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1 Introduction

The ability to predict one or more days ahead the quality of water in an ecosys-
tem is a very important issue. Given such a predictive model, authorities will
be able to foresee an increase of the pollution levels in the sea water and there-
fore instruct all the necessary precaution measures. Water quality prediction
could also offer significant added value to several commercial applications,
such as irrigation and piscicultures.

This paper is concerned with the prediction of future values for a number of
water quality variables, based on data collected by an under-water measure-
ment system. A set of sensors is used to measure the sea-water temperature,
pH, conductivity, salinity, amount of dissolved oxygen and turbidity. The mea-
sured data are transmitted to a central monitoring station for analysis.

The paper investigates several aspects of the above problem using both ex-
ploratory and automatic analysis approaches. Initially, it studies the correla-
tions and interactions between the different variables in search for evidence of
an underlying mechanism governing the data. It then compares several linear
and nonlinear modeling algorithms against the random walk model, which
serves as a benchmark model in time series analysis tasks. In addition, the
paper studies the ability to predict future values for a varying number of days
ahead and the effect of including values from a varying number of past days.

The rest of the paper is organized as follows. In the next section we present
background information on water quality variables, while in Section 3 we dis-
cuss the related work in the area of water quality prediction. Section 4 de-
scribes the data collection and pre-processing phases. In Section 5 our experi-
mental setup is presented, including the design space, the algorithms and the
evaluation method we have used. Section 6 contains the results of our experi-
ments and discussion about these results. Finally, in Section 7 we present our
conclusions and some directions for future research.

2 Background

There is a number of variables that indicate the quality of water. Some of
the basic variables are water temperature, pH, specific conductance, turbidity,
dissolved oxygen, salinity, hardness, and suspended sediment.

The temperature of water plays an important role in both environmental and
industrial processes. Firstly, it affects the ability of living organisms to resist
certain pollutants. Some organisms cannot survive when the water tempera-
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ture takes a value beyond a specific range. The ability of water to hold oxygen
is also affected by water temperature. Finally, low-temperature water is used
for cooling purposes in power plants.

pH is a measure of the relative amount of free hydrogen and hydroxyl ions in
the water. Water that has more free hydrogen ions is acidic, whereas water
that has more free hydroxyl ions is basic. The values of pH range from 0 to
14 (this is a logarithmic scale), with 7 indicating neutral. Values less than 7
indicate acidity, whereas values greater than 7 indicate a base. The presence
of chemicals in the water, affects its pH, which in turn can harm the animals
and plants that live there. For example, an even mildly acidulous seawater
environment can harm shell cultivation 2 . This renders pH an important water
quality indicator.

Specific conductance is a measure of the ability of water to conduct an elec-
trical current. It is highly dependent on the amount of dissolved solids (such
as salt) in the water. Pure water, such as distilled water, has very low specific
conductance, while sea water has high specific conductance. Specific conduc-
tance is an important water quality measure because it gives a good indication
of the amount of dissolved material in the water.

Turbidity is the amount of particulate matter that is suspended in water.
Turbidity measures the scattering effect that suspended solids have on light:
the higher the intensity of scattered light, the higher the turbidity. Materials
that cause water to be turbid include clay, silt, finely divided organic and
inorganic matter, soluble colored organic compounds, plankton, microscopic
organisms and others.

Each molecule of water contains an atom of oxygen. Yet, only a small amount
of these oxygen atoms, up to about ten oxygen molecules per million of water
molecules, is actually dissolved in the water. This dissolved oxygen is breathed
by fish and zooplankton and is necessary for their survival. Rapidly moving
water, such as in a mountain streams or large rivers, tends to contain a lot
of dissolved oxygen, while stagnant water contains little. Bacteria in water
can consume oxygen as organic matter decays. Thus, excess organic material
in lakes and rivers can cause an oxygen-deficient situation to occur. Aquatic
life can have a hard time in stagnant water that has a lot of rotting, organic
material in it, especially in the summer, when dissolved-oxygen levels are at
a seasonal low.

Salinity is the saltiness or dissolved salt content of a body of water. The salt
content of most natural lakes, rivers, and streams is so small that these waters
are termed fresh or even sweet water. The actual amount of salt in fresh

2 Region of Central Macedonia, Directorate of Environment, Environmental Legis-
lation, May 1999.
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water is, by definition, less than 0.05%. The water is regarded as brackish,
or defined as saline if it contains 3 to 5% salt. The ocean is naturally saline
and contains approximately 3.5% salt. Some inland salt lakes or seas are even
saltier. The Dead Sea, for example, has a surface water salt content of around
15%. Excessive salinity can be dangerous for shell cultivation, an economic
activity that is very important for some regions.

The amount of dissolved calcium and magnesium in water determines its hard-
ness. In areas with relatively hard water, someone may notice that it is difficult
to get a lather up when washing his/her hands or clothes. Industries operating
in such areas have to spend money in order to soften the water and avoid the
damaging of equipment. Hard water can even shorten the life of fabrics and
clothes.

Suspended sediment is the amount of soil moving along within a water stream.
It is highly dependent on the speed of the water flow, as fast-flowing water can
pick up and suspend more soil than calm water. If land is disturbed along a
stream and no protection measures are taken, then excess sediment can harm
the water quality of a stream.

3 Related Work

Reckhow (1999) studied Bayesian probability network models for guiding de-
cision making for water quality of Neuse River in North Carolina. The author
focuses both on the accuracy of the model and the correct characterization
of the processes, although these two features are usually in conflict with each
other.

Blockeel et al. (1999) studied two problems. The first one concerned the si-
multaneous prediction of multiple physico-chemical properties of river water
from its current biological properties using a single decision tree. This ap-
proach is opposed to learning a different tree for each different property and
is called predictive clustering. The second problem concerned the prediction
of past physico-chemical properties of the water from its current biological
properties. The Inductive Logic Programming system TILDE Blockeel and
De Raedt (1998) was used for dealing with the above problems.

Dzeroski et al. (2000) addressed the problem of inferring chemical parameters
of river water quality from biological ones, an important task for enabling
selective chemical monitoring of river water quality. They used regression trees
with biological and chemical data for predicting water quality of Slovenian
rivers.
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Lehmann and Rode (2001) investigated the changes in metabolism and water
quality in the Elbe river at Magdeburg in Germany since the German reuni-
fication in 1990. They used weekly data samples collected between the years
1984 and 1996. They used univariate time series models such as autoregres-
sive component models and ARIMA models that revealed the improvement
of water quality due to the reduction of waste water emissions since 1990.
These models were used to determine the long-term and seasonal behaviour
of important water quality parameters.

Romero and Shan (2005) developed a neural network based software tool for
prediction of the canal water discharge temperature at a coal-fired power plant.
The variables considered in this system involve plant operating parameters and
local weather conditions, including tide information. The system helps for the
optimization of load generation among power plant generation units according
to an environmentally regulated canal water discharge temperature limit of
95 Fahrenheit degrees.

Chau (2005) presented the application of a split-step particle swarm optimiza-
tion (PSO) model for training perceptrons in order to predict real-time algal
bloom dynamics in Tolo Harbour of Hong Kong. Experiments with different
lead times and input variables have been conducted and the results have shown
that the split-step PSO-based perceptron outperforms other commonly used
optimization techniques in algal bloom prediction, in terms of convergence
and accuracy.

The case-based reasoning system, presented in (Fdez-Riverola and Corchado,
2003, 2004), copes with water pollution. It specializes in forecasting the red
tide phenomenon in a complex and dynamic environment in an unsupervised
way. Red tides are the name for the sea water discolorations caused by dense
concentrations of microscopic sea plants, known as phytoplankton. The system
is an autonomous Case-Based Reasoning (CBR) hybrid system that embeds
various artificial intelligence tools, such as case-based reasoning, neural net-
works and fuzzy logic in order to achieve real time forecasting. It predicts the
occurrence of red tides caused by the pseudo-nitzschia spp diatom dinoflagel-
late near the North West coast of the Iberian Peninsula. Its goal is to predict
the pseudo-nitzschia spp concentration (cells/liter) one week in advance, based
on the recorded measurements over the past two weeks. The developed proto-
type is able to produce a forecast with an acceptable degree of accuracy. The
results obtained may be extrapolated to provide forecasts further ahead using
the same technique, and it is believed that successful results may be obtained.
However, the further ahead the forecast is made, the less accurate it may be.

Hatzikos et al. (2005) utilized neural networks with active neurons as the
modeling tool for the prediction of sea water quality. The proposed approach
was concerned with predicting whether the value of each variable will move
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upwards or downwards in the following day. Experiments were focused on four
quality indicators, namely water temperature, pH, amount of dissolved oxygen
and turbidity.

4 Data Collection, Pre-Processing and Exploratory Analysis

This section describes the system that collected the data used in our study, the
pre-processing approach that we followed and initial exploratory data analysis.

4.1 The Andromeda analyzer

The data used in this study have been produced by the Andromeda Analyzer
(Hatzikos, 1998; Hatzikos, 2002). The system is installed in Thermaikos Gulf
of Thessaloniki, Greece and consists of three local measurement stations and
one central data collection station.

The local measurement stations (see Figure 1) are situated in the sea and
serve the purpose of data collection. Each of them consists of the following
parts:

• A buoy.
• A number of sensors.
• A reprogrammable logic circuit.
• Strong radio modems.
• A tower of 6 meters height for the placement of an aerial.
• Solar collectors interconnected for more power.
• Rechargeable batteries.

 

Fig. 1. One of the three local measurement stations of the Andromeda system.

The solar collectors and the batteries provide the electrical power needed
by the sensors and electronics. The sensors measure water temperature, pH,
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conductivity, salinity, amount of dissolved oxygen and turbidity in sea-water
at fixed time points. The reprogrammable logic circuit monitors the function
of the local measurement station and stores the measurements in its memory.
Moreover, it controls the communication via the wireless network and sends
the measurements to the central data collection station.

The central data collection station monitors the communication with the local
measurement stations and collects data from all of them. Data are stored in
a database for the purpose of future processing and analysis. It consists of a
Pentium computer operating in SCADA environment. The computer plays the
role of master and controls the communication with the local measurement
stations using the hand-shake protocol. The total number of measurements
that are collected is between 8 and 24 daily. The frequency of measurements
can be increased in case of emergency. This communication policy reduces the
consumption of energy by the local stations, since they operate only when
they have to send data to the central station.

Furthermore, the central station hosts an intelligent alerting system (Hatzikos
et al., 2007) that monitors sensor data and reasons about the current level of
water suitability for various aquatic uses, such as swimming and piscicultures.
The aim of this intelligent alerting system is to help the authorities in the
”decision-making” process in the battle against the pollution of the aquatic
environment, which is very vital for the public health and the economy of
Northern Greece. The expert system determines, using fuzzy logic, when cer-
tain environmental parameters exceed certain ”pollution” limits, which are
specified either by the authorities or by environmental scientists, and flags
out appropriate alerts.

4.2 Data Preprocessing

The data that are studied in this paper were collected from April 14, 2003
until June 11, 2003 at an hourly basis with a sampling interval of 9 seconds.
Given that the variation of the measurements from one hour to the next is
typically very small, we decided to work on the coarser time scale of 24 hours,
by averaging the measurements over days.

Two problems introduced in the data by the collection process are the follow-
ing: a) there is a number of missing values due to temporary inefficiency of
the sensors as well as problems in the transmission of the data, and b) the
occurrence of special events near the local measurement stations, such as the
crossing of a boat, have led to the recording of some outliers.

Fortunately, both of these temporary problems are automatically solved through
the daily averaging process. During a day, the missing values are typically from
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0 to 3, so the rest of the measurements can reliably give a mean estimate for
the day. In addition, averaging ameliorates the effect of outliers. Specifically
we calculate the median of all daily measurements, which trims away extreme
values.

Based on the above remarks, the communication policy of the data collection
system could be altered, in order to save energy if such a system was deployed
in an ecosystem with limited sunlight. Instead of transmitting the data every
hour, the local stations could transmit the average of their hourly measure-
ments every k hours. For higher energy efficiency, the sensors themselves could
operate every k hours and send their unique measurement. However, such a
policy is less resilient to transmission failures and outliers. A different, adap-
tive, policy would let the local stations transmit their hourly measurements,
only when the difference of at least one of the measurements with the previ-
ously transmitted corresponding measurement exceeds a predefined threshold.
This would allow to save energy when hour to hour differences are negligible.
The central station, assumes that the measurement values are the same if no
values are transmitted.

4.3 Exploratory Analysis

We perform an initial exploratory analysis in order to have a first look at the
data and assess the ability to make n-day ahead predictions. Figure 2 shows
a plot of the values of the 6 variables over time, while Table 1 shows the
correlation coefficient for each pair of variables.
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Fig. 2. Mean daily values of the 6 measuerements for the time period April 14 to
June 11
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temperature pH conductivity salinity oxygen turbidity

temperature 1.0000 0.8784 -0.3902 -0.4425 0.6191 0.5328

pH 0.8784 1.0000 -0.1287 -0.1803 0.7471 0.6796

conductivity -0.3902 -0.1287 1.0000 0.9941 -0.0213 -0.0023

salinity -0.4425 -0.1803 0.9941 1.0000 -0.0456 -0.0212

oxygen 0.6191 0.7471 -0.0213 -0.0456 1.0000 0.9921

turbidity 0.5328 0.6796 -0.0023 -0.0212 0.9921 1.0000
Table 1
Correlation coefficients between the 6 variables

We notice that, as expected, there are correlations between the different vari-
ables. We know that changes in water temperature and clarity affects the
amount of oxygen in water. In addition, water of low clarity could contain
organisms, which can affect the acidity of water. Finally, the amount of salt
in the water directly influences its ability to conduct electricity. The strongest
correlations are that between salinity and conductivity, and between turbidity
and oxygen.

The correlation of pairs of variables shows us the relation of the measurements
at the same time points t and hence it is not particularly useful for assessing
the relation of past values of the variables with current values. Such informa-
tion can be obtained by examining the autocorrelation and cross-correlation
function for all variables and pairs of variables respectively. However, strong
correlation can help us in designing a power-efficient sensor platform. For ex-
ample, since salinity and conductivity are so strongly correlated, only one of
the sensors can operate, while the value of the other is calculated based on a
linear function of the operating sensor’s measurement.

Figure 3 presents plots of the autocorrelation function for the 6 variables. The
bar graph depicts the autocorrelation coefficient (y-axis) over the lag number
(x-axis), while the two horizontal lines correspond to the upper and lower
confidence limits. The plots demonstrate that past values of each variable can
assist in the prediction of future values.

Figure 4 presents plots of the autocorrelation function for temperature, pH,
conductivity and dissolved oxygen. For simplicity of presentation, we do not
show plots of the autocorrelation function for pairs of variables including salin-
ity and turbidity. As seen in Table 1 these two variables are highly correlated
with conductivity and dissolved oxygen respectively, so the results of the cross-
correlation function are very similar.

The stem graph depicts the cross-correlation coefficient (y-axis) over the lag
number (x-axis), while the two horizontal lines correspond to the upper and
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Fig. 3. Autocorrelation function for the 6 variables
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Fig. 4. Cross-correlation function for representative pairs of variables

lower confidence limits. The plots demonstrate that previous values of vari-
ables can assist in the prediction of future values for other variables, apart from
the pairs (pH, conductivity), (pH, salinity), (conductivity, oxygen), (salinity,
oxygen), (conductivity, turbidity), (salinity, turbidity). As expected, temper-
ature is the most influential variable, affecting the future values of all the rest
of the variables.
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5 Experimental Setup for Automatic Analysis

This section describes the experimental setup of the automatic data analysis
using machine learning algorithms. It presents the various parameters investi-
gated in the experiments (design space), the different learning algorithms and
the evaluation process.

5.1 Design Space

A first parameter in our design space was the target attribute, which takes 6
different values, as we are interested in predicting the future values of all 6
variables monitored by the Andromeda analyzer. The input attributes corre-
spond to values of previous days for all variables, including the target one.

One of the parameters that were studied in our experiments was the number
of the preceding days that will be used for generating the prediction model.
This is referred to as window or time lag. Another parameter was the time
lead, that is the number of the intermediate days between the last day used
for generating the attributes and the day we are going to predict the target
variable. In the rest of the paper we will use the terms window and lead for
the above parameters respectively.

Figure 5 depicts how a training example is generated from the original data
given specific values for the lead and window parameters and a target attribute
a1. Figure 6 displays an example of how datasets are derived from the original
dataset and given specific values for the lead and window parameters and a
target attribute aj.

 Attribute 1 Attribute 2 Attribute 3 Attribute 4 

Day 1 a11 a12 a13 a14

Day 2 a21 a22 a23 a24

Day 3 a31 a32 a33 a34

Day 4 a41 a42 a43 a44

Day 5 a51 a52 a53 a54

Day 6 a61 a62 a63 a64

Day 7 a71 a72 a73 a74

Training Example: a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a71

window = 3

lead = 3 

target 

Fig. 5. How a training example is generated from the original data.
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3/7/2005  a11 a12 a13 a14 
4/7/2005  a21 a22 a23 a24 
5/7/2005  a31 a32 a33 a34 
7/7/2005  a41 a42 a43 a44 
7/7/2005  a51 a52 a53 a54 
8/7/2005  a61 a62 a63 a64 
9/7/2005  a71 a72 a73 a74 

a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a4j 
a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44 a5j 
a31 a32 a33 a34 a41 a42 a43 a44 a51 a52 a53 a54 a6j 
a41 a42 a43 a44 a51 a52 a53 a54 a61 a62 a63 a64 a7j 

a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a6j 
a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44 a7j 

Initial dataset Derived datasets 

window = 3 

lead = 0 

window = 3 

lead = 2 

Fig. 6. How training datasets are generated from the original data.

We have experimented with 10 different values of window length that was
ranging between 1 and 10. Finally, we have experimented with the lead pa-
rameter ranging from 0 to 5. A total number of 360 datasets (6 targets x 10
windows x 6 leads) have been generated from the original dataset in order to
study all the parameters mentioned above.

5.2 Algorithms

For the conduction of our experiments we used the Weka library of machine
learning algorithms Witten and Frank (2005). The following algorithms have
been used in our experimental setup:

• SimpleLinearRegression (SLR). This class of Weka library implements an al-
gorithm for learning a simple linear regression model. The algorithm chooses
the attribute that results in the lowest squared error and can only deal with
numeric attributes.

• SMO. This class of Weka library implements the sequential minimal opti-
mization algorithm of Smola and Scholkopf (1998) for training a support
vector regression model. This implementation globally replaces all missing
values and transforms nominal attributes into binary ones. It also normal-
izes all attributes by default.

• IBk. This is a k-nearest neighbours classifier. The algorithm normalizes
attributes by default and can do distance weighting. We have used this
algorithm with two different numbers of nearest neighbors (k ∈ 1, 3).

• M5P. This is a class that implements routines for generating M5 regression
trees. This algorithm uses the M5 pruning criterion.

Apart from the above learning algoriths, we also included the random walk
model for the purpose of comparison with a simple baseline method. The
random walk model simply states that the future value of a variable will be
equal to its current value supporting in that way the unpredictability of the
modeling object.
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5.3 Evaluation

In order to evaluate the results of our experiments we have used the 10-fold
cross validation method. In particular, the performance of a classifier on a
given dataset D is evaluated as follows. The dataset is split into 10 subsets
Di, i = 1..10 of approximately equal size. Each of these datasets Di is used for
testing the performance of an algorithm that has been trained on the union
of the rest subsets

⋃
Dj, j 6= i. The error of the classifier is calculated by the

mean of the 10 errors for all subsets.

Normalized root mean squared error (NRMSE) is used as the performance
evaluation metric in the following discussion. The NRMSE metric is equal
to the RMSE divided by the mean value of the target variable. This allows
comparisons across the different target variables.

6 Results and Discussion

This section discusses the results of the experiments, independently for each
design variable, as well as for pairs of variables.

6.1 General independent results for each design variable

Figure 7 shows plots of the average predictive performance for the different
values of the four design variables. In plot (a) we notice that all algorithms
exhibit better performance than the Random Walk baseline method. The lazy
learning algorithm kNN, especially for k = 3, achieves the best results among
the different learning algorithms. One interesting result in plot (b) is that
dissolved oxygen and turbidity are harder to predict than the rest of the
variables. Another interesting result is shown in plot (c), where the predictive
performance decreases when we incorporate the values of variables for the past
2 to 3 days, while it starts to increase again from 4 to 10 days. In plot (d), we
notice that, as one would expect, the performance decreases when we try to
predict the target variable for more days ahead.

6.2 Pairwise results of design variables

Figure 8(a) shows the average NRMSE of the different algorithms with re-
spect to the different values of the lead variable. We can group the algorithms
into three behavioral clusters. Algorithms IB1, IB3 and MLP aren’t strongly
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Fig. 7. Average NRMSE of the 4 design variables

affected by the increase of the lead value. In fact, we notice a decrease of the
error for 3 days ahead prediction (lead=2). Algorithms RW and SLR are on
the other extreme, as their error increases linearly with increasing values of
lead. Notice that SLR is actually the best performing algorithm for next day
prediction (lead=0). The error of SMO and M5P has an increasing trend with
increasing values of lead too, but with a smaller rate compared to RW and
SLR.

Figure 8(b) shows the average NRMSE of the different algorithms with respect
to the different values of the window variable. We notice that the error of most
of the algorithms (IB1, IB3, SLR, SMO, RW) decreases with the increase of
window size. A larger window contains more information, as it includes the
values of variables for a longer time period of the past. However, we also
notice that the error of M5P and MLP increases with window size. A larger
window size has as a consequence a large dimensionality of the input data. High
dimensionality combined with few training sample might lead to overfitting,
as it is probably the case for the two algorithms.

Figure 8(c) shows the average NRMSE of predicting the different target vari-
ables with respect to the different values of the lead variable. We notice that
for all target variables, making predictions more days ahead is a more diffi-
cult task. Figure 8(d) shows the average NRMSE of predicting the different
target variables with respect to the different values of the window variable.
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Fig. 8. Average NRMSE for the 6 pairs of design variables

We notice in general that the larger the window size the better the predictive
performance. This holds especially for difficult to predict variables, such as
dissolved oxygen and turbidity. In contrast, we notice that for the pH vari-
able, which is already easy to predict, the error increases with the window
size. This also shows that pH might have a shorter temporal dependence on
the input variables and that including more past values is just adding noise
to the modelling process.
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Figure 8(e) shows the NRMSE error surface for the different values of window
and lead. It is interesting to notice, that short-time predictions (small lead) are
accurate even with a small window size, while if we want to make predictions
further ahead, a bigger window size is required.

Finally, Figure 8(f) shows the NRMSE error of the different algorithms for
the different target variables. We notice that the performance of algorithms
may vary from one target to the next. For example IB1 is better than IB3
for predicting temperature and pH, while IB3 is better than IB1 for the rest
target variables. In general however, the relative performance of the different
algorithms exhibits a more or less uniform behavior across all target variables.

7 Conclusions and Future Work

This paper has studied the problem of water quality prediction, based on mea-
surements from sensors deployed in the sea. It performed both exploratory and
automatic analysis of the collected data with a variety of methods. The results
showed that machine learning algorithms can help make accurate predictions
several days ahead and are better than the Naive prediction that the value
will be similar to today. Among the different learning algorithms, the nearest
neighbor classifier achieved the best overall performance. In addition, we no-
ticed that the furthest ahead the prediction, the largest the window of past
values we have to incorporate in the model.

In the future, we plan to integrate the water quality prediction algorithms we
presented in this paper within the intelligent alerting system of Hatzikos et al.
(2007), so that the alerting system will be able to issue early warnings based
on predicted hydrological parameters values.

Furthermore, we intend to investigate various energy-preservation policies and
the trade-of between prediction accuracy and data quality, which will allow
us to deploy the water quality monitoring system in aquasystems with limited
sunlight.
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