ?f))) 
 (person (full-name ?full)) 
) 

R-DEVICE deductive rules also support aggregate functions and grouping in the form of aggregate attributes 

whose values are calculated by accumulating and combining attribute values of existing objects. For example, 

the following rule iterates over all resources and derives one object for each distinct creator, which holds in the 

URIs slot all the resources that he/she has created.  

(deductiverule ex1-aggregate 
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 (? (dcq:creator ?c) (uri ?uri)) 
  => 
 (pages (author ?c) (URIs (list ?uri))) 
) 

Function list is an aggregate function that just collects values in a list. There are several other aggregate func-

tions, such as sum, count, avg, etc. Notice that in the above example a grouping is performed because the con-

clusion contains the slot author in addition to the aggregate slot URIs. In order to use aggregate functions with-

out grouping, aggregate attribute rules (see section 4.1.3) must be used. 

4.1.2. Derived Attribute Rules 

Derived attribute rules are rules that derive attributes (for existing objects) whose value is calculated using other 

attribute values of the same or different object(s). The values for derived attributes are stored and not calculated 

on-demand. An example of a derived attribute rule is the following: 

(derivedattrule emp-income 
  ?x <- (salesman (salary ?s) (bonus_percentage ?p) (total_sales ?sls)) 
 => 
  (calc (bind ?total (+ ?s (*?sls ?p)))) 
  ?x <- (salesman (total_income ?total)) 
) 

The above rule states that if the salary, bonus percentage and total sales of a salesman are known then the sales-

man's total income is calculated by adding to the salary the bonus percentage calculated over the total sales. This 

rule type is different than deductive rules because here only the value of one attribute of an existing object is 

affected, whereas in e.g. deductive rule q2-variation (above) an entirely new object is derived and the value 

of one of its attributes is calculated through a function. 

The semantics of derived attribute rules are similar to the semantics of a production rule that modifies the attrib-

ute of an object, based on the rule condition, which instantiates the identifier of the modified object. 

4.1.3. Aggregate Attribute Rules 

Aggregate attribute rules are rules that derive attributes (for existing objects) whose value is calculated by accu-

mulating and combining attribute values of multiple other objects. The values for aggregate attributes are also 

stored, i.e. not calculated on-demand. An example of an aggregate attribute rule is the following: 

(aggregateattrule ex2-aggregate 
  (emp (salary ?s) (department ?d)) 
 => 
  ?d <- (dept (total_salaries (sum ?s))) 
) 

The above rule states that the total salaries attribute of each department is calculated by summing the salaries of 

each employee of the department. This rule type is different than deductive rules with aggregate functions be-

cause here only the value of one attribute of an existing object is affected, whereas in e.g. deductive rule ex1-

aggregate (above) an entirely new object is derived and the value of one of its attributes is calculated through 

aggregation. 

The semantics of aggregate attribute rules are similar to the semantics of derived attribute rules. However, here 

the new value for the modified attribute depends not only on the current variable instantiations of the rule condi-

tion, but also on the past collected values. The semantics of aggregate attribute rules seem to violate the Open-

World Assumption, because the results are based only on the information found in the (closed) knowledge base 
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of the system. However, rules are non-monotonic since the import of new RDF documents causes results to be 

re-calculated. 

4.1.4. RuleML Syntax of R-DEVICE Rules 

The R-DEVICE rule language also has a RuleML [14] compatible syntax. We have tried to keep as close as pos-

sible to the latest RuleML version 0.85. However, several features of R-DEVICE could not be captured by the 

latest RuleML DTDs, so we have developed a new DTD (Figure 11) using the modularization scheme of 

RuleML, extending the Datalog DTD with the negation-as-failure DTD with OO features. 

<!ENTITY % CLASSes "NMTOKENS"> 
<!ATTLIST _rlab  
      ruletype (deductiverule | derivedattrule | aggregateattrule) #REQUIRED 
      maintainable (yes | no) "yes"> 
<!ATTLIST var type (single | multi | single-multi) #REQUIRED> 
<!ENTITY % recpath.content "(slotname+)">  <!ELEMENT recpath %recpath.content;> 
<!ENTITY % genpath.content "(var)">        <!ELEMENT genpath %genpath.content;> 
<!ENTITY % slotname.content "(ind|var)"> <!ELEMENT slotname %slotname.content;> 
<!ELEMENT _varslot %_slot.content;> 
<!ENTITY % _path.content "(slotname|genpath|recpath)+"> 
<!ELEMENT _path (%_path.content;, %_slot.content;)> 
<!ENTITY % rel.content "(ind | var)"> 
<!ENTITY % _id.content "(ind | var)">      <!ELEMENT _id %_id.content;> 
<!ENTITY % atom.content "((_id?,_opr,(_path|_slot|_varslot)*, ...))"> 
<!ENTITY % _calc.cont "(function_call+)">    <!ELEMENT calc %_calc.cont;> 
<!ENTITY % _head.content "(calc?, atom)"> 
<!ELEMENT aggregate_function_call (var)> 
<!ATTLIST aggregate_function_call 
        name (sum|count|list|avg|max|min|ord_list|set|string|phrase) #REQUIRED> 
<!ELEMENT function_call (%pos_term;)*> 
<!ATTLIST function_call name CDATA #REQUIRED> 
<!ENTITY % pos_term "(ind | var | function_call)"> 
<!ENTITY % term "(_not | %pos_term;)">     <!ELEMENT _not (ind | var)> 
<!ELEMENT _or (%term;, (%term;)+)>         <!ELEMENT _and (%term;, (%term;)+)> 
<!ENTITY % constraint "(_not | _or | _and)"> 
<!ENTITY % _slot.content "(ind | var | %constraint;|aggregate_function_call)"> 
<!ENTITY % nafurdatalog_include SYSTEM  
                        "http://www.ruleml.org/0.85/dtd/naf/nafurdatalog.dtd"> 
%nafurdatalog_include; 
<!ATTLIST rulebase  xmlns %URI; #IMPLIED  xsi:schemaLocation %URI; #IMPLIED 
              xmlns:xsi %URI; #IMPLIED  rdf_import CDATA #IMPLIED 
              rdf_export_classes %CLASSes; #IMPLIED rdf_export CDATA #IMPLIED> 

Figure 11. DTD for the RuleML syntax of the R-DEVICE rule language. 

An example of an R-DEVICE rule in RuleML syntax is rule q5 (Appendix B) below: 

<imp> 
  <_rlab ruletype="deductiverule" maintainable="yes"> 
    <ind>q5</ind> 
  </_rlab> 
  <_head> 
    <atom> 
      <_opr><rel><ind>result</ind></rel></_opr> 
      <_slot name="link">  <var type="single">link</var> 
      </_slot> 
    </atom> 
  </_head> 
  <_body> 
    <atom> 
      <_opr><rel><ind>rss:item</ind></rel></_opr> 
      <_slot name="rss:title"> 
        <_and>  <var type="single">title</var> 
                <function_call name="str-index"> 
                  <ind>"RDQL"</ind> 
                  <var type="single">title</var> 
                </function_call> 
        </_and> 
      </_slot> 
      <_slot name="rss:link">  <var type="single">link</var> 
      </_slot> 
    </atom> 
  </_body> 
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</imp> 

There are three types of rules: deductive rules, derived attribute rules and aggregate attribute rules. Classes and 

objects (facts) can also be declared in R-DEVICE; however, the focus in this paper is the use of RDF data as 

facts. The input RDF file(s) are declared in the rdf_import attribute of the rulebase (root) element of the 

RuleML document. There are two more attributes in the rulebase element: rdf_export declares the address of 

the RDF file with the results of the rule program to be exported, and rdf_export_classes declares the de-

rived classes whose instances will be exported in RDF/XML format. 

Further extensions to the RuleML syntax include function calls that are used either as constraints in the rule 

body or as new value calculators at the rule head. Furthermore, multiple constraints in the rule body can be ex-

pressed through the logical operators: _not, _and, _or. Variables belong to three types: single, multi, and a 

combined form to reflect variable expressions in the previous subsection. 

Finally, simple slot expressions have been augmented with the ability to declare path expressions according to 

the R-DEVICE abilities, i.e. simple ground path expressions, simple path expressions with variables, generalized 

path expressions, recursive path expressions, etc. Notice that the relation name of the operator can be either a 

constant (class name) or a variable, since R-DEVICE allows variables to range over class and slot names. Fur-

thermore, each atom element has been augmented with an optional _id element to represent the OID of the cor-

responding resource object. 

Notice that despite the quite a few extensions that the R-DEVICE brings to the RuleML syntax, the latter is still 

valuable for helping interoperation between R-DEVICE and other RuleML-compatible rule systems. Of course, 

tools are still needed to translate the enhanced rule language of R-DEVICE into more primitive but more wide-

spread rule sublanguages of RuleML and vice-versa.  

4.2 Translation of Rules 
In this subsection we present how R-DEVICE rules are translated into CLIPS production rules. The semantics of 

CLIPS production rules [17] are the usual production rule semantics: rules whose condition is successfully 

matched against the current data are triggered and placed in the conflict set. The conflict resolution mechanism 

selects a single rule for firing its action, which may alter the data. In subsequent cycles, new rules may be trig-

gered or un-triggered based on the data modifications. The criteria for selecting rules for the conflict set may be 

priority-based or heuristically based. Rule condition matching is performed incrementally, through the RETE 

algorithm.  
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Figure 12. The workflow of the Rule Translator. 

Figure 12 shows the major components and sub-components of the rule translator, as well as the workflow of 

information among them. Initially, the Rule Loader reads into CLIPS R-DEVICE rule programs. During load-

ing, some macro expansions, such as the ones mentioned in section 4.1, take place. Then, the Precompiler scans 

rule conditions in order to determine if they have second-order syntax. By second-order syntax, we mean use of 

variables in the place of class or slot names, or in path expressions. If second-order syntax is present, then the 

rule is passed through the Second- to First-order syntax Rule Translator, which uses the existing schema infor-

mation to generate a set of deductive rules with first-order syntax that have an equivalent semantics to the sec-

ond-order syntax rule.  

Eventually, rules with first-order syntax, i.e. with no variables in place of classes, slots or paths, are fed to the 

First-order syntax Rule Compiler, which compiles them into production rules. Firstly, the rule condition is trans-

lated by turning R-DEVICE syntax for objects into CLIPS syntax. Then, path expressions are transformed into 

multiple joined condition elements.  

In the rest of the section, we discuss the transformation of the rule condition, then we present the translation of 

all types of first-order R-DEVICE rules and, finally, we describe the transformation of second order rules into 

sets of first-order rules. 

4.2.1. Transformation of the Rule Condition 

The condition of R-DEVICE rules is transformed into a condition that follows the CLIPS syntax and the R-

DEVICE semantics. More specifically, three types of transformations are performed: 

• Path Transformations 

• Condition Element Transformations 

• Alias Slot Transformations 
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Path Transformations 

Condition elements that contain (ground) path expressions are transformed into multiple condition elements that 

are chained together using system generated variable names. For example, the following condition element: 

 ?OID <- (Class ((Sn ... Si ... S2 S1) Val)) 

where Class is a class name, Si are slot names and Val is a valid Value and/or constraint expression, is trans-

lated into the following set of condition elements: 

 ?OID <- (Class (S1 ?var1)) 
 ?var1 <- (Class1 (S2 ?var2)) 
... 
 ?vari-1 <- (Classi-1 (Si ?vari)) 
 ?vari <- (Classi (Si+1 ?vari+1)) 
... 
 ?varn-1 <- (Classn-1 (Sn Val)) 

where Classi is the range of the property Si, and ?vari is a locally unique system generated variable. If prop-

erty Si does not have a range, then rdfs:Resource is assumed. 

When multiple path expressions exist in the same original condition element, then obviously the above trans-

formation occurs for each one of them. However, there is a single ?OID <- (Class ...) condition element 

for all path expressions because all paths depart from the same object.  

Recursive paths follow a different technique that requires the original rule to be replaced by three other rules 

with non-recursive paths and an auxiliary derived class. Specifically, assume that the following is e.g. a deduc-

tive rule: 

(deductiverule rule4 
  ConditionBefore(VarsBefore) 
  ?OID <- (Class ((Sn ... Si+1 (RPn ... RP1) Si-1 ... S2 S1) Val)) 
  ConditionAfter 
 => 
  Conclusion 
) 

where ConditionBefore(VarsBefore) is a part of the condition that lies before the condition element that has the 

recursive path, VarsBefore is the set of variables inside ConditionBefore that are shared with the rest of the rule, 

(RPn ... RP1) is the recursive sub-path of the condition element, ConditionAfter is a part of the condition 

that lies after the condition element that has the recursive path, and Conclusion is the conclusion of the rule. 

Rule rule4 will be replaced by the following set of deductive rules: 

(deductiverule rule4-1 
  ConditionBefore(VarsBefore) 
  ?OID <- (Class ((RPn ... RP1 Si-1 ... S2 S1) $? ?var1 $?))) 
 => 
  (genXX Slots-VarsBefore (cnd_obj ?var1)) 
) 

(deductiverule rule4-2 
  (genXX Slots-VarsBefore (cnd_obj ?var1)) 
  ?var1 <- (Class-RPn ((RPn ... RP1) $? ?var2 $?)) 
 => 
  (genXX Slots-VarsBefore (cnd_obj ?var2)) 
) 

(deductiverule rule4-3 
  (genXX Slots-VarsBefore ((Sn ... Si+1 cnd_obj) Val)) 
  ConditionAfter 
 => 
  Conclusion 
) 
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The first rule rule4-1 navigates the initial part of the path (Si-1 ... S2 S1), then navigates once the steps of 

the recursive path (RPn ... RP1) and finally stores the OIDs of the objects (?var1) that lie at the end of this 

first part of the path into a system-generated derived class genXX (into slot cnd_obj) along with the values of 

the variables of the preceding condition that are needed later in the rule. Slots-VarsBefore are slot expressions that 

contain the values of those variables; slot names are generated by the system. Actually rule rule4-1 produces 

the first layer of objects that lie at the recursive path.  

This first layer of objects is used by rule rule4-2 to recursively navigate all such objects (transitive closure). 

Class-RPn is the range of the last property of the recursive path RPn. Finally, rule rule4-3 iterates over all 

these objects that are reachable through the recursive path (and stored as distinct instances of class genXX) and 

navigates the rest of the path (Sn ... Si+1) of the original condition element. The rest of the condition and the 

conclusion of the original rule are hosted by rule rule4-3. These three rules together can replace the original 

rule in the rule base. Notice that all three rules have only linear ground paths whose transformation has been 

presented above. In R-DEVICE there is a mechanism that modifies and/or augments the initial rule program 

with additional rules in order to preserve the semantics of the R-DEVICE rule language. 

Condition Element Transformations 

After path transformation all condition elements contain only valid CLIPS slot expressions of the form (slot-

name value-expression). The next step is to transform R-DEVICE condition element expressions into valid 

CLIPS condition expressions about COOL objects. This is straightforward, since an expression of the following 

form: 

 ?OID <- (Class slot-expressions*) 

is transformed into: 

 (object (is-a Class) (name ?OID) slot-expressions*) 

Condition elements that do not have an "?OID <- " expression are also transformed into the pattern above, us-

ing a system generated variable, since the OID of each object in the condition is needed for keeping track of the 

derivators of each derived object (see section 4.2.2). 

Alias Slot Transformations 

As described in section 3.2, the property hierarchy is treated as slot aliases. When rule conditions contain a su-

per-property in the place of a sub-property special care should be taken. For example, assume that a rule con-

tains the following condition where Property1 is a super-property of Property2 and the domain of Prop-

erty2 is Class. 

 (Class (Property1 Val)) 

There are two cases:  

• The domain of Property1 does not include either Class or any of its direct or indirect super-classes. R-

DEVICE replaces Property1 with Property2 using the information stored in the alias slot of the meta-

class of Class. Otherwise the rule compiler should signal an error since Property1 is not a direct or inher-

ited slot of Class.  
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• The domain of Property1 either includes Class or some of its direct or indirect super-classes; therefore, 

Property1 is a proper slot of Class. In this case one rule for each sub-property of Property1 (including 

Property1) is created. In R-DEVICE there is a mechanism that augments the initial rule program with ad-

ditional rules in order to preserve the RDF(S) semantics. 

From the above, it seems that one cannot reason over the subsumption hierarchy of properties except through 

their domain classes. However, if Class in the above example is a variable, then during the second-order to firs-

order translation phase (section 4.2.5) it will be replaced by the domain of Property1 and one of the above two 

cases will occur. 

4.2.2. Translation of Deductive Rules 

The translation of deductive rules depends on whether deductive rules are truth-maintainable or not. The general 

form of a deductive rule is: 

(DeductiveRuleType rule1 
  Condition 
 => 
  (derived-class slot-expressions*) 
) 

where DeductiveRuleType is either ntm-deductiverule or deductiverule, and derived-class is the 

name of the derived class, while slot-expressions* are zero or more proper slot-value pairs (see section 

4.1.1).  

Derived Class Generation 

The rule translator has to generate the derived class of the rule conclusion, unless of course it already exists. An 

important point in generating the derived class is the determination of the slot types. This is based on examining 

the type of the variables that appear at the rule conclusion. The type of these variables is determined by scanning 

the condition to find out occurrences of these variables inside slot patterns. Then, the type of the variable can be 

determined by examining the slot definitions of the corresponding classes. For example, in the following rule, 

the type of derived-slot will be defined by examining the type of the slot slot1 of Class1 since there exists 

the shared variable ?var. 

(DeductiveRuleType rule2 
  (Class1 (slot1 ?var)) 
 => 
  (derived-class (derived-slot ?var)) 
) 

If the shared variable appears in two or more different places in the condition, then the minimum common an-

cestor type will be used. For example, if in the following rule slot1 is of type INTEGER and slot2 is of type 

FLOAT, the type of the derived-slot will be NUMBER. If both slots are of type INSTANCE, then so will be the 

type of the derived-slot. However, using the class reference mechanism of section 3.1 the type of derived-

slot will be the minimum common ancestor of the classes of both slots in the class hierarchy. 

(DeductiveRuleType rule2a 
  (Class1 (slot1 ?var)) 
  (Class2 (slot2 ?var)) 
 => 
  (derived-class (derived-slot ?var)) 
) 
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When multiple rules have the same conclusion this means that the final view (derived class) is the union of all 

the views produced by each rule. Sometimes the conclusions of rules can cause slightly different definitions for 

the derived class. For example, the following rule rule3 together with rule2 above form a pair of rules that 

have the same derived class as a conclusion.  

(DeductiveRuleType rule3 
  (Class2 (slot2 ?var)) 
 => 
  (derived-class (derived-slot ?var)) 
) 

If slot1 and slot2 have the same type, then there is no problem. When the first rule rule2 is compiled, de-

rived-class is generated, and then when later the second rule rule3 is compiled the existing definition for 

derived-class is used. However, when the types of slot1 and slot2 are different, then when rule3 is com-

piled the definition for derived-class must change. This situation is treated in R-DEVICE by dynamically re-

defining the derived class. Specifically, if the existing slot type does not subsume the new type, then the new slot 

type is appended to the old slot type2. The re-definition of the derived class is performed in a way similar to the 

one described in section 3.3.7. 

Non Truth-Maintainable Rules 

The translation of non truth-maintainable rules is straightforward and requires a single CLIPS production rule. If 

the deductive rule rule1 above is non-truth-maintainable, then the following CLIPS production rule is gener-

ated: 

(defrule rule1-genXX 
  (declare (salience (calc-salience derived-class))) 
  TransformedCondition 
  Check if NewDerivedObject does not exist 
 => 
  (make-instance NewDerivedObject of derived-class slot-expressions*) 
) 

NewDerivedObject is the OID of the new object of class derived-class with slot values defined by slot-

expressions*. The OID of derived objects is constructed by concatenating the name of the derived class with 

the slot values of each derived object. So, for example, if rule q6 (Appendix B) derives a new object of class 

result with slot link equal to http://news.com/sports/94224.html, then the OID of the derived object 

will be: result-http://news.com/sports/94224.html. In this way the existence of a derived object can 

be efficiently checked through the constructed OID of the derived object. Here we remind that derived objects 

should be unique regarding the combination of their slot values. TransformedCondition is the condition that 

was created by the Condition Transformation phase (see section 4.2.1). 

The priority of the production rule (called salience in CLIPS) is determined by the stratum of the derived class 

by subtracting the stratum number from a fixed salience (2000). The stratum is an integer that is used by semi-

naive evaluation of logic rule programs with stratified negation [40] to indicate the order by which the rules 

(based on their conclusion) are evaluated. Rules that derive classes with low stratum are evaluated before rules 

that derive classes with higher stratum, thus they must have a higher salience in CLIPS. Figure 13 shows the 

                                                                 
2 In COOL a slot can have multiple types with disjunctive semantics. 
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production rule generated by R-DEVICE for the deductive rule q6 (Appendix B), in its non-truth-maintainable 

version. 

(defrule q6-gen54 
   (declare (salience (calc-salience result))) 
   (object (name ?gen53)  (is-a rss:item) 
           (rss:title ?title&:(str-index "RDQL" ?title))  (rss:link ?link)) 
   (test (not (instance-existp (symbol-to-instance-name (sym-cat result ?link))))) 
   => 
   (bind ?oid (symbol-to-instance-name (sym-cat result ?link))) 
   (make-instance ?oid of result  (link ?link)) 
) 

Figure 13. CLIPS production rule generated for the non-truth-maintainable deductive rule q6 (Appendix B). 

For each translated R-DEVICE rule an object is generated that keeps meta-information, such as the identifier(s) 

of the generated production rule(s), the names of the classes in their condition, and the name of the derived 

class. Information about the derived class, such as the stratum of the derived class and the list of the identifiers 

of the deductive rules that have this class as their conclusion, are kept separately in a meta-class. 

Truth-Maintainable Rules 

The translation of truth-maintainable rules is more difficult since it requires two CLIPS production rules in order 

to maintain the materialized derived views: one for creating the derived object when the condition is true, and 

one for deleting the derived object when the condition becomes false. If the deductive rule rule1 above is truth-

maintainable, then the following pair of CLIPS production rules is generated: 

(defrule rule1-genXX 
  (declare (salience (calc-salience derived-class))) 
  TransformedCondition 
  Check  if NewDerivedObject does not exist  
     Or if it exists and the couple rule1-genXX-A (A is the current set of derivators) is not a member  
                 of its support list 
 => 
  (if NewDerivedObject exists 
   then 
    Add the couple rule1-genXX-A to its support list  
   else 
    (make-instance NewDerivedObject of derived-class slot-expressions*) 
    Add the couple rule1-genXX-A to the support list of NewDerivedObject 
  ) 
) 

(defrule rule1-genYY 
  (declare (salience 2000)) 
  Check if NewDerivedObject exists and for each couple rule1-genXX-A (A is a set of derivators) in its support list 
    Check  if TransformedCondition (instantiated with objects in A) is false 
 => 
  Remove the couple rule1-genXX-A from the support list of NewDerivedObject 
  (if the new support list is empty 
   then delete NewDerivedObject 
  ) 
) 

The "positive" production rule rule1-genXX creates a new derived object when the condition Transformed-

Condition is true. Furthermore, the rule checks if the NewDerivedObject does not yet exist, similarly to the 

non-truth-maintainable deductive rule case. However, here there is a difference because derived objects should 

be correctly maintained during updates of the base data. Each derived object maintains a support list, which con-

tains all the derivators of the derived object. A derivator DV of a derived object DO is a couple DR-CO where 

DR is a deductive rule which derives DO, when its positive condition elements are instantiated by the set of ob-

jects CO. Derivators are needed for maintaining the derived object, because the same object can be derived from 
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many different rules and from many different objects, since the rule conclusion is a projection of the values of 

the variables of the condition elements which in turn are a projection of the objects that they get instantiated 

with.  

The positive production rule checks if the derived object already exists. If not, its action generates the object and 

adds the current derivator to the object's support list. If the object already exists, the rule checks if the current 

derivator already exists in its support list. If it does, then it means that the inference procedure is about to enter 

an infinite loop, since the same objects derive the same conclusion; therefore, the production rule just does not 

fire. If the current derivator does not exist in the derived object's support list, the production rule action adds it. 

The "negative" production rule rule1-genYY checks if the derived object already exists and for each derivator 

A in the support list that was produced by the positive production rule rule1-genXX it checks if the condition 

TransformedCondition is false, when it is instantiated with objects from set A. If such a derivator is found, 

then it means that it does no longer support the conclusion that the derived object stands for and it must be de-

leted from its support list. If this was the last derivator and the support list is now empty, it means that the de-

rived object is no more concluded by any rule-objects combination, so it is deleted. 

Execution of truth-maintainable rules is more expensive than non-truth-maintainable rules since negative pro-

duction rules monitor at every production cycle if the derivators of all derived objects still satisfy the condition 

of the deductive rule. Since the deductive rule language supports negation-as-failure, rule conclusions can be 

invalidated both by object deletions and insertions; therefore, monitoring should occur both on deletions and 

insertions. The salience of the positive production rule is calculated in the same way as with non-truth-

maintainable rules. On the other hand, “negative” production rules have a fixed salience 2000, i.e. when multiple 

updates exist first the old view is maintained and then the new view is calculated. 

(defrule q6-gen54 
   (declare (salience (calc-salience result))) 
   (object (name ?gen53)  (is-a rss:item) 
           (rss:title ?title&:(str-index "RDQL" ?title))  (rss:link ?link)) 
   (not (object (name ?DO&:(eq ?DO (symbol-to-instance-name (sym-cat result ?link)))) 
                (is-a result)  (link ?link)  (derivators $? +++ ? ?gen53 +++ $?))) 
   => 
   (bind ?oid (symbol-to-instance-name (sym-cat result ?link))) 
   (if (instance-existp ?oid) 
      then   (slot-insert$ ?oid derivators 1 +++ q6-gen54 ?gen53 +++) 
      else   (make-instance ?oid of result 
                     (link ?link)  (derivators +++ q6-gen54 ?gen53 +++))) 
) 

(defrule q6-gen55 
   (declare (salience 2000)) 
   (object (name ?derived-object)  (is-a result) 
           (link ?link)  (derivators $?DER-B +++ q6-gen54 ?gen53 +++ $?DER-A)) 
   (or  (test (not (all-instance-existp (create$ ?gen53)))) 
        (and (object (name ?gen53)  (is-a rss:item)) 
             (not (object (name ?gen53)  (is-a rss:item) 
                          (rss:title ?title&:(str-index "RDQL" ?title))  (rss:link ?link))))) 
   => 
   (if (= (length$ (create$ $?DER-B $?DER-A)) 0) 
      then   (send ?derived-object delete) 
      else   (message-modify-instance ?derived-object  (derivators $?DER-B $?DER-A))) 
) 

Figure 14. CLIPS production rules generated for the truth-maintainable deductive rule q6 (Appendix B). 

Figure 14 shows the pair of production rules generated by R-DEVICE for the deductive rule q6 (Appendix B). 

Actual production rules differ slightly from the abstract production rules presented above due to some low-level 

implementation techniques that are specific to CLIPS, which are beyond the scope of this paper. 
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Notice that truth maintenance can be turned on or off, even for truth-maintainable rules, according to user pref-

erence. In this way, users can just bulk-load the knowledge base without having the expensive "negative" rules 

constantly monitoring the knowledge base. Users can just turn on truth-maintenance at any time and check the 

consistency of the knowledge base (user-defined consistency checkpoint).  

4.2.3. Translation of Derived Attribute Rules 

The translation of derived attribute rules requires two CLIPS production rules in order to maintain the derived 

attribute value: one for inserting the value of the derived attribute when the condition is true, and one for delet-

ing the value when the condition becomes false. The difference between truth-maintainable and non-truth-

maintainable rules is only in the "negative" production rule, which is just not created in the latter case. 

The general form of a derived attribute rule is: 

(derivedattrule rule2 
  Condition 
 => 
  CalculationExpressions 
  ?OID <- (Class slot-expressions*) 
) 

The following pair of CLIPS production rules is generated: 

(defrule rule2-genΧΧ 
  (declare (salience 1000))) 
  TransformedCondition 
  (not ?OID <- (Class calc-slot-expressions*)) 
 => 
  CalculationExpressions 
  (modify-instance ?OID slot-expressions*) 
) 

(defrule rule2-genYY 
  (declare (salience 500))) 
  ?OID <- (Class calc-slot-expressions*) 
  (not TransformedCondition) 
 => 
  (modify-instance ?OID null-slot-expressions*) 
) 

calc-slot-expressions are the slot expressions of the conclusion pattern where the calculation expressions 

CalculationExpressions have been incorporated in the form of functional constraints. null-slot-

expressions are the slot expressions of the conclusion pattern where all the derived attribute values have been 

set to null. 

The positive production rule rule2-genΧΧ checks if the condition is true and if the object ?OID with the de-

rived attribute already has the derived values that the rule is about to insert. In this case, the rule simply does not 

fire. If the condition is true, the derived attributes of the object ?OID gets the values calculated by the condition 

and the functions contained within CalculationExpressions. 

The negative production rule rule2-genYY checks whether the object ?OID exists and has the values inserted 

by the positive rule. Furthermore, it checks if the condition of the derived attribute rule does not hold any more, 

which means that the derived attribute values should no longer exist. If the above conditions occur then all the 

derived attributes of the rule get a null value. 

The salience of derived attribute rules is lower than deductive rules. This allows for combined derivations: de-

ductive rules can derive objects, while derived attribute rules can further derive attributes of the generated ob-
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jects using more complex calculations. The salience of positive production rules is 1000 while the salience of 

negative production rules is 500. 

4.2.4. Translation of Aggregate Attribute Rules 

The translation of aggregate attribute rules requires two CLIPS production rules in order to maintain the aggre-

gate attribute value: one for inserting a new value into the collection of values that will calculate the aggregate 

attribute when the condition is true, and one for deleting an existing value from the above collection when the 

condition becomes false. The difference between truth-maintainable and non-truth-maintainable rules is only in 

the "negative" production rule, which is just not created in the latter case. 

The general form of an aggregate attribute rule is: 

(aggregateattrule rule3 
  Condition 
 => 
  CalculationExpressions 
  ?OID <- (Class (Slot (Aggregate-function ?var))) 
) 

where ?var is a variable that occurs inside Condition, and Aggregate-function is one of the aggregate 

functions that R-DEVICE supports or a user-defined function. 

The calculation and maintenance of aggregate attributes is achieved through an auxiliary object that is unique for 

each object that hosts an aggregate attribute and for each different aggregate attribute, if multiple such attributes 

exist for the same object. This auxiliary object is an instance of the class of the aggregate function. There is a 

different class for each aggregate function (Table 2), in order to model the different algorithm that each function 

requires to calculate the corresponding aggregate value. 

The structure of auxiliary objects includes: 

• A slot instance that stores the OID of the object that hosts the aggregate attribute. 

• A slot attribute that stores the name of the aggregate attribute. 

• A multi-slot values that stores all the values that are collected to calculate the value of the aggregate at-

tribute, through the aggregate function. 

• A multi-slot objects that stores the OIDs of the objects of the positive condition elements of the rule, 

similarly to the derivators in deductive rules in section 4.2.2. This is needed in order to correctly calculate 

and maintain the aggregate attribute value. 
(defclass avg 
 (is-a aggregate-function) 
) 

(defmessage-handler avg calc-result ($?result) 
 (if (> (length$ $?result) 0) 
  then  (/ (sum$ $?result) (length$ $?result)) 
  else  0 
 ) 
) 

Figure 15. Method calc-result for aggregate function avg. 

Each aggregate function class has an (overloaded) method called calc-result, which actually calculates the 

value of the aggregate attribute based on the values collected in the values slot. Figure 15 shows an example of 

the code for this method for the avg function; $?result is the list of values to be averaged by dividing their 
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sum by their length (count). The set of aggregate functions that R-DEVICE supports (along with their meaning) 

is shown in Table 2. Users can also define their own aggregate functions by providing a new class for each new 

aggregate function, as a subclass of class aggregate-function (see Figure 15) and a method calc-result 

for calculating the aggregate function value by combining the collected values. 

Table 2. Aggregate functions of R-DEVICE. 

Name Meaning 
sum The sum of numerical values 
count The cardinality of values  
avg The average of numerical values 
max The maximum among numerical or symbolic values 
min The minimum among numerical or symbolic values 
list Sequence of values (just returns slot values) 
ord_list Sorted sequence of numerical or symbolic values 
set Set of values (no duplicates) 
string Concatenation of symbolic values 
phrase Concatenation of symbolic values with a white space between them 

 

For each aggregate attribute rule, the following pair of CLIPS production rules is generated: 

(defrule rule3-genΧΧ 
  (declare (salience 1000))) 
  TransformedCondition 
  Check  If the corresponding auxiliary object AO does not exist: 
          (not AO <- (Aggregate-function (instance ?OID) (attribute Slot))) 
     Or if it exists, it does not contain the value ?var coming from the set A of current derivators 
 => 
  CalculationExpressions 
  If the corresponding auxiliary object AO does not exist, then create it 
  Add ?var to slot values of AO 
  Add set A to slot objects of AO 
  Store the result of the method calc-result applied over the new value of the slot values  
    to the attribute Slot of the object ?OID 
) 

(defrule rule3-genYY 
  (declare (salience 500))) 
  Check  if the auxiliary object AO exists: 
           AO <- (Aggregate-function (instance ?OID) (attribute Slot)) 
      For each value V in the slot values and the corresponding set A of derivators in the slot objects 
       Check  if TransformedConditionCalc (instantiated with objects in A) is false 
 => 
  Remove V from slot values of AO 
  Remove set A from slot objects of AO 
  Store the result of the method calc-result applied over the new value of the slot values  
    to the attribute Slot of the object ?OID 
) 

TransformedConditionCalc is the transformed condition of the original rule (according to the scheme of 

section 4.2.1) where the calculation expressions CalculationExpressions have been incorporated in the 

form of functional constraints. 

The positive production rule rule3-genΧΧ checks if the condition is true and if the auxiliary object that corre-

sponds to the object of the conclusion and the specific aggregate attribute does not exist. However, even if the 

latter exists, the rule can still fire if the value ?var does not exist in the slot values of the auxiliary object or 

the current set of derivators does not occur in the slot objects. If the condition is true, the auxiliary object is 
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either created or just retrieved, the slots values and objects are augmented with the corresponding values, 

and method calc-result is invoked to calculate the value of the aggregate function over the new set of col-

lected values. The latter is finally stored in the corresponding attribute of the object ?OID.  

The negative production rule rule3-genYY checks if the auxiliary object that corresponds to the object of the 

conclusion and the specific aggregate attribute exists. Then, for each value V in the slot of collected values (and 

for its corresponding set of derivators A) it checks whether the condition TransformedCondition is false 

when it is instantiated with objects from set A. Notice that the condition is augmented with CalculationEx-

pressions in the form of functional constraints. If such a value-derivators combination is found, then it means 

that the derivators A no longer support the existence of value V and the latter must be deleted from the collected 

values, along with the corresponding derivators. Furthermore, the calc-result method is called again to cal-

culate the new value for the aggregate function that is stored at the corresponding attribute of the object ?OID.  

The saliencies of aggregate attribute rules are exactly the same as derived attribute rules. Notice that although 

the saliencies of derived and aggregate attribute rules are fixed, R-DEVICE provides an extensibility hook, so 

that future rule applications built on top of R-DEVICE can implement their own rule priority mechanism. In 

fact, this has already been exploited to implement defeasible logic rules on top of R-DEVICE [3]. 

4.2.5. Translation of Second-Order Syntax into First-Order Syntax 

In this subsection we present how R-DEVICE translates rule with second-order syntax, i.e. rules that contain 

variables in place of class names and/or slot names, into sets of first-order rules using the RDF schema. One of 

the main concerns of this step is to produce as few deductive rules as possible, for efficiency reasons. There are 

three types of second-order rule syntaxes that are handled in different ways: 

• Variable class names 

• Variable slot names 

• Generalized paths (i.e. paths with a variable step) 

Using the loaded RDF Schema at compile-time implies that the second-order translation process is only mean-

ingful under a Closed-World Assumption. This is so because the grounding of variables during the translation 

considers only the classes and properties loaded at compile-time and not any class that could possible be loaded 

later. However, it is not very difficult to extend the current compilation scheme of R-DEVICE into incremental 

run-time compilation, because the rule compilation phase is implemented as a set of production rules that could 

be possibly triggered at run-time, after each time a new RDF Schema document is imported. 

Variable Class Names 

When the class name is a variable, then R-DEVICE should generate as many deductive rules as the number of 

existing classes. Since this is extremely naïve, R-DEVICE selects only those classes that have a set of slots (in-

cluding inherited ones) that is a superset of the slots that appear inside the corresponding condition element. For 

example, rule q1a (Appendix B) has an anonymous variable in the place of a class name: 

(deductiverule q1a 
 ?x <- (? (email:message-id '123456@example.com')) 
  => 
 (result (email ?x))) 
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There will be generated as many rules as many classes exist in the schema that have email:message-id as a 

slot. Notice that if there is no class that satisfies the condition above, then no deductive rule is generated and the 

second-order rule does not affect the rule base. Notice also that when the above algorithm produces many 

classes that belong to the same inheritance path in the class hierarchy, R-DEVICE keeps only the most general 

class(es) from this set. However, this optimization is not used when the variable that represents the name of the 

class is not anonymous and is used later in the rule, since its value is important for the rule. 

Another case is when the condition element that has the variable class name has only one slot pattern whose slot 

expression is also a variable, as in the following rule q3 (Appendix B): 

(deductiverule q3 
 data:x <- (? (?property ?value)) 
 ?property <- (rdf:Property (rdfs:range $? ?t $?)) 
  => 
 (result (property ?property) (value ?value) (type ?t))) 

In this case the above class filtering optimization cannot be performed. The only way to determine the class of 

this condition element is to check the object identifier expression. If it is a variable, then the condition is 

checked for another occurrence of the variable, so the type of the variable can be discovered by examining the 

type of the slot where it is referenced. If it is not a variable, then its type can only be discovered if the object 

already exists. If none of the above cases occurs, then the only choice for R-DEVICE is to generate as many 

rules as the classes. The class hierarchy optimization that was mentioned above is applied. 

The cases where the class name is a combination of a namespace and a local name, and either or both of them 

are variables are treated in a similar manner. Initially, all the namespaces and/or all the class of the same name-

space are iterated in order to produce full concrete class names. Then, the algorithm presented above is executed. 

Variable Slot Names 

When a slot name in the rule condition is a (single) variable and the class name of the corresponding condition 

element is not, the set of all the slot names of the class is retrieved and the variable slot can take values from this 

set, excluding those that already appear in the condition element. R-DEVICE generates as many deductive rules 

as the number of instantiations the variable slot can take. 

For example, consider the following condition element: 

 ?OID <- (Class (Slot1 Val1) (?VarSlot Val2)) 

The variable ?VarSlot can be instantiated from all the slot names of Class (including inherited ones) except 

Slot1. Another optimization that is performed is to also exclude those slot names whose data type is not com-

patible with the type of value Val2, if the latter can be determined. If Val2 is a constant then its type can be 

easily determined. If it is a variable, then the condition is checked for another occurrence of the variable, so the 

type of the variable can be discovered by examining the type of the slot where it is referenced.  

A different case is when the variable slot is a multi-variable, as in the following example: 

 ?OID <- (Class (Slot1 Val1) ($?VarSlot Val2)) 
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In this case only one rule is generated by augmenting the above condition element with as many (SlotName 

Val2) expressions as the number of valid instantiations the variable slot ?VarSlot can take, using the optimi-

zations discussed above. 

Generalized Paths 

Path expressions can contain either a single-valued or a multi-valued variable whose meaning and treatment is 

quite different. A single-valued variable in a path expression means that a single step in the path is unknown. 

This case is quite similar to the combination of variable class and variable slot that was discussed above. Spe-

cifically, assume the following condition element: 

 ?OID <- (Class ((Sn ... Si+1 ?VarSlot Si-1 ... S2 S1) Val)) 

which actually corresponds to the following set of condition elements (see Path Transformations in section 

4.2.1): 

 ?OID <- (Class (S1 ?var1)) 
 ?var1 <- (Class1 (S2 ?var2)) 
... 
 ?vari-1 <- (Classi-1 (?VarSlot ?vari)) 
 ?vari <- (?VarClass (Si+1 ?vari+1)) 
... 
 ?varn-1 <- (Classn-1 (Sn Val)) 

where ?VarClass is the unknown range of the unknown property ?VarSlot. Using a combination of the algo-

rithms presented above the alternative values of slot ?VarSlot can be discovered with greater accuracy than a 

simple variable slot, because ?VarSlot is more constrained by participating in a path where the preceding and 

following steps are already known. Specifically, the range of ?VarSlot must be class that hosts the concrete 

slot Si+1 and its domain must be the concrete class Classi-1. All the allowed instantiations of ?VarSlot lead to 

the generation of different deductive rules. 

A multi-valued variable in a path expression means that there is an unknown sub-path of the path whose length 

is also unknown. For example, consider the condition element below: 

 ?OID <- (Class ((Sn ... Si+1 $?VarSlot Si-1 ... S2 S1) Val)) 

In this case R-DEVICE performs a graph search in the graph formed by classes and slots, through object type 

properties, having as a starting position the class that is the range of slot Si-1. The set of ending positions of the 

search includes all the classes that are the domains (even through inheritance) of the slot Si+1. This graph search 

may end up with multiple alternative solution paths, including path with zero length. For each of these solution 

paths a different deductive rule is generated. Notice that in case no solution to the graph search problem is 

found, then no deductive rule will be generated. Furthermore, the case of a single-valued attribute (presented 

above) can be considered a special case of a multi-valued attribute: the graph search is constrained to find solu-

tion paths of length one. 

Generalized paths can also contain recursive sub-paths. In this case, the translation is a combination of the tech-

nique (graph search) we presented above and the transformation of recursive paths that has been presented in 

section 4.2.1. 
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4.3 Extracting Rule Conclusions as RDF Documents 
The deductive rule language materializes the conclusions of rules as concrete objects. Since we provide a trans-

lation of RDF statements into objects, the inverse is also possible. After production rules have been executed 

and all the derived objects have been generated, the RDF Extractor generates an RDF/XML document and re-

turns it to the user through a Web server, as the result of the user’s program. The document contains both RDF 

definitions for the schema of the desired derived classes and, of course, for the instances of the derived classes. 

Notice that the user can specify the name of the extracted file as well as the names of the derived classes that the 

file will contain (along with their instances, of course). 

Initially the result document contains namespace definitions for rdf/rdfs and for the exported document. Then 

the derived classes are defined as rdfs:Class elements, followed by rdfs:Property elements for each of 

their slots that was defined at the deductive rule conclusion. Domains and ranges of the properties are obtained 

from the COOL definition of each derived class. The domain for all the properties of a class is the class itself, 

while the range can be one of the following: 

• If the slot is of type SYMBOL and/or STRING, the property range is rdfs:Literal. 

• If the slot is of type INTEGER, the property range is xsd:integer. 

• If the slot is of type FLOAT, the property range is xsd:float. 

• If the slot is of type INSTANCE, the property range is a class whose name is obtained by the class-refs 

slot of the meta-class (see section 3.2). When the referenced class is a system-generated class (e.g. in the 

case of multi-range properties), then multiple property ranges are generated for each one of the superclasses 

of the system-generated class. 

• If the slot has any other combination of types, then there is no range constraint for the property. 

Notice that in the fourth case the RDF schema for the referenced class(es) must be included in the result docu-

ment, unless it is not a derived but a base RDF class, i.e. an RDF class whose definition has been imported from 

a namespace. In this case, the document header is enriched with the namespace address and no further schema 

definition is included. Otherwise, definitions for the referenced class and its properties are included in the RDF 

result document. The same actions are recursively repeated for all classes that are reachable by reference slots 

from the initial class. 

Below all class and property definitions, appear RDF statements about the instances of those classes. For each of 

the initial derived classes, all its objects are included using class names as outside elements and property names 

as inside elements. Only slots/properties that do have a value are included. Properties with multiple values are 

represented as multiple consecutive elements. Finally, objects recursively referenced from the above objects are 

also included in the result document. When instances of base RDF classes are included the outside element is 

rdf:Description, because type information is included as one or more rdf:type properties. The URIs of 

the derived objects are constructed from the URI of the R-DEVICE system3, the name of the exported file and a 

uniquely generated anchor ID, constructed from the class name and consecutive integers. The URI of instances 

of base classes is taken from the uri slot of each object.  

                                                                 
3 http://startrek.csd.auth.gr/r-device/export/ 
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Below we present an R-DEVICE rule example over the RDF document of Figure 8, which retrieves the title of 

an ODP topic that has at least one associated page, along with the titles of all associated pages. The class defini-

tion for the derived class result and its single instance are shown in Figure 16. Finally, Figure 17 shows the 

exported results in RDF format. 

(deductiverule example 
  (dmoz:Topic (dc:title ?t) (dmoz:link $? ?l $?)) 
  ?l <- (dmoz:ExternalPage (dc:title ?lt)) 
 => 
  (result (title ?t) (link_title ?lt)) 
) 

 (defclass result 
   (is-a DERIVED-CLASS) 
   (slot title (type ?VARIABLE)) 
   (slot link_title (type ?VARIABLE)) 
   ...  
) 

([resultArtsJohn phillips Blown glass] of result 
 (source rdf) 
 (derivators +++ gen2 [gen33] [gen34] +++) 
 (title "Arts") 
 (link_title "John phillips Blown glass") 
) 

Figure 16. Derived class definition and derived object for R DEVICE rule example. 

<!DOCTYPE rdf:RDF [ 
    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"> 
    <!ENTITY r_device "http://startrek.csd.auth.gr/r-device/export/example-result.rdf#">]> 
 
<rdf:RDF  xmlns:rdf='&rdf;'  xmlns:rdfs='&rdfs;'  xmlns:r_device='&r_device;'> 
  <rdfs:Class rdf:about='&r_device;result'> </rdfs:Class> 
  <rdf:Property rdf:about='&r_device;title'> 
       <rdfs:domain rdf:resource='&r_device;result'/> 
  </rdf:Property> 
  <rdf:Property rdf:about='&r_device;link_title'> 
       <rdfs:domain rdf:resource='&r_device;result'/> 
  </rdf:Property> 
  <r_device:result rdf:about="&r_device;result1"> 
       <r_device:title>Arts</r_device:title> 
       <r_device:link_title>John phillips Blown glass</r_device:link_title> 
  </r_device:result> 
</rdf:RDF> 

Figure 17. Exported results for R DEVICE rule example. 

5 Performance Results 

In this section we present some performance tests we have conducted for R-DEVICE, comparing our object-

oriented RDF model with the “traditional” triple-based RDF model. Notice that for the sake of the comparison 

we have implemented a very simple triple-based model on R-DEVICE. Specifically, each RDF triple is directly 

mapped to a single COOL object, as an instance of the rdf-triple class, with three slots: subject, predi-

cate, and object.  

The RDF data we used for our experiments are taken from the Open Directory Project (ODP)4. More specifi-

cally, we have used fragments from the ODP structure and content files, conducting 3 sets of tests with files con-

taining 1K, 10K, and 100K triples. These tests are not complete and do not claim to cover the entire spectrum of 

possible tests one could perform on reasoning over RDF data. Our intention in this paper is to demonstrate that 

our OO approach leads to increased inference performance compared to the triple-based approach and, as results 
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indicate, the ODP data set suffices for this. In the future we will test the performance of R-DEVICE with other 

RDF files, using more inference cases and more complex schemas, such as the Lehigh University Benchmark 

[25]. 

The experiments were performed on an Intel Pentium IV 2.4GHz PC with 512MB main memory and Windows 

XP Professional. As mentioned in section 2, loading/translating (collectively called importing) of RDF triples 

can be performed either in a single step or in a streaming fashion. In order to estimate which is the optimal num-

ber of triples to be loaded/translated per cycle of the iteration we have performed RDF triple import in a single 

step for various number of triples and we have calculated the average import time per triple (Table 3). Results 

show that the average import time per triple is optimal for 10K triples; therefore, we consider this to be the op-

timal number of triples per iteration for the streaming triple import.  

Table 3. Single-step triple import time. 

No. of triples Total (sec) Avg / triple (msec) 
1 K 2.198 2.198 

10 K 10.220 1.022 
100 K 215.879 2.159 

1000 K 23821.446 23.821 
 

Next, we performed RDF triple import in a streaming fashion with 10K as a triple limit. Table 4 shows the total 

import time and average import time per triple, as well as the number of cycles the import algorithm performed. 

As it can be seen from Figure 18 and Figure 19 the total and average per triple import times are significantly 

improved in the streaming case, compared to the single-step case.  

Table 4. Streaming triple import time. 

No. of triples Cycles Total (sec) Avg / triple (msec) 
1 K 1 2.198 2.198 

10 K 1 10.220 1.022 
100 K 10 77.912 0.779 

1000 K 100 1312.033 1.312 
 

Notice that the triple import times reported above are for ODP RDF documents that do not have any predefined 

RDF Schema. The actual schema for the ODP data is "discovered" at run-time by the RDF triple translator by 

applying the RDF semantics. When an RDF Schema for the ODP documents is provided, import time is slightly 

improved, especially for few triples, as Table 5 and Figure 20 show. However, since there are not great differ-

ences between times in Table 4 and Table 5 we can conclude that schema re-definition does not incur a very 

high overhead as a fraction of total triple import time. 

Table 5. Streaming triple import time (with schema). 

No. of triples Total (sec) Avg / triple (msec) 
1 K 0.989 0.989 

10 K 6.758 0.676 
100 K 62.527 0.625 

1000 K 1057.747 1.058 
 

                                                                                                                                                                                                        
4 http://dmoz.org 
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Tables 6-8 summarize the results from running the RDF (non-truth-maintainable) rule cases of Appendix C, for 

both the object-oriented and the triple-based approaches. Rule cases include chaining of objects (cases 4-10), 

negation (case 9), and recursion (case 10). The performance of the equivalent truth-maintainable rules is on av-

erage 10 times slower mainly because of the existence of the "negative" production rules which check at every 

cycle for all the derived objects if their existence is still supported. In Table 9 we have included the rule compi-

lation times for each rule case (for both approaches) for comparison with the actual rule execution time. These 

times get to practically zero when rules are already compiled and loaded just for execution. The second column 

of the tables 6-8 include the number of objects that were derived by running each rule case, while the last col-

umn shows the speed-up of the OO-RDF model compared to the triple-based RDF model (i.e. inferencing time 

of the triple-based RDF model divided by the inferencing time of the OO-RDF model).  
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Figure 18. Triple import time (single-step vs. streaming). 
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Figure 19. Average import time per triple (single-step vs. streaming). 
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Figure 20. Triple import time (with schema vs. no schema). 

Results clearly show that for almost all rule cases inferencing for the OO-RDF model is significantly faster, ex-

cept rule case 0, where only one triple is included in the condition. Improvement goes up to almost 5 orders of 

magnitude in rule case 3, for 100K triples! Figures 21-31 show how both approaches scale-up to the number of 

triples (in log-log axes). It is clear that the object-oriented approach scales-up almost linearly in all cases. Fur-

thermore, the OO approach scales-up better than or at worst similarly with the triple-based approach. Finally, 

Figures 32-42 show the speed-up scaling curves, again in log-log axes. Except for rule case 0 (Figure 32), where 

speed-up is almost 1, in all other cases speed-up increases monotonically with the number of triples. 

 
Table 6. Performance Results for various Rule Cases (1K triples). 

Rule 
Case 

Derived 
Objects 

Triple RDF model 
(sec) 

OO RDF model  
(sec) Speed-up 

0 205 0.007253 0.00604 1.20 
1 16 0.001813 0.00070 2.58 
2 3 0.001429 0.00030 4.81 
3 1 0.001648 0.00021 7.69 
4 2 0.001593 0.00052 3.09 
5 2 0.002033 0.00054 3.74 
6 12 0.005275 0.00247 2.13 
7 162 0.031319 0.03643 0.86 
8 12 0.005769 0.00885 0.65 
9 0 0.005879 0.00076 7.70 

10 168 0.033516 0.04060 0.83 
 

Table 7. Performance Results for various Rule Cases (10K triples). 

Rule 
Case 

Derived 
Objects 

Triple RDF model 
(sec) 

OO RDF model  
(sec) Speed-up 

0 1997 0.137363 0.11538 1.19 
1 269 0.873626 0.01703 51.29 
2 30 0.857143 0.00231 371.43 
3 1 0.840659 0.00034 2508.20 
4 2 0.862637 0.00500 172.53 
5 2 0.978022 0.00527 185.42 
6 194 2.582418 0.28571 9.04 
7 975 7.307692 2.80220 2.61 
8 80 2.362637 0.63187 3.74 
9 0 9.725275 0.08077 120.41 
10 358 2.802198 0.86264 3.25 
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Table 8. Performance Results for various Rule Cases (100K triples). 

Rule 
Case 

Derived 
Objects 

Triple RDF model 
(sec) 

OO RDF model  
(sec) Speed-up 

0 17697 15.23626 12.41758 1.23 
1 1014 88.33516 0.35714 247.34 
2 96 88.49451 0.02253 3928.29 
3 1 87.93407 0.00101 86978.26 
4 2 90.11538 0.03791 2376.96 
5 2 101.2527 0.04176 2424.74 
6 1000 218.7692 15.98901 13.68 
7 11775 891.2637 268.57143 3.32 
8 825 259.2857 42.58242 6.09 
9 0 26189.84 10.71429 2444.38 

10 361 109.6154 7.41758 14.78 

Table 9. Rule Compilation Times 

Rule  
Case 

OO RDF model 
(sec) 

Triple RDF model
(sec) 

0 0.027 0.011 
1 0.016 0.016 
2 0.022 0.016 
3 0.038 0.016 
4 0.027 0.038 
5 0.055 0.038 
6 0.071 0.044 
7 0.033 0.044 
8 0.038 0.049 
9 0.044 0.060 
10 0.077 0.077 
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Figure 21. Performance results for Rule Case 0. 
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Figure 22. Performance results for Rule Case 1. 
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Figure 23. Performance results for Rule Case 2. 
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Figure 24. Performance results for Rule Case 3. 
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Figure 25. Performance results for Rule Case 4. 
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Figure 26. Performance results for Rule Case 5. 
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Figure 27. Performance results for Rule Case 6. 
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Figure 28. Performance results for Rule Case 7. 
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Figure 29. Performance results for Rule Case 8. 
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Figure 30. Performance results for Rule Case 9. 
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Figure 31. Performance results for Rule Case 10. 
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Figure 32. Speed-up of Rule Case 0. 
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Figure 33. Speed-up of Rule Case 1. 
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Figure 34. Speed-up of Rule Case 2. 
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Figure 35. Speed-up of Rule Case 3. 
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Figure 36. Speed-up of Rule Case 4. 
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Figure 37. Speed-up of Rule Case 5. 
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Figure 38. Speed-up of Rule Case 6. 

0.1

1

10

1000 10000 100000

No of Triples

Sp
ee

d-
up

 
Figure 39. Speed-up of Rule Case 7. 
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Figure 40. Speed-up of Rule Case 8. 
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Figure 41. Speed-up of Rule Case 9. 
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Figure 42. Speed-up of Rule Case 10. 
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Finally, Table 10 shows the performances of R-DEVICE when all rule cases are simultaneously fed into the sys-

tem, in order to test whether the performance is compromised by the presence of multiple rules. Table 10 also 

includes the theoretical performance time for all rules which is calculated by the sum of the times of each indi-

vidual rule case. Results clearly show that running many rules simultaneously is more or less the same as run-

ning many rules individually, i.e. the performance results of R-DEVICE is not compromised by the presence of 

multiple rules. 

Table 10. Performance Results for all Rule Cases. 

Number of
triples Theoretical Measured 

1K 0.0974 0.0945 
10K 4.8085 4.6154 

100K 358.1527 367.9670 
 
The major improvement in performance of the object-oriented approach of R-DEVICE compared to the triple-

based approach can be attributed to two reasons: 

• An OO-RDF rule retrieves values of different slots of the same object in one step, while triple queries need 

to perform a join even for properties of the same subject. This large number of joins, which are proportional 

to the number of triples used in the rule, is the main reason for the worse performance of triple-based rules 

in almost all of the cases. In rule case 0 the two approaches perform almost the same regardless of the num-

ber of triples because the rule condition involves only one property of only one resource, i.e. a single triple.  

• An OO-RDF rule ranges over fewer objects because objects are “clustered” by class. On the other hand, 

triple queries always range over the whole set of triples which are instances of the triple class.  

In very few cases, the triple based approach performs better than the OO approach. This happens only when the 

number of triples is small (1000) and is attributed to the fact that there are certain start-up costs that pay-off 

when the number of objects is large. However, even in these cases the difference in performance is very small. 

The performance of both approaches benefits from the use of the RETE algorithm for matching the rule condi-

tions. The performance of the triple-based RDF model is usually boosted by the use of indices (e.g. [1], [41]), 

but so could the OO-RDF model. We believe that the first reason above is a generic difference between OO- and 

triple-based RDF models that leads to such a big performance difference. 

Finally, we include a comparison of R-DEVICE with the XPCE Semantic Web library of SWI-Prolog [41], 

which is a triple-based RDF storage/inferencing system that uses indices to boost its performance. All rule cases 

have been implemented in SWI-Prolog and their performance has been measured on the same machine with R-

DEVICE. Results are included in Table 11. Figures 43-53 display the comparative performance scale-up for all 

rule cases.  

Results show that for some rule cases, i.e. 0, 1, 2, 3, 9, and 10, R-DEVICE is faster, while for the rest of the rule 

cases, i.e. 4, 5, 6, 7, and 8, XPCE is faster. More importantly, for rule cases 1, 2, 3, and 10, R-DEVICE scales-

up better than XPCE, while R-DEVICE does not scale-up worse than XPCE in any case. The explanation for the 

inferior performance of R-DEVICE in some rule cases is that the use of indices in these cases reduces the com-

plexity of the rule condition more than the use of objects and RETE. However, as we have mentioned above, the 

OO approach could also benefit from using indices for matching object slots. Furthermore, the use of indices is 



 46

not free; in [41] it is reported that indices require memory space that is almost twice as large as the memory 

space occupied by the RDF triples. The explanation for the worse scale-up of XPCE in some rule cases is the 

use of the backtracking mechanism that generates many unnecessary variable-value combinations. Furthermore, 

in rule case 10 that recursion is used to generate intermediate auxiliary results, R-DEVICE materializes these 

results, so they are created once and used many times, whereas XPCE re-calculates them each time they are 

needed. 

Table 11. Performance Results for SWI-Prolog/XPCE Semantic Web Library 

No of triples Rule 
Case 1K 10K 1000K 

0 0.03437 3.73400 280.00000 

1 0.00041 0.07703 9.68800 

2 0.00015 0.00297 0.43910 

3 0.00011 0.00091 0.01109 

4 0.00016 0.00102 0.01375 

5 0.00025 0.00106 0.01390 

6 0.00088 0.15140 3.98500 

7 0.03203 1.25000 191.76500 

8 0.00098 0.03890 4.70300 

9 0.00071 0.13130 23.09400 

10 0.05750 1.92200 219.65700 
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Figure 43. Comparison with SWI-Prolog for Rule Case 0. 
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Figure 44. Comparison with SWI-Prolog for Rule Case 1. 
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Figure 45. Comparison with SWI-Prolog for Rule Case 2. 
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Figure 46. Comparison with SWI-Prolog for Rule Case 3. 
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Figure 47. Comparison with SWI-Prolog for Rule Case 4. 
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Figure 48. Comparison with SWI-Prolog for Rule Case 5. 

0,0001

0,001

0,01

0,1

1

10

100

1000 10000 100000No of triples

Ti
m

e 
(s

ec
) R-DEVICE

SWI-Prolog

 
Figure 49. Comparison with SWI-Prolog for Rule Case 6. 
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Figure 50. Comparison with SWI-Prolog for Rule Case 7. 
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Figure 51. Comparison with SWI-Prolog for Rule Case 8. 
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Figure 52. Comparison with SWI-Prolog for Rule Case 9. 
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Figure 53. Comparison with SWI-Prolog for Rule Case 10. 

 

6 Related Work 

Many RDF rule languages exist in the literature. Some on-line surveys of RDF Inference and Query systems can 

be found in [37] and [36]. In this section, we will refer to some of the most representative ones and we will com-

pare them to R-DEVICE. 

TRIPLE [38], an extension of the SiLRI system [18], is an RDF rule (query, inference, and transformation) lan-

guage, with a layered and modular nature, that is based on Horn Logic and F-Logic and aims to support applica-

tions in need of RDF reasoning and transformation, i.e., to provide mechanisms to query web resources in a de-
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clarative way. However, in contrast with many other RDF rule/query languages, TRIPLE allows the semantics 

of languages on top of RDF to be defined with rules, instead of supporting the same functionality with built-in 

semantics. Wherever the definition of language semantics is not easily possible with rules (e.g., OWL [33]), 

TRIPLE provides access to external programs, like description logic classifiers. 

TRIPLE permits the usage of path expressions, but not generalized path expressions, i.e. the path length and 

composition must be entirely known. Furthermore, compared to R-DEVICE, TRIPLE does not support aggre-

gate, grouping, sorting and user-defined functions. Rules in TRIPLE are used for transient querying and cannot 

be used for defining and maintaining views. As its name implies, the query and data model of TRIPLE is triples, 

therefore TRIPLE requires multiple joins for collecting all the properties of a resource, since property instances 

and resource instances are stored in different database relations (or in different tuples of the same relation). In 

this paper we have shown that the OO-RDF data model of R-DEVICE is superior in performance compared to 

the triple-based data model of most RDF query and rule languages. Finally, TRIPLE does not have a RuleML 

compatible syntax. 

SweetJess [24] is an implementation of a defeasible reasoning system (situated courteous logic programs) based 

on Jess. R-DEVICE is a deductive rule language that supports non-monotonicity in terms of negation-as-failure. 

Furthermore, recently we have developed a defeasible logic extension to R-DEVICE [3]. SweetJess integrates 

well with RuleML, as does R-DEVICE. However, SweetJess rules can only express reasoning over ontologies 

expressed in DAMLRuleML (a DAML+OIL like syntax of RuleML) and not on arbitrary RDF data, like R-

DEVICE. Furthermore, SweetJess is restricted to simple terms (variables and atoms). R-DEVICE can support a 

limited form of functions in the following sense: (a) path expressions are allowed in the rule condition, which 

can be seen as complex functions, where allowed function names are object referencing slots; (b) aggregate and 

sorting functions are allowed in the conclusion of aggregate rules. Finally, R-DEVICE can also support conclu-

sions in non-stratified rule programs due to the presence of truth-maintenance rules. 

SWRL [27] is a rule language based on a combination of the OWL DL and Lite sublanguages of OWL [33] with 

the Unary/Binary Datalog sublanguages of RuleML [14]. SWRL enables Horn-like rules to be combined with an 

OWL knowledge base. SWRL provides several types of syntaxes, including RuleML and RDF-like. SWRL is 

also based on the triple model of RDF and is a first-order logic language specification. Negation is not explicitly 

supported by the SWRL language, but only indirectly through OWL DL (e.g. class complements). There is a 

concrete implementation of SWRL, called Hoolet5. Hoolet is an implementation of an OWL-DL reasoner that 

uses a first order prover. The ontology is translated to a collection of axioms (based on the OWL semantics) 

which is then given to a first order prover for consistency checking. Hoolet has been extended to handle rules 

through the addition of a parser for an RDF rule syntax and an extension of the translator to handle rules, based 

on the semantics of SWRL rules. 

The Edutella project [35] provides a family of Datalog like languages, called RDF-QEL-i, that support different 

levels of query capabilities among distributed, heterogeneous RDF repositories. The highest level language 

RDF-QEL-5 is equivalent to stratified Datalog. Furthermore, aggregation and foreign functions are supported. 

                                                                 
5 http://owl.man.ac.uk/hoolet/ 
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Actually, the RDF-QEL-i languages provide a common query and inference syntax and semantics for the het-

erogeneous peers and are translated into the base rule/query language of each peer. Several query language 

wrappers have been implemented, such as RQL, TRIPLE, etc. The common data model of Edutella is based on 

triples and an RDF-like syntax is provided. Path expressions and view maintenance are not supported. 

CWM [11] is a general-purpose data processor for the semantic web. It is a forward chaining reasoner which can 

be used for querying, checking, transforming and filtering information. Its core language is RDF, extended to 

include rules, and it uses RDF/XML or RDF/N3. CWM supports path expressions, like TRIPLE, but only con-

crete ones, i.e. the path length should be known in advance and every step in the path should be ground. Fur-

thermore, CWM does not support negation. CWM allows aggregated functions but not grouping and sorting. 

Jena [32] is based on the RDF triple data model and has an inference subsystem that allows a range of inference 

engines or reasoners to be plugged into Jena. The inference mechanism is designed to be quite general and in-

cludes a generic rule engine that can be used for many RDF processing or transformation tasks. The generic rule 

reasoner supports user defined rules under forward chaining, tabled backward chaining and hybrid execution 

strategies. The rule language allows a limited form of functors, but does not support negation, aggregation or 

path expressions. Jena rules do not have a RuleML-like syntax, but the extensibility of the system allows for 

different syntaxes. Finally, the Jena rule system allows maintenance of asserted conclusions, which however is 

trivial due to the lack of negation. 

Sesame [16] supports inferencing through a forward chaining inferencer that does a pruned iterative sweep over 

the store, computes the closure and stores it in the repository. Thus, at query time, every inferencing task is re-

duced to a simple database lookup. Apart from the default RDF/RDFS semantics, the user is allowed to specify 

his/her own entailment rules in an XML-based rule file. However, although their forward chaining algorithm is 

optimized for a fixed set of entailment rules, it is not clear whether it is still efficient for an arbitrary number of 

user-defined rules. Furthermore, since RDF/RDFS entailment rules do not have negation, it is unclear how Ses-

ame handles negation in the rule condition. 

ROWL [20] is a system that enables users to express rules in RDF/XML syntax using an ontology in OWL. Us-

ing XSLT stylesheets, the rules in RDF/XML are transformed into forward-chaining production rules in JESS. 

ROWL also uses stylesheets to transform ontology and instance files into Jess unordered triple facts, which is 

also the model followed by the rules. ROWL does not maintain the assertions derived by the rules and does not 

support either negation, path expressions or aggregate functions. The rule language has been used in a Semantic 

Web environment for pervasive computing where agents reason about context and privacy concerns of the user 

[21]. 

Bossam [28] is a RETE-based forward-chaining production rule engine that has an RDF logic-like rule lan-

guage, called Buchingae. Bossam has an RDF-like knowledge representation scheme and supports both strong 

and weak negation and second-order typed predicates. The Bossam data model is based on triples, therefore sec-

ond order syntax is actually translated into first-order querying over property and/or type definition triples. Ne-

gation is supported by the rule language; however, no hint on how it is implemented by the rule engine is given. 

Bossam also provides a RuleML-like language, called LogicML, which however overrides several of the 
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RuleML elements, hindering compatibility with standard RuleML. Finally, inference results exported by Bossam 

are flat, i.e. there is no notion of derived classes and properties. 

7 Conclusions and Future Work 

In this paper, we have presented a deductive object-oriented knowledge base system, called R-DEVICE, which 

imports RDF data into the CLIPS production rule system as COOL objects and uses a deductive rule language 

for querying and reasoning about them.  

The main difference between the RDF triple-based model and our OO-RDF model is that we treat properties 

mainly as attributes encapsulated inside resource objects, as in traditional OO programming languages. In this 

way properties about a single resource are gathered together in one object, resulting in superior inference/query 

performance compared to the performance of a triple-based model, as it was experimentally shown in this paper. 

Another reason for better performance of our OO model is that objects are clustered by class; therefore, rule 

conditions range over fewer objects. On the other hand, in the triple-based model rules always range over the 

whole set of triples. 

R-DEVICE features a powerful deductive rule language which is able to draw inferences both on the RDF 

schema and data. The rule language includes features such as ground and generalized path expressions, stratified 

negation, aggregate, grouping, and sorting functions. All these can be combined with a second-order syntax, 

where variables can range over classes and properties, which is safely and efficiently translated into first-order 

syntax at compile-time. Users can define materialized views with R-DEVICE rules which are incrementally 

maintained by truth-maintaining CLIPS production rules. Finally, users can choose between a native CLIPS-like 

syntax and a RuleML-like syntax. 

Although R-DEVICE is implemented in an environment where the Closed-World Assumption has a strong "tra-

dition", careful design of the RDF transformation and rule compilation algorithms have managed to successfully 

handle the Open-World Assumption of RDF and the Semantic Web. Concerning the RDF data model, the mis-

match between the descriptive semantics of RDF data and the prescriptive semantics of CLIPS call for dynamic 

redefinitions of resource classes and objects, which are handled by R-DEVICE effectively. All assertions are 

considered to be true, which is compatible with the Open-World Assumption. Under the Closed-World Assump-

tion some statements would cause a consistency violation error. Such behaviour could be very easily imple-

mented in CLIPS; however, this was a design choice for R-DEVICE. An alternative would be to leave on the 

user the choice on which assumption to base the RDF transformation. 

Another point where the Open-World vs. the Closed-Word Assumption arises in R-DEVICE is in the second-

order translation process. The grounding of class and/or property variables is done at rule compile-time consid-

ering only the loaded classes and properties (Closed-Word Assumption). However, as discussed in the paper, it 

is easy to perform an incremental rule compilation upon the loading of new RDF Schema documents (Open-

World Assumption). Finally, the semantics of derived attribute and aggregate attribute rules are non-monotonic 

since the import of new RDF documents causes results to be re-calculated.  

We have also developed a defeasible logic extension of R-DEVICE [3] which has been used as a backend rea-

soning mechanism by negotiating agents to express and apply various negotiation strategies [39]. We are cur-
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rently working on the development of a visual editor [4] for the RuleML-like rule language, integrated into a 

visual rule-base development environment. Furthermore, we are extending the system to handle ontologies in 

OWL [33], partly by extending the triple translator to capture the extended semantics of OWL and partly by 

extending the rule language translator [34]. Among our future plans is to continue optimizing the performance of 

R-DEVICE and further testing it using benchmarking suites, such as the Lehigh University Benchmark [25]. 

Furthermore, we plan deploy R-DEVICE as a Web Service and to develop an interface to RDF storage systems, 

such as ICS-FORTH RDFSuite [1] or Sesame [16].  

Finally, transforming RDF resources into traditional objects has the advantage that RDF data can interoperate 

seamlessly with other data models, such as the object-oriented or the relational data models. In this way, CLIPS 

objects can easily be exported as RDF data or RDF data can be easily used in an expert system developed in 

CLIPS. Furthermore, we believe that the object data model is the most general and expressive one; therefore, it 

can serve as a mediator between several data models, both traditional and web models. For example, we have 

also used CLIPS to transform XML documents [9] and OWL ontologies [34] into objects. Among our future 

plans is to integrate all these translators into a single system and have our deductive rule language to reason over 

all such web data models in a homogeneous manner. Results could be easily exported in any of these models. 

Therefore, our system could be used as a translator between these languages. 
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Appendix A. R-DEVICE Syntax 

This appendix contains the syntax of R-DEVICE rules in BNF notation as an extension of CLIPS rules. 

<r-device-rule> ::= <deductive-rule> | <derived-attribute-rule> | <aggregate-attribute-rule> 
 
<deductive-rule> ::=  
 (deductiverule [<rule-name>] 
  <conditional-element>* 
 => 
  <conclusion>) 
 
<derived-attribute-rule> ::=  
 (derivedattrule [<rule-name>] 
  <conditional-element>* 
 => 
  <derived-attribute-conclusion>) 
 
<aggregate-attribute-rule> ::=  
 (aggregateattrule [<rule-name>] 
  <conditional-element>* 
 => 
  <aggregate-attribute-conclusion>) 
 
<conditional-element> ::= <pattern-CE> | <assigned-pattern-CE> | <not-CE> |  
           <and-CE> | <or-CE> | <test-CE> 
 
<pattern-CE> ::= <class-pattern-CE>  
 
<assigned-pattern-CE> ::= <single-field-variable> <- <pattern-CE> |  
           <instance-name> <- <pattern-CE> 
 
<not-CE> ::= (not <conditional-element>) 
 
<and-CE> ::= (and <conditional-element>+) 
 
<or-CE> ::= (or <conditional-element>+) 
 
<test-CE> ::= (test <function-call>) 
 
<class-pattern-CE> ::= (<class-expr> <LHS-slot>*) 
 
<class-expr> ::= <class-name> | <svar-expr> | <namespace>':'<class-name> |  
        <svar-expr>':'<class-name> | <namespace>':'<svar-expr> 
 
<LHS-slot> ::= <single-field-LHS-slot> | <multifield-LHS-slot> 
 
<single-field-LHS-slot> ::= (<path-expr> <constraint>) 
 
<multifield-LHS-slot> ::= (<path-expr> <constraint>*) 
 
<path-expr> ::= <slot-expr> | (<path-item>+) 
 
<slot-expr> ::= <slot-name> | <svar-expr> 
 
<svar-expr> ::= <single-field-variable> | '?' 
 
<path-item> ::= <slot-expr> | <multifield-variable> | (<slot-name>+) 
 
<constraint> ::= '?' | '$?' | <connected-constraint> 
 
<connected-constraint> ::= <single-constraint> |  
           <single-constraint> '&' <connected-constraint> |  
           <single-constraint> '|' <connected-constraint> 
 
<single-constraint> ::= <term> | ~<term> 
 
<term> ::= <constant> | <single-field-variable> | <multifield-variable> | ':'<function-call> | 
     '='<function-call> | <single-field-variable-multifield-expression> 
 
<single-field-variable> ::= '?'<variable-symbol> 
 
<multifield-variable> ::= '$?'<variable-symbol> 
 
<single-field-variable-multifield-expression> ::= '??'<variable-symbol> 
 
<constant> ::= <symbol> | <string> | <integer> | <float> | <instance-name> 
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<function-call> ::= (<function-name> <expression>*) 
 
<conclusion> ::= [(calc <function-call>+)] (<RHS-class-expr> <RHS-slot>*) 
 
<RHS-class-expr> ::= <class-name> | <single-field-variable> | <namespace>':'<class-name> | 
      <single-field-variable>':'<class-name> | <namespace>':'<single-field-variable> 
 
<RHS-slot> ::= <simple-assign-expr> | <aggregate-assign-expr> 
 
<simple-assign-expr> ::= (<RHS-slot-expr> <value>) 
 
<RHS-slot-expr> ::= <slot-name> | <single-field-variable> 
 
<value> ::= <single-field-variable> | <multifield-variable> | <constant>  
 
<aggregate-assign-expr> ::= (<RHS-slot-expr> <aggregate-function-expr>) 
 
<aggregate-function-expr> ::= (<aggregate-function> <single-field-variable>) 
 
<derived-attribute-conclusion> ::= [(calc <function-call>+)] 
        <single-field-variable> <- (<RHS-class-expr> <simple-assign-expr>) 
 
<aggregate-attribute-conclusion> ::= [(calc <function-call>+)] 
       <single-field-variable> <- (<RHS-class-expr> <aggregate-assign-expr>) 
 
<rule-name> ::= A symbol which represents the name of a rule 
 
<variable-symbol> ::= A symbol beginning with an alphabetic character. 
 
<function-name> ::= Any symbol which corresponds to a system or user defined function, a deffunction name, or a 
defgeneric name 
 
<class-name> ::= A valid defclass name 
 
<slot-name> ::= A valid defclass slot name 
 
<aggregate-function> ::= A valid aggregate function name 
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Appendix B. Examples of R-DEVICE rules 

This appendix contains examples of R-DEVICE rules for sample RDF queries that have been obtained from 
[37]. 

 
(deductiverule q1a 
 ?x <- (? (email:message-id '123456@example.com')) 
  => 
 (result (email ?x))) 

 

(deductiverule q1b 
 ?msg <- (pop3:Message (pop3:property ?prop)) 
 ?prop <- (? (rdfs:label 'From') (rdf:value ?from & :(str-index "hotmail" ?from))) 
  => 
 (result (email ?msg))) 

 

(deductiverule q2 
 ?x <- (? (vcard:N ?y)) 
 ?y <- (? (vcard:Family "Smith") (vcard:Given ?v)) 
  => 
 (person (name ?v))) 

 

(deductiverule q3 
 data:x <- (? (?property ?value)) 
 ?property <- (rdf:Property (rdfs:range $? ?t $?)) 
  => 
 (result (property ?property) (value ?value) (type ?t))) 

 

(deductiverule q4 
 ?Header <- (hdr:HeaderField (hdr:fieldName ?name) (rdfs:label ?purpose) (hdr:protocol ?p)) 
 ?p <- (? (hdr:protocolName ?pn) (hdr:spec ?ps)) 
 ?ps <- (? (hdr:document ?psdocument)) 
  => 
 (result (header ?Header) (name ?name) (protocol ?p) (purpose ?purpose)  
     (pname ?pn) (spec ?ps) (document ?psdocument)) 
) 

 

(deductiverule q5 
 (rss:item (rss:title ?title) (rss:link ?link)) 
  => 
 (result (title ?title) (link ?link))) 

 

(deductiverule q6 
 (rss:item (rss:title ?title & :(str-index "RDQL" ?title)) (rss:link ?link)) 
  => 
 (result (link ?link))) 

 

(deductiverule q7 
 ?x <- (? (dc:title ?tt) (dc:description ?dd) ((etbthes:ETBT dc:subject) ?ss2)  
      (dc:identifier ?identifier) ((dcq:RFC1766 dc:language) ?language)) 
 ?tt <- (? (rdf:value ?t_val) ((dcq:RFC1766 dc:language) ?t_lang)) 
 ?ss2 <- (? (rdf:value ?subject_val) ((dcq:RFC1766 dc:language) ?subj_lang)) 
 ?dd <- (? (rdf:value ?desc_val) ((dcq:RFC1766 dc:language) ?desc_lang)) 
  => 
 (result (title_value ?t_val) (title_language ?t_lang) (subj_val ?subject_val)  
     (subj_lang ?subj_lang) (desc_value ?desc_val) (desc_lang ?desc_lang) 
     (language ?language)(identifier ?identifier))) 
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Appendix C. R-DEVICE rules for Querying ODP 

This appendix contains the R-DEVICE rules that are used in Section 5 for querying ODP metadata and measur-

ing the performance of the object-oriented RDF data model of R-DEVICE against the triple-based RDF data 

model. 

Rule Case 0: Retrieve the title of all resources. 

(deductiverule oo-rule-0 
  (? (dc:title ?t)) 
  => 
  (result (title ?t))) 
 
(deductiverule triple-rule-0 
  (rdf-triple (subject ?x) (predicate [dc:title]) (object ?t)) 
  => 
  (result (title ?t))) 
 

Rule Case 1: Retrieve the title of all dmoz:Topic resources. 

(deductiverule oo-rule-1 
  (dmoz:Topic (dc:title ?t)) 
  => 
  (result (title ?t))) 
 
(deductiverule triple-rule-1 
  (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?x) (predicate [dc:title]) (object ?t)) 
  => 
  (result (title ?t))) 
 

Rule Case 2: Retrieve the title and associated newsgroups of all topics that have at least one associated news-

group. 

(deductiverule oo-rule-2 
  (dmoz:Topic (dc:title ?t) (dmoz:newsGroup $? ?n $?)) 
  => 
  (result (title ?t) (news ?n))) 
 
(deductiverule triple-rule-2 
  (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?x) (predicate [dc:title]) (object ?t)) 
  (rdf-triple (subject ?x) (predicate [dmoz:newsGroup]) (object ?n)) 
  => 
  (result (title ?t) (news ?n))) 
 

Rule Case 3: Retrieve the title of a topic with a specific catalog ID. 

(deductiverule oo-rule-3 
  (dmoz:Topic (dmoz:catid "24") (dc:title ?t)) 
  => 
  (result (title ?t))) 
 
(deductiverule triple-rule-3 
  (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?x) (predicate [dc:title]) (object ?t)) 
  (rdf-triple (subject ?x) (predicate [dmoz:catid]) (object "24")) 
  => 
  (result (title ?t))) 
 

Rule Case 4: Retrieve the title of a topic with a specific catalog ID, along with the titles of all associated pages. 

The topic must have at least one associated page. 

(deductiverule oo-rule-4 
  (dmoz:Topic (dmoz:catid "24") (dc:title ?t) (dmoz:link $? ?l $?)) 
  ?l <- (dmoz:ExternalPage (dc:title ?lt)) 
  => 
  (result (title ?t) (link_title ?lt))) 
 
(deductiverule triple-rule-4 
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  (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?x) (predicate [dc:title]) (object ?t)) 
  (rdf-triple (subject ?x) (predicate [dmoz:catid]) (object "24")) 
  (rdf-triple (subject ?x) (predicate [dmoz:link]) (object ?l)) 
  (rdf-triple (subject ?l) (predicate [dc:title]) (object ?lt)) 
  => 
  (result (title ?t) (link_title ?lt))) 
 

Rule Case 5: Retrieve the title of a topic with a specific catalog ID, along with the titles and descriptions of all 

associated pages. The topic must have at least one associated page. 

(deductiverule oo-rule-5 
  (dmoz:Topic (dmoz:catid "24") (dc:title ?t) (dmoz:link $? ?l $?)) 
  ?l <- (dmoz:ExternalPage (dc:title ?lt) (dc:description ?d)) 
  => 
  (result (title ?t) (link_title ?lt) (link_desc ?d))) 
 
(deductiverule triple-rule-5 
  (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?x) (predicate [dc:title]) (object ?t)) 
  (rdf-triple (subject ?x) (predicate [dmoz:catid]) (object "24")) 
  (rdf-triple (subject ?x) (predicate [dmoz:link]) (object ?l)) 
  (rdf-triple (subject ?l) (predicate [rdf:type]) (object [dmoz:ExternalPage])) 
  (rdf-triple (subject ?l) (predicate [dc:title]) (object ?lt)) 
  (rdf-triple (subject ?l) (predicate [dc:description]) (object ?d)) 
  => 
  (result (title ?t) (link_title ?lt) (link_desc ?d))) 
 

Rule Case 6: Retrieve the titles of all topics other than a topic with a specific catalog ID, along with the titles 

and descriptions of all associated pages of the ".net" domain. The selected topics must have at least one associ-

ated page. 

(deductiverule oo-rule-6 
  (dmoz:Topic (dmoz:catid ~"1") (dc:title ?t) (dmoz:link $? ?l $?)) 
  ?l <- (dmoz:ExternalPage (dc:title ?lt) (dc:description ?d)  
            (uri ?uri&:(str-index ".net" ?uri))) 
  => 
  (result (title ?t) (link_title ?lt) (link_desc ?d))) 
 
(deductiverule triple-rule-6 
 (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
 (rdf-triple (subject ?x) (predicate [dc:title]) (object ?t)) 
 (rdf-triple (subject ?x) (predicate [dmoz:catid]) (object ~"1")) 
 (rdf-triple (subject ?x) (predicate [dmoz:link]) (object ?l)) 
 (rdf-triple (subject ?l&:(str-index ".net" ?l))  
        (predicate [rdf:type]) (object [dmoz:ExternalPage])) 
 (rdf-triple (subject ?l) (predicate [dc:title]) (object ?lt)) 
 (rdf-triple (subject ?l) (predicate [dc:description]) (object ?d)) 
  => 
  (result (title ?t) (link_title ?lt) (link_desc ?d))) 
 

Rule Case 7: Retrieve the titles of all topics that have at least one subtopic, along with the titles of the subtopics 

and the titles of all their associated pages. The selected subtopics must have at least one associated page. 

(deductiverule oo-rule-7 
  (dmoz:Topic (dc:title ?top) (dmoz:narrow $? ?n $?)) 
  ?n <- (dmoz:Topic (dc:title ?t) (dmoz:link $? ?l $?)) 
  ?l <- (dmoz:ExternalPage (dc:title ?lt)) 
  => 
  (result (top_title ?top) (title ?t) (link_title ?lt))) 
 
(deductiverule triple-rule-7 
 (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
 (rdf-triple (subject ?x) (predicate [dc:title]) (object ?top)) 
 (rdf-triple (subject ?x) (predicate [dmoz:narrow]) (object ?n)) 
 (rdf-triple (subject ?n) (predicate [rdf:type]) (object [dmoz:Topic])) 
 (rdf-triple (subject ?n) (predicate [dc:title]) (object ?t)) 
 (rdf-triple (subject ?n) (predicate [dmoz:link]) (object ?l)) 
 (rdf-triple (subject ?l) (predicate [rdf:type]) (object [dmoz:ExternalPage])) 
 (rdf-triple (subject ?l) (predicate [dc:title]) (object ?lt)) 
  => 
  (result (top_title ?top) (title ?t) (link_title ?lt))) 
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Rule Case 8: Retrieve the titles of all topics that have at least one subtopic, along with the titles of the subtopics 

and the titles of all their associated pages of the ".net" domain. The selected subtopics must have at least one 

associated page. 

(deductiverule oo-rule-8 
  (dmoz:Topic (dc:title ?top) (dmoz:narrow $? ?n $?)) 
  ?n <- (dmoz:Topic (dc:title ?t) (dmoz:link $? ?l $?)) 
  ?l <- (dmoz:ExternalPage (dc:title ?lt) (uri ?uri&:(str-index ".net" ?uri))) 
  => 
  (result (top_title ?top) (title ?t) (link_title ?lt))) 
 
(deductiverule triple-rule-8 
 (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
 (rdf-triple (subject ?x) (predicate [dc:title]) (object ?top)) 
 (rdf-triple (subject ?x) (predicate [dmoz:narrow]) (object ?n)) 
 (rdf-triple (subject ?n) (predicate [rdf:type]) (object [dmoz:Topic])) 
 (rdf-triple (subject ?n) (predicate [dc:title]) (object ?t)) 
 (rdf-triple (subject ?n) (predicate [dmoz:link]) (object ?l)) 
 (rdf-triple (subject ?l&:(str-index ".net" ?l))  
        (predicate [rdf:type]) (object [dmoz:ExternalPage])) 
 (rdf-triple (subject ?l) (predicate [dc:title]) (object ?lt)) 
  => 
  (result (top_title ?top) (title ?t) (link_title ?lt))) 
 

Rule Case 9: Find if there is a topic that is a direct subtopic of two different topics. Retrieve the titles of the two 

super-topics and the title of the sub-topic. Avoid symmetric solutions by checking if the symmetric solution al-

ready exists (using negation-as-failure). 

(deductiverule oo-rule-9 
  ?n0 <- (dmoz:Topic (dc:title ?t0) ) 
  ?n1 <- (dmoz:Topic (dmoz:narrow $? ?n0 $?) (dc:title ?t1)) 
  ?n2 <- (dmoz:Topic (dmoz:narrow $? ?n0 $?) (dc:title ?t2&~?t1)) 
  (not (result (topic ?t0) (supertopic1 ?t2) (supertopic2 ?t1))) 
  => 
  (result (topic ?t0) (supertopic1 ?t1) (supertopic2 ?t2))) 
 
(deductiverule triple-rule-9 
  (rdf-triple (subject ?n0) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?n0) (predicate [dc:title]) (object ?t0)) 
  (rdf-triple (subject ?n1) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?n1) (predicate [dmoz:narrow]) (object ?n0)) 
  (rdf-triple (subject ?n1) (predicate [dc:title]) (object ?t1)) 
  (rdf-triple (subject ?n2) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?n2) (predicate [dmoz:narrow]) (object ?n0)) 
  (rdf-triple (subject ?n2) (predicate [dc:title]) (object ?t2&~?t1)) 
  (not (result (topic ?t0) (supertopic1 ?t2) (supertopic2 ?t1))) 
  => 
  (result (topic ?t0) (supertopic1 ?t1) (supertopic2 ?t2))) 
 

Rule Case 10: Recursively find the titles of all pages indirectly associated with a specific topic through its sub-

topics, regardless at which depth. This case requires more than one deductive rule. The first two rules recur-

sively retrieve all the subtopics associated with a specific topic, and the third rule retrieves the titles of the asso-

ciated pages of all the subtopics that were collected by the first two rules. 

(deductiverule oo-rule-10a 
  (dmoz:Topic (dmoz:catid "24") (dc:title ?top) (dmoz:narrow $? ?n $?)) 
  => 
  (temp-result (top_title ?top) (subtopic ?n))) 
 
(deductiverule oo-rule-10b 
  (temp-result (top_title ?top) (subtopic ?n)) 
  ?n <- (dmoz:Topic (dmoz:narrow $? ?n1 $?)) 
  => 
  (temp-result (top_title ?top) (subtopic ?n1))) 
 
(deductiverule oo-rule-10c 
  (temp-result (top_title ?top) (subtopic ?n)) 
  ?n <- (dmoz:Topic (dmoz:link $? ?l $?)) 
  ?l <- (dmoz:ExternalPage (dc:title ?lt) ) 
  => 
  (result (top_title ?top) (link_title ?lt))) 
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(deductiverule triple-rule-10a 
  (rdf-triple (subject ?x) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?x) (predicate [dc:title]) (object ?top)) 
  (rdf-triple (subject ?x) (predicate [dmoz:catid]) (object "24")) 
  (rdf-triple (subject ?x) (predicate [dmoz:narrow]) (object ?n)) 
  => 
  (temp-result (top_title ?top) (subtopic ?n))) 
 
(deductiverule triple-rule-10b 
  (temp-result (top_title ?top) (subtopic ?n)) 
  (rdf-triple (subject ?n) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?n) (predicate [dmoz:narrow]) (object ?n1)) 
  => 
  (temp-result (top_title ?top) (subtopic ?n1))) 
 
(deductiverule triple-rule-10c 
  (temp-result (top_title ?top) (subtopic ?n)) 
  (rdf-triple (subject ?n) (predicate [rdf:type]) (object [dmoz:Topic])) 
  (rdf-triple (subject ?n) (predicate [dmoz:link]) (object ?l)) 
  (rdf-triple (subject ?l) (predicate [rdf:type]) (object [dmoz:ExternalPage])) 
  (rdf-triple (subject ?l) (predicate [dc:title]) (object ?lt)) 
  => 
  (result (top_title ?top) (link_title ?lt))) 
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Appendix D. Sample Interaction with R-DEVICE 

This appendix contains a sample interaction with R-DEVICE rules for the RDF document of Figure 8 in section 

3.5. 

CLIPS> (import-rdf "example" local) 
Loading namespaces: dmoz example  
Inserting: <http://directory.mozilla.org/rdf/Top> <http://directory.mozilla.org/rdf/catid> "1" 
. 
Inserting: <http://directory.mozilla.org/rdf/Top> <http://purl.org/dc/elements/1.1/title> 
"Top" . 
Inserting: <http://directory.mozilla.org/rdf/Top> <http://directory.mozilla.org/rdf/narrow> 
<http://directory.mozilla.org/rdf/Top/Arts> . 
Inserting: <http://directory.mozilla.org/rdf/Top> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://directory.mozilla.org/rdf/Topic> . 
Inserting: <http://directory.mozilla.org/rdf/Top/Arts> 
<http://directory.mozilla.org/rdf/catid> "2" . 
Inserting: <http://directory.mozilla.org/rdf/Top/Arts> <http://purl.org/dc/elements/1.1/title> 
"Arts" . 
Inserting: <http://directory.mozilla.org/rdf/Top/Arts> <http://directory.mozilla.org/rdf/link> 
<http://www3.bc.sympatico.ca/PHILLIPSHOTGLASS/GlassPage.html> . 
Inserting: <http://directory.mozilla.org/rdf/Top/Arts> <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://directory.mozilla.org/rdf/Topic> . 
Inserting: <http://www3.bc.sympatico.ca/PHILLIPSHOTGLASS/GlassPage.html> 
<http://purl.org/dc/elements/1.1/title> "John phillips Blown glass" . 
Inserting: <http://www3.bc.sympatico.ca/PHILLIPSHOTGLASS/GlassPage.html> 
<http://purl.org/dc/elements/1.1/description> "A small display of glass by John Phillips" . 
Inserting: <http://www3.bc.sympatico.ca/PHILLIPSHOTGLASS/GlassPage.html> 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://directory.mozilla.org/rdf/ExternalPage> . 
 
Asserting type rdf:Property for resource [dmoz:link] 
Asserting type rdf:Property for resource [dmoz:catid] 
Asserting type rdf:Property for resource [dmoz:narrow] 
Asserting type [rdfs:Class] for resource [dmoz:ExternalPage] 
Asserting type [rdfs:Class] for resource [dmoz:Topic] 
creating property: [dmoz:narrow] 
creating property: [dmoz:catid] 
creating property: [dmoz:link] 
Backing up class: rdfs:Resource 
New property: dmoz:link for rdfs:Resource. 
New property: dmoz:catid for rdfs:Resource. 
New property: dmoz:narrow for rdfs:Resource. 
Restoring class: rdfs:Resource 
Restoring class: dctype:Collection 
... 
creating object: [dmoz:Topic] of rdfs:Class 
creating object: [dmoz:ExternalPage] of rdfs:Class 
Creating class: dmoz:ExternalPage 
Creating class: dmoz:Topic 
creating object: [http://www3.../GlassPage.html] of dmoz:ExternalPage 
creating object: [dmoz:Top/Arts] of dmoz:Topic 
creating object: [dmoz:Top] of dmoz:Topic 
object: [http://www3.../GlassPage.html] predicate: dc:description value: A small display of 
glass by John Phillips 
object: [http://www3.../GlassPage.html] predicate: dc:title value: John phillips Blown glass 
object: [dmoz:Top/Arts] predicate: dmoz:link value: [http://www3.../GlassPage.html] 
object: [dmoz:Top/Arts] predicate: dc:title value: Arts 
object: [dmoz:Top/Arts] predicate: dmoz:catid value: 2 
object: [dmoz:Top] predicate: dmoz:narrow value: [dmoz:Top/Arts] 
object: [dmoz:Top] predicate: dc:title value: Top 
object: [dmoz:Top] predicate: dmoz:catid value: 1 
TRUE 
 


