
 1

A Trusted Defeasible Reasoning Service for
Brokering Agents in the Semantic Web

Kalliopi Kravari, Efstratios Kontopoulos and Nick Bassiliades

Dept. of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

{kkravari, skontopo, nbassili}@csd.auth.gr

Abstract. Based on the plethora of proposals and standards for logic- and rule-
based reasoning for the Semantic Web (SW), a key factor for the success of SW
agents is interoperability of reasoning tasks. This paper reports on the first steps
towards a framework for interoperable reasoning among agents in the SW that de-
ploys third-party trusted reasoning services. This way, agents can exchange their
arguments, without the need to conform to a common rule or logic paradigm – via
an external reasoning service, the receiving agent can grasp the semantics of the
received rule set. The paper presents how a multi-agent system was extended with
a third-party trusted defeasible reasoning service, which offers agents the ability of
reasoning with incomplete and inconsistent information. In addition, a brokering
trade scenario is presented that illustrates the usability of the approach.

1. Introduction

The Semantic Web (SW) [1] is a rapidly evolving extension of the WWW, in
which the semantics of information and services is well-defined, making it possi-
ble for people and machines to use Web content and services for understanding
and satisfying their requests. SW research is currently focusing on logic, reasoning
and proof. Intelligent agents (IAs) can be highly favored by SW technologies [2],
because of the interoperability the latter promises. The integration of multi-agent
systems (MAS) with SW technology will significantly affect the use of the Web as
we know it today; its next generation will feature groups of intercommunicating
agents traversing it and performing complex actions on behalf of their users.

A core setback in agent interoperation is the variety in representation and rea-
soning. Despite KIF’s efforts [3], there is still no globally agreed knowledge rep-
resentation and reasoning formalism for agents. For SW agents, on the other hand,
we can safely assume that OWL could be the global knowledge exchange lan-
guage. As for rule- and logic-based reasoning, there is a variety of proposals and
standards [4, 5, 6]. Thus, a key factor for the success of SW information systems

 2

in general and agents in particular is reasoning task interoperability among multi-
ple, heterogeneous web entities exchanging rule bases to justify their positions.

Reasoning interoperability among agents can be often (but not always)
achieved by translating the received rule set into the receiving agent’s formalism.
This can only be accomplished, when the two agents use the same rule formalism
with different syntax, or when the one formalism can be semantically translated
into the other (e.g. translation between defeasible logic and Datalog rules [7]).

On the other hand, this paper proposes a simpler approach that does not rely on
semantic interoperability, but on exchanging the rule base model, instead. This
way, agents can exchange their position arguments, without the need to conform
to a common rule paradigm or logic. The receiving agent can use an external rea-
soning service to grasp the semantics of the rule set, i.e. the result set of the re-
ceived rule base. A critical assumption, of course, is that reasoning services are
trusted and are hosted by authoritative organizations, like W3C or RuleML.org.

More specifically, this paper presents how a JADE MAS was extended with de-
feasible reasoning (DR) [8], i.e., the ability to reason with incomplete and incon-
sistent information. A DR service accompanied by a reputation mechanism was
implemented as a JADE agent. The approach is generic, since any reasoner can be
deployed as an agent-service in the system. Moreover, the paper presents a use
case brokering trade scenario that illustrates the usability of these technologies.

In the rest of the paper, the implemented MAS is presented, focusing on the
reasoning service that is based on DR-DEVICE, the core reasoning engine de-
ployed in this paper. Section 3 presents the use case scenario and the paper is con-
cluded with final remarks and directions for future work.

2. Defeasible Reasoning Service Agents

Defeasible reasoning constitutes a simple rule-based approach for efficient rea-
soning with incomplete and inconsistent information [8]. Its main advantages are
enhanced representational capabilities and low computational complexity.

The DR-DEVICE [7] defeasible logic reasoner employs an OO RDF data
model that treats properties as encapsulated attributes of resource objects, provid-
ing more compact representation and increased query performance. DR-DEVICE
supports a rule language that extends RuleML with rule types, superiority relations
among rules and conflicting literals. DR-DEVICE accepts as input the URL of a
defeasible logic rule base. The facts for the rule program are contained in RDF
documents, whose addresses are declared in the rule base. When the rule base is
submitted, the designated facts are downloaded and the inference process com-
mences. Rule conclusions are materialized inside DR-DEVICE and are then ex-
ported as an RDF document, including corresponding RDF/S definitions.

In our approach, reasoning services are wrapped by an agent interface, the Rea-
soner, allowing other IAs to contact them via ACL messages. The Reasoner can
launch an associated reasoning engine that performs inference. In this work DR-

 3

DEVICE was chosen, but our plans involve integrating a range of reasoning en-
gines that use various logics. In essence, the Reasoner is a service and not an au-
tonomous agent; the agent interface is provided in order to integrate into JADE.

The Reasoner constantly stands by for new requests (ACL messages with a
“REQUEST” communication act). As soon as it gets a valid request, it launches
DR-DEVICE that processes the input data (i.e. rule base) and returns an RDF
document containing the results. Finally, the Reasoner returns the above result
through an “INFORM” ACL message.

2.1. Trust Metric

There are various trust metrics [9]; our approach adopts a combination of Sporas
(the most widely used) and CR (one of the most recently proposed), while using a
decentralised reputation mechanism. Each agent keeps the references given from
other agents and calculates the reputation value, according to the formula:

1 1 1
1

1
1

() (())
t

i i i i
o ther
iR R W E WR

θ+ + ++= Φ −∑ (1)

()
1() 1

1
R DR

e σ
− −Φ = −

+

and 1() t

i
RE W
D+ =

Wi represents user i's rating, t is the number of ratings the user has received, θ is
a constant integer > 1, Rother is the reputation of the user giving the rating, D is the
reputation value range and σ is the acceleration factor of damping function Φ. Wi
is based on four coefficients: Correctness (Corri), Response time (Respi) and
Flexibility (Flexi); the latter refers to the Reasoner’s flexibility in input parame-
ters. The evaluation of the coefficients is based on user standards and their ratings
vary from 1 to 10. The final rating value is the weighted sum of the coefficients
(equation 2), where ai1, ai2, and ai3 are the respective weights and nCorri, nRespi
and nFlexi are the normalized values for correctness, response time and flexibility,
accordingly:

Wi = ai1nCorri + ai2nRespi + ai3nFlexi (2)

New users start with Ri=0, Ri∈[0, 3000], while Wi∈[0.1, 1]. As soon as the in-
teraction ends, the Reasoner requests a rating. The other agent responds with a
new message containing both its rating and its personal reputation and the Rea-
soner updates its reputation, according to equation 1.

2.2. Agent Communication Protocols

The protocol describes the allowed performatives in agent communication: the
two main performatives in our approach are “REQUEST” that refers to the action

 4

of submitting a request to perform a certain action, given certain preconditions,
and “INFORM” that deals with returning the result of a previously submitted re-
quest to perform an action. A third, “NOT-UNDERSTOOD” performative is used
if a non-appropriate message is received. The protocol is represented as a finite
state machine with discrete states and transitions (e.g. Fig. 1).

3. Use Case: A Brokering Scenario

DR is useful in various applications, like brokering and bargaining [10], which are
also extensively influenced by agent-based technology [11]. Here, a DR brokering
scenario [12] is described that demonstrates the functionality of our approach.

3.1. Scenario Overview

A MAS is formed by three independent parties, represented by IAs: (a) the cus-
tomer (called Carlo) is a potential renter who wishes to rent an apartment based on
his requirements (e.g. location, floor) and preferences, (b) the broker possesses a
list of available apartments, along with their specifications (stored as an RDF DB).
His role is to match Carlo’s requirements with the apartment features and propose
suitable flats, (c) the reasoner is an independent, trusted third-party agent-based
service, that uses DR-DEVICE in order to infer conclusions from a defeasible log-
ic program and a set of facts and produces the results as an RDF file.

The broker does not wish to reveal his DB to customers, as it’s one of his most
valuable assets. However, the schema (RDF/S file containing properties and data
types) must be exposed, so that customers can formulate their requirements. After
inspecting the schema, Carlo expresses his requirements in defeasible logic (in the
DR-DEVICE RuleML-like syntax) and his agent sends them to the broker, in or-
der to retrieve all available apartments with the proper specifications.

The broker cannot directly process Carlo’s defeasible logic requirements, as it
internally uses a different logic, so a trusted third-party reasoning service is re-
quested and is retrieved from the framework directory service or, alternatively,
recommended by the customer. The broker sends Carlo’s requirements to the Rea-
soner, along with the URI of the RDF DB containing all available flats, and stands
by for the list of proper apartments. Alternatively, the broker could send the file it-
self instead of the URI. Also, not necessarily all the DB flats are available.

The Reasoner launches DR-DEVICE, which processes the above data and re-
turns an RDF document, containing the apartments that fulfill all requirements.
The result is sent back to the broker’s agent and the latter, consecutively, sends it
to Carlo’s agent. Meanwhile, the broker can process the results in order to filter
out some, using his own negotiating strategy. Eventually, the broker sends a rating
to the Reasoner, updating its reputation accordingly.

 5

Eventually, Carlo receives the list of appropriate flats and has to decide which
one he prefers. However, Carlo does not want to send his preferences to the bro-
ker, because he is afraid that the broker might exploit that and not present him
with the optimum choices. Thus, Carlo’s agent sends the list of acceptable apart-
ments and his preferences (again as a defeasible logic rule base) to the Reasoner.
The latter calls DR-DEVICE, gets the single most appropriate flat and replies,
proposing the best transaction. Carlo’s agent could have an internal DR engine
(e.g. [13]), but here we emphasize its ability to use any suitable external reasoning
engine. The procedure ends, when Carlo sends his rating to the Reasoner and can
now safely make the best choice based on his requirements and preferences.

3.2. Brokering Protocol

Although FIPA provides standardized protocols, none supports 1-1 automated
brokering. Thus, a brokering protocol was implemented that encodes the allowed
sequences of actions for the automation of the brokering process. The protocol
(Fig. 1) is based on specific performatives that conform to the FIPA ACL specifi-
cation. S0 to S6 represent states of a brokering trade and E is the final state. Predi-
cates Send and Receive represent interactions that cause state transitions. The se-
quence of transitions for the customer is S1→S2→S3→S4→E, while, for the broker
it is S0→S1→S2→S3→E. In case an agent receives a wrong performative, it sends
back a “NOT-UNDERSTOOD” message and the interaction is repeated.

Fig. 1. Agent brokering communication protocol.

4. Conclusions and Future Work

This paper argued that reasoning interoperability among SW agents can be
achieved via trusted, third-party reasoning services to provide reasoning capabili-
ties in a variety of logic and rule-based formalisms. Towards this direction, a
JADE MAS was presented, whose main component is a DR service implemented
as an agent. Also, trust metrics have been studied and a reputation mechanism for

 6

the reasoning service has been embedded. Finally, the paper presented a use case
brokering trade scenario that illustrates the usability of the proposed approach.

A related effort is the Rule Responder (RR) [14] project that builds a service-
oriented methodology and a rule-based middleware for interchanging rules in vir-
tual organizations. RR exhibits the interoperation of distributed platform-specific
rule execution environments via Reaction RuleML as a platform-independent rule
interchange format. The main differences with our approach are: (a) RR assumes a
unique rule interchange language, while in our approach this is not necessary, (b)
in RR rule engines are incorporated inside agents, whereas we deploy them as in-
dependent service-agents, and (c) our framework is totally FIPA-compliant, whe-
reas RR introduces a new RuleML-based agent communication interface.

Concerning future directions for our approach, we would like to verify our ar-
chitecture’s capability to adapt to a variety of additional scenarios, like negotia-
tion. Another goal is to integrate a variety of reasoning engines, in order to test
and evolve the reasoning interoperating capabilities of our framework.

References

1. Berners-Lee T, et al. (2001) The Semantic Web. Scientific American, 284(5):34-43
2. Hendler J (2001) Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30-37
3. Genesereth M, Fikes R (1992) Knowledge Interchange Format Version 3.0 Reference

Manual. Technical Report, Logic Group, Computer Science Dept., Stanford University
4. Boley H (2006) The RuleML Family of Web Rule Languages. Proc. PPSWR, Vol.

4187, Springer, pp. 1-17
5. Kifer M, (2008) Rule Interchange Format: The Framework. Proc. 2nd International

Conference on Web Reasoning and Rule Systems, Karlsruhe, Germany, pp. 1-11
6. Wagner G et al. (2005) R2ML: A General Approach for Marking up Rules. Dagstuhl

Seminar Proceedings 05371, Principles and Practices of Semantic Web Reasoning
7. Bassiliades N, Antoniou G, Vlahavas I (2006) A Defeasible Logic Reasoner for the

Semantic Web. IJSWIS, 2(1):1-41
8. Nute D (1987) Defeasible Reasoning. Proc. 20th International Conference on Systems

Science. IEEE Press, pp. 470-477
9. Macarthur K. (2007) Trust and Reputation in Multi-Agent Systems. Proc. AAMAS'08,

Estoril, Portugal, May 12-16
10. Benjamins R, Wielinga B, Wielemaker J, Fensel D (1999) An Intelligent Agent for

Brokering Problem-Solving Knowledge. IWANN, (2):693-705
11. Skylogiannis T, Antoniou G, Bassiliades N, Governatori G, Bikakis A (2007) DR-

NEGOTIATE - A System for Automated Agent Negotiation with Defeasible Logic-
based Strategies. DKE, 63(2):362-380

12. Antoniou G, Harmelen F van (2004) A Semantic Web Primer. MIT Press
13. Antoniou G, Skylogiannis T, Bikakis A, Bassiliades N (2005) DR-BROKERING - A

Defeasible Logic-Based System for Semantic Brokering. Proc. IEEE International
Conference on E-Technology, E-Commerce and E-Service, IEEE, pp. 414-417

14. Paschke A, Boley H, Kozlenkov A, Craig B (2007) Rule responder: RuleML-based
Agents for Distributed Collaboration on the Pragmatic Web. Proc. 2nd International
Conference on Pragmatic Web. ACM, (280):17-28, Tilburg, The Netherlands

