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Abstract. In domain independent heuristic planning there is a number
of planning systems with very good performance on some problems and
very poor on others. Few attempts have been made in the past to explain
this phenomenon. In this paper we use machine learning techniques to
discover knowledge hidden in the dynamics of the planning process that
would relate specific characteristics of a planning problem with specific
properties of a planning system that lead to good or bad performance.
By this, we aim at shedding light to some of the dark areas of heuristic
planning and develop an adaptive planner that would be able to optimize
its configuration according to the problem at hand.

1 Introduction

In domain independent heuristic planning there are a number of planning sys-
tems that perform some better and some worse on a number of toy and real-world
planning domains. However few of them have really explained why and how they
work well on some cases and bad on others.

To answer these questions we employ machine learning techniques and at-
tempt to discover this knowledge from planning data. The benefits of such an
approach are dual: i) There is the prospect of discovering interesting knowledge
about the field of domain independent heuristic planning, that could assist in the
construction of better planning systems ii) If such knowledge exists, an adaptive
planner can be constructed that would tune its parameters depending on the
characteristics of the problem at hand and thus outperform a single planner on
average for a variety of planning domains and problems.

Trying to learn knowledge from data of a scientific field with a strong ex-
perimental facet like that of heuristic planning, is also very interesting from the
view of a machine learner. The application domain is in this case an evolving
research field, rather than an established business model with clearly defined
properties. Trying to discover knowledge in such a domain involves a lot of risk
and uncertainty.

Therefore, we decided to follow as close as possible a standard process for
data mining, in order to avoid common pitfalls and minimize the probability of
venturing towards the wrong direction in the first place. A well known standard
is the Cross Industry Standard Process for Data Mining (CRISP-DM) [1]. We
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followed a simplified edition of the phases of CRISP-DM version 1.0, adapted to
our data mining project.

The rest of the paper is organized as follows. Section 2, presents related work
on the use of Machine Learning in Planning. Section 3 discusses the details of the
methodology we followed for collecting and preparing the data for the learning
process. Section 4 describes the actual data mining task along with comments on
obtained results. Finally section 5 concludes the paper and poses future research
directions.

2 Related Work

Machine Learning has been exploited in the past in Planning, mainly in order to
learn control rules. The PRODIGY Architecture [8] was the main representative
of this trend. This architecture, supported by various learning modules, focuses
on learning the necessary knowledge that guides a planner to decide what action
to take next during plan execution.

Approaches towards exploiting domain and problem characteristics in a pre-
planning phase have been presented in the past by Fox and Long [6], [3]. They
have also done a lot of research in the area of state analysis and it’s use by
automated planning systems, such as STAN [5] and Hybrid STAN [2].

Hoffman [4] discusses the matter of when a specific planner will behave well
and when not by performing domain analysis. He created a taxonomy of most
of the planning domains based on the existence of specific characteristics such
as local minima and dead ends in these domains. With this taxonomy he is able
to explain the variations in performance of some of the state-of-the-art planning
systems.

3 Data Collection and Preparation

We need data about characteristics of planning domains and problems, along
with data about the parameters of a planner and its performance. These initial
data are collected by i) a process of domain and problem analysis by the planning
experts and ii) the development of an adjustable planner.

3.1 Planning Domain and Problem Analysis

In order to decide what characteristics of a planning domain are important and
could influence the choice of parameters of a planning system, we carried out
an analysis that resulted in seventeen measurable characteristics, which can be
easily extracted from the operators file. These are summarized in Table 1.

We further performed an analysis at the finer level of planning problem. This
led to 34 measurable characteristics of each problem, which are summarized in
Table 2.
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Table 1. Domain model attributes

Name Meaning

num pred Number of predicates
avg par pred Average number of parameters per predicate
std par pred Standard deviation of parameters per predicate
dyn stat pred Number of dynamic predicates divided by total number of

predicates (static and dynamic). A predicate is dynamic, if it
appears in the add or delete list of at least one operator.

num op Number of operators
avg par op Average number of parameters per operator
std par op Standard deviation of parameters per operator
avg prec op Average number of preconditions per operator
std prec op Standard deviation of preconditions per operator
avg dyn pred Average ratio between dynamic and total preconditions
std dyn pred Standard dev. of ratio between dynamic and total preconditions
avg eff op Average number of add effects per operator
std eff op Standard deviation of add facts per operator
avg del op Average number of del effects per operator
std del op Standard deviation of delete facts per operator
avg imp op Average number of implied facts per operator. A fact f is

implied by an operator O, if it exists in the operator’s
delete list, e.g. f ∈ prec(O)

⋂
del(O).

std imp op Standard deviation of implied facts per operator

3.2 Highly Adjustable Planner

We developed a highly adjustable planning platform, called HAP, which is cus-
tomizable by the user through a number of parameters. These concern the type
of search, the quality of the heuristic and several other characteristics that affect
the planning process. The HAP system is based on the BP planning system [9]
and uses an extended version of the ACE heuristic [10].

HAP is capable of planning in both directions (progression and regression).
The system is quite symmetric and for each critical part of the planner, e.g.
calculation of mutexes, discovery of goal orderings, computation of the heuris-
tic, search strategies e.t.c., there are implementations for both directions. The
direction of search is the first parameterized characteristic of HAP used in tests,
with the following acceptable values: a) 0 (Regression or Backward chaining)
and b) 1 (Progression or Forward chaining).

As for the search itself, HAP adopts a weighted A∗ strategy with two inde-
pendent weights: w1 for the estimated cost for reaching the final state, w2 for the
accumulated cost of reaching the current state from the starting state (initial or
goals depending on the selected direction). For the tests with HAP we used five
different assignments for the weights: a) w1=1 and w2=0, b) w1=1 and w2=1,
c) w1=2 and w2=1, d) w1=3 and w2=1 and e) w1=4 and w2=1.
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Table 2. Problem Attributes

Name Explanation

A01 Number of facts in the initial state
A02 Number of dynamic facts in the initial state
A03 Number of static facts in the initial state
A04 Number of Goals
A05 Total number of grounded facts
A06 Total number of dynamic facts
A07 Total number of grounded actions
A08 Average number of facts per predicate
A09 Standard deviation of the number of facts per predicate
A10 Average number of actions per operator
A11 Standard deviation of the number of actions per operator
A12 Average number of mutual exclusions per fact. A fact f is mutually

exclusive with fact q, if no valid state can contain both of them.
For example, empty(tank) and full(tank) are mutually exclusive

A13 Standard deviation of the number of mutual exclusions per fact
A14 Ratio between useless and total facts in the initial state. A fact of the

initial state is useless if it can be safely removed without affecting
the planning process

A15 Number of orderings among the goals of the problem.
An ordering between goals g1 and g2 exists (denoted as ob(g1,g2)),
if goal g1 must be achieved before g2

A16 Ratio between number of goal orderings and total number of goals
A17 Average distance of all actions for the forward direction
A18 Standard deviation of distances of all actions for the forward direction
A19 Estimated actions needed to reach goals starting from the initial

state moving forward
A20 Branching factor of the initial state for the forward direction
A21 Number of orderings among the facts of the initial state. These are

similar to the goal orderings but are used by regression planners
A22 Ratio between number of orderings between facts of the Initial

state and the total number of facts in the initial state
A23 Average distance of all actions for the backward direction
A24 Standard deviation of distances of all actions for the backward direction
A25 Estimated number of actions needed to reach the nitial state

starting from the goals moving backwards
A26 Branching factor of the goals for the backward direction
A27 A15-A21
A28 A16-A22
A29 A17-A23
A30 A18-A24
A31 A19-A25
A32 A20-26
A33 A19/A25
A34 A20/A26
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The size of the planning agenda (denoted as sof agenda) of HAP also affects
the search strategy and it can also be set by the user. For example, if we set
sof agenda to 1 and w2 to 0, the search algorithm becomes pure Hill-Climbing,
while by setting sof agenda to ∞, w1 to 1 and w2 to 1 the search algorithm
becomes A∗. Generally by increasing the size of the agenda we reduce the risk
of not finding a solution, even if at least one exists, while by reducing the size of
the agenda the search algorithm becomes faster and we ensure that the planner
will not run out of memory. For the tests we used four different settings for the
size of the agenda: a) 1, b) 10, c) 100 and d) 1000.

The OB and OB-R functions introduced in BP and ACE respectively, are
also adopted by HAP in order to search the states of the search for violations
of orderings between the facts of either the initial state or the goals, depend-
ing on the direction of the search. For each violation contained in a state, the
estimated value of this state, returned by the heuristic function, is increased
by violation penalty, a constant number defined by the user. For the experi-
ments of this work we tested the HAP system with three different values of
violation penalty: a) 0, b) 10 and c) 100.

One of the most important problems that a planner faces when it regresses
the goals of the problem either during the search or during the computation of
the heuristic function is the fact that the goals of the problems usually form
a set of states, rather than a complete state specification. Regression planners,
usually deal with this problem by relaxing the regressibility criteria, since each
state in the space may contain facts that are not explicitly defined. For planners
constructing their heuristic function backwards, there are two ways to overcome
this problem: they either use the same idea as the regression planners, i.e. they
relax their regression criteria, or they enrich the goal state with additional facts
that are not mutual exclusive with the goals. Both these techniques are supported
by HAP and it is up to the user to select whether the goals should be enriched by
configuring the goal enrichment parameter. Acceptable values for this parameter
are: a) 0 (goals are not enriched) and b) 1 (goals are enriched for heuristic
construction).

The HAP system employs the heuristic function of the ACE planner, plus
two variations of it. There are implementations of the heuristic functions for both
planning directions. All the heuristic functions are constructed in a pre-planning
phase by performing a relaxed search in the opposite direction of the one used
in the search phase. During this relaxed search the heuristic function computes
estimations for the distances of all grounded actions of the problem. The initial
heuristic function, i.e. the one used in the ACE planning system, is described by
the following formula:

dist(A) =
{

1 if prec(A) ⊆ I
1 +

∑
X∈MPS(prec(A)) dist(X) otherwise

where MPS(S) returns a set of actions, with near minimum accumulated cost,
achieving S.
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Function MPS(S)
Input: set of facts S
Output: set of actions achieving S with near min accumulated dist
Set G = ∅
Set S = S − S

⋂
I

Repeat
f is the first fact in S
Let act(f) be the set of actions achieving f
for each action A in act(f) do

val(A) = dist(A)/|add(A)
⋂

S|
Let A′ be an action in act(f) that maximizes val
Set G = G

⋃
A′

Set S = S − add(A′)
⋂

S
Until S = ∅
Return G

Apart from the initial heuristic function described above, HAP embodies
two variations, which in general, are finer grained. The general idea behind these
variations, lays in the fact that when we select a set of actions in order to achieve
the preconditions of an action A, we also achieve several other facts (denoted
as implied(A)), which are not mutually exclusive with the preconditions of A.
Supposing that this set of actions was chosen in the plan, before A, then after
the application of A, the facts in implied(A) would exist in the new state, among
with the ones in the add list of A. Taking all these into account, we produce a
new list of facts for each action (named enriched add) which is the union of the
add list and the implied list of this action.

The first variation of the heuristic function, uses the enriched add list in the
MPS function instead of the add list but only in the second part of the function,
which updates state S. So the command SetS = S − add(A′)

⋂
S is updated to

SetS = S − enriched add(A′)
⋂

S.

The second variation of the heuristic function pushes the above ideas one step
further. The enriched add list is not only used, instead of add list, for updating
state S, but also in the first part of function MPS, which ranks the candidate
actions. So additionally, it updates the command val(A) = dist(A)/|add(A)

⋂
S|

to val(A) = dist(A)/|enriched add(A)
⋂

S|.
The user may select the heuristic function by configuring the heuristic order

parameter. The three acceptable values are: a) 1 for the initial heuristic, b) 2 for
the first variation and c) 3 for the second variation.

The last parameter of HAP is equal estimation, which defines the way in
which states with the same estimated distances are treated. If equal estimation is
set to 0 then between two states with the same value in the heuristic function, the
one with the largest distance from the starting state (number of actions applied
so far) is preferred. If equal estimation is set to 1, then the search strategy will
prefer the state, which is closer to the starting state.
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HAP was run using all possible combinations of the above mentioned pa-
rameters for a number of problems of six domains used in the AIPS (Artificial
Intelligence Planning and Scheduling) conference planning competitions. These
domains are: gripper from AIPS-98, blocks world, logistics and mic-10 from
AIPS-00 and zeno and driverlog from AIPS-02. The time limit which we im-
posed on HAP was 60 seconds. If no solution was found within 60 seconds, then
HAP stopped searching and continued with the next problem. For each of these
runs a record of data regarding HAP’s parameters, the problem’s characteristics
and the domain’s characteristics along with the resulting plan steps and time to
be completed was produced. A dash was used in place of the number of steps
and time to indicate that a plan was not found within the time limit.

3.3 Data Preparation

The data regarding the number of steps and the actual time that HAP took
to find each solution is not really very useful to us. What we need is a way
to discriminate between good and bad plans. Furthermore, the time to find a
solution is not a machine independent measure. This brings up another problem,
since we ran our experiments on several different workstations in parallel due to
the increased computational power that was required.

To deal with the above issues we decided to normalize the original steps and
time attributes by dividing them with the minimum steps and time respectively
for each problem. These transformed attributes norm steps and norm time are
independent of the machine used to get the measurements. In addition they are
independent of the actual values of steps and time, rather they emphasize on the
relation of these values with the best value for each problem. Therefore, they
can be safely used for discrimination between good and bad plans.

Now that we have an objective measure of the quality of plans with respect
to steps and time, we can proceed by categorizing the records of HAP execu-
tions into two discrete classes, good and bad. The normalized versions of steps
and time attributes are further transformed into the attributes steps quality
and time quality according to the following rules: a) If norm steps is less or
equal to 1.1 then assign the value good, otherwise assign the value bad and b) If
(norm time) is less or equal to 1.5 then assign the value good, otherwise assign
the value bad. For example, if the smallest number of steps is 10 and the smallest
time is 0.5 seconds then a plan with 11 steps that was found in 1.5 seconds has
a value of good for steps quality and a value of bad for time quality.

A noteworthy issue with respect to data cleaning is that some of the execu-
tions of HAP finished after the imposed time limit of 60 seconds without finding
a plan. This is a usual situation for some hard planning problems. In these cases
the initial data contained a dash in place of the number of steps and amount of
time. These records were cleaned by removing them from the data set that would
be used for inducing knowledge about the steps and by assigning the value of
bad to the time quality attribute in the data set that would be used for inducing
knowledge about the time.
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The next step was to integrate the data about domain characteristics and the
data about problem characteristics and planner parameters using a full join based
on the domain attribute of each problem. This led to a huge data set consisting
of 63 attributes (domain name, problem name, 17 domain characteristics, 34
problem characteristics, 8 planner parameters, steps quality, time quality).

From these attributes we excluded the name of the planning domain and
problem. Although knowledge regarding specific domains could potentially be of
interest to planning experts, we decided to focus on the larger picture of inducing
a general model that would be applicable to any unseen domain.

4 Modelling and Evaluation

We selected the modelling technique of decision trees, and more specifically the
J48.PART algorithm, which is a variation of the state-of-the-art c4.5rules [7]
program implemented in Java within the WEKA [11] toolkit. The reason for
choosing this technique was the initial requirement of interpretability of the
model. Decision trees and especially rules extracted from decision trees offer
knowledge in a format that is comprehensible and intuitive to people.

In order to obtain accurate estimates of the model quality, we decided to
use cross-validation. However, as data were limited in terms of different domains
and problems, 10-fold cross-validation would leave too few data out for testing.
Therefore, we decided to use 4-fold cross-validation in order to have 25% of data
available for testing at each fold. The experiments were run on a Pentium 3 at
1Ghz and 256Mb of RAM allocated to Java. It took about 45 minutes to build
the model from the first fold and another 3*45 minutes to finish the evaluation.

Using the 73795 instances of HAP executions and the steps quality as the
target attribute J48.PART gave 619 rules and an average accuracy of 96%. We
present some of the most important rules here along with comments of experts:

1. IF num op ≤ 3 AND A30 > 0.56 AND equal estimation = 0
THEN steps quality = good
Comments: Although we were initially surprised by this rule, with a second
thought it seemed reasonable, but yet difficult to explain. With a closer look
at the semantics of A30 and the tendency of people to encode domains, with
forward chaining in their minds, we speculate that a positive number in A30
indicates nevertheless that the heuristics are quite informative and therefore
the search algorithm should ”trust” it till the end.

2. IF A8 ≤ 7.6 AND A4 ≤ 9 AND direction = 0 AND w2 = 1
THEN steps quality = good
Comments: It is known that A∗ returns shorter plans, in general, than Best
first. However, if the problem is too complex then with A∗ the planner may
not be able to find a solution at all, due to time and memory limitations.
This rule takes these into account and suggests A∗ only when the problem
is not very complex. As far as the direction is concerned, it was known from
our experience that backward search often results in shorter plans, when the
domain description is not biased against it.
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3. a) IF A6 > 350 AND A18 < 1.9 AND goal enrichment = 0
AND (w1 = 2 OR w1 = 3) THEN steps quality = good
b) IF A6 > 350 AND A18 < 1.9 AND goal enrichment = 1
THEN steps quality = bad
Comments: From our experiments it was clear that when we chose to enrich
the goals, the heuristic function tended to become less informative, especially
when the graph built by the heuristic was quite short. The standard deviation
of the estimations given by the heuristic is closely related to the length of
the graph.

4. IF A3 ≤ 211 AND A6 > 44 AND A7 > 676 AND A13 > 2.4
AND A29 ≤ 0.62 AND direction = 0 THEN steps quality = bad
Comments: This can also be explained by our comment for the previous
rule, since complex domains are usually designed in a way that votes for
progression planners.

Using the 73795 instances of HAP executions and using the time quality as the
target attribute J48.PART gave 566 rules and an average accuracy of 97%. We
present some of the most important rules here along with comments of experts:

1. IF A30 > 1.67 AND direction = 0 THEN time quality = good
Comments: Once again A30 > 0 indicates that the heuristics are quite in-
formative and it is not very difficult to find a solution. What’s more, a large
number for A30 may also indicate the existence of paths that start from the
initial state and head quite away from the goals, which is clearly a reason
for choosing backward chaining.

2. IF A23 ≤ 2.7 AND A27 > −4 AND A31 ≤ −4 AND w2 = 0 AND
direction = 0 THEN time quality = good
Comments: The above indicate that the heuristic for backward chaining is
more informative and it can make better use of orderings so it will reach a
solution quite quickly.

3. IF avg par op > 2 AND num pred ≤ 9 AND A2 > 8 AND A19 > 6 AND
A29 > 0.3 AND w1 = 1 AND w2 = 1 THEN time quality = bad
Comments: As stated before, A∗ is not generally a wise choice when our first
priority is speed. A∗ returns better plans but it needs more time since it has
to perform more search. Especially in big and complex domains it is almost
impossible to find a solution in a reasonable amount of time.

5 Conclusions

This paper reported on ongoing work, which aims at using machine learning
techniques in order to explain why all the heuristic planners behave well in
certain problems and not well in others. More specifically, it tries to find the
hidden relations between the characteristics of the problems and the parameters
of planning.

To accomplish this, we used a data-mining tool on a very large data set
created by instances of execution of a highly adjustable planner. The outcome
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was over a thousand of high quality rules connecting measurable characteristics
of each problem with proper and improper configurations of the planning system.

It is in our direct future plans to refine the data mining methodology we
used, and investigate the applicability of the resulting model, by encoding it in
a planning system. This will result in a planning system able to automatically
fine-tune itself to the specific characteristics of each problem.
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