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Abstract—Multi-label learning handles datasets where each
instance is associated with multiple labels, which are of-
ten correlated. As other machine learning tasks, multi-label
learning also suffers from the curse of dimensionality, which
can be mitigated by dimensionality reduction tasks, such as
feature selection. The standard approach for multi-label feature
selection transforms the multi-label dataset into single-label
datasets before using traditional feature selection algorithms.
However, this approach often ignores label dependence. This
work proposes an alternative method, LCFS, which constructs
new labels based on relations between the original labels to
augment the label set of the original dataset. Afterwards, the
augmented dataset is submitted to the standard multi-label
feature selection approach. Experiments using Information
Gain as a measure to evaluate features were carried out in 10
multi-label benchmark datasets. For each dataset, the quality
of the features selected was assessed by the quality of the
classifiers built using the features selected by the standard
approach in the original dataset, as well as in the dataset
constructed by four LCFS settings. The results show that setting
LCFS with simple strategies using pairs of labels gives rise
to better classifiers than the ones built using the standard
approach in the original dataset. Moreover, these good results
are accomplished when a small number of features are selected.

Keywords-feature ranking; filter feature selection; Binary
Relevance; Information Gain; systematic review

I. INTRODUCTION

In multi-label learning, each instance is associated with
multiple labels simultaneously. A key difference between
multi-label and traditional binary or multi-class single-label
learning is that the labels in multi-label learning are not
mutually exclusive. Thus, in comparison with traditional
single-label learning, multi-label learning is more general
and more challenging to solve.

As the labels in multi-label learning are often correlated,
a significant challenge is how to explore the label structure
to improve classification performance. As other machine
learning tasks, multi-label learning also suffers from the
“curse of dimensionality”. Dimensionality reduction (feature
selection), which aims to find a small number of features
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that describes the dataset, as well as, or even better than
the original set of features does [1], is an effective way to
mitigate the curse of dimensionality.

The standard approach for multi-label Feature Selection
(FS), which transforms the multi-label dataset into single-
label datasets before using traditional FS algorithms, is im-
plementable within the Binary Relevance (BR) approach [2].
A drawback of BR is that label dependence is often ignored.
An alternative to reduce this problem would be to construct
labels based on relations among the original labels and
include the new labels during the feature selection phase.
The main idea of variable (label or feature) construction is
to gather information about the relations among the original
variables from data and infer additional variables. Although
feature construction methods are less usual than feature
selection methods [3], they have already been used for
single-label and multi-label learning [4]. Nevertheless, to
the best of our knowledge, there is little research on label
construction for multi-label data.

In this work, we propose the Label Construction for
Feature Selection (LCFS) method to build binary variables
(new labels) based on label relationships. These variables
are then included as new labels in the original dataset
and the standard multi-label FS approach is used in the
augmented dataset to select features. Afterwards, the dataset
described by the selected features and the original labels
can be submitted to any multi-label learning algorithm.
Experiments in 10 benchmark datasets using the Information
Gain (/G) measure for FS, suggest that setting LCFS with
simple strategies in pairs of labels gives rise to better
classifiers than the ones built using the standard approach
when a small number of features are selected.

The rest of this paper is organized as follows: Section II
briefly presents multi-label learning and FS. Section III
summarizes related work, which have been found through a
systematic literature review. The proposed method LCFS is
described in Section I'V. Section V presents the experimental
evaluation. Section VI concludes and highlights future work.



II. BACKGROUND

This section presents basic concepts and terminology of
multi-label learning and feature selection.

A. Multi-label learning

Let D be a dataset composed of N examples E; =
(x;,Y;), i = 1...N. Each example (instance) E; is associ-
ated with a feature vector x; = (1, %2, . .., 2;pr) described
by M features (attributes) X,, 7 = 1... M, and its multi-
label Y;, which consists of a subset of labels Y; € L, where
L ={y1,y2,...,Yq} is the set of ¢ labels. Table I shows this
representation. In this scenario, the multi-label classification
task consists in generating a classifier H which, given
an unseen instance F = (x,?), is capable of accurately
predicting its multi-label Y, i.e., H(E) - Y.

Table T
MULTI-LABEL DATA

X, X, .. Xu Y
Ey T11 T12 T1Mm Y
E, T21 €22 TaM Y,
En TN1  TN2 TNM Y

1) Categorizing multi-label learning algorithms: Multi-
label learning methods can be organized into two main
categories [2]: (i) problem transformation methods, where
the multi-label learning problem is decomposed into a set
of single-label (binary or multi-class) learning tasks; and (ii)
algorithm adaptation methods, which adapt specific learning
algorithms to handle multi-label datasets directly. The key
philosophy of the problem transformation methods is to
fit data to algorithms, while for the algorithm adaptation
methods is to fit algorithms to data [5].

Another categorization, proposed by Zhang and Zhou [5],
organizes multi-label learning methods based on the order
of label dependence taken into account, as exploring label
dependence during learning can improve its performance.
First-order strategies ignore co-existence of other labels. The
problem transformation Binary Relevance (BR) approach ex-
emplifies this category by transforming a multi-label dataset
into g single-label binary datasets, learning from each single-
label problem separately and combining the results. Second-
order strategies consider pairwise relations between labels,
such as interactions between any pair of labels, or the
ranking between relevant and irrelevant labels. High-order
strategies consider relations among more labels.

Although high-order strategies potentially model wider
label dependences, they are usually computationally more
demanding. This work focuses on finding second-order re-
lations between single labels from the multi-label dataset and
representing them as new labels. The idea is that, by labeling
instances with the original and the constructed labels, it will

be possible to allow feature selection methods based on BR
to incorporate label pairwise information.

2) Evaluation Measures: Unlike single-label classifica-
tion where the classification of a new instance has only
two possible outcomes, correct or incorrect, multi-label
classification should also take into account partially correct
classification. A complete discussion on multi-label perfor-
mance measures is out of the scope of this work, and can be
found in [2]. In what follows, we briefly describe the four
multi-label evaluation measures used in this work.

F-measure, Hamming Loss and Accuracy, defined by
Equations 1 to 3, are example-based evaluation measures,
where A represents the symmetric difference of two sets, Y;
and Z; are the true and the predicted multi-label respectively.
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In addition, Micro-averaged F-measure (F}), defined by
Equation 4, is a label-based measure, where pri, F Py,
Tn, and Fy, represent, respectively, the number of
true/false positives/negatives for a label y; € L.
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All these performance measures range in the interval
[0,1]. For Hamming Loss, the smaller the value, the better
the multi-label classifier performance is, while for the other
measures, greater values indicate better performance.

B. Feature selection

Regardless of the multi-label learning approach, any FS
method addresses a few relevant issues, such as the interac-
tion with the learning algorithm and the feature importance
measure. Three approaches determine different interactions
between a FS method and the learning algorithm: wrapper,
embedded and filter [1]. The first two approaches strongly
interact with the learning algorithm. On the other hand,
filters use general properties of the dataset to remove unim-
portant features from it, regardless of the learning algorithm.
Thus, the features chosen may not be the best ones for a
specific learning algorithm. The FS algorithms used in this
work fall within this approach.

Many measures have been used to estimate the importance
of features based on properties of the dataset. A popular
single-label FS measure is Information Gain (IG), which
evaluates each feature according to the dependence between
this feature and a single label, as defined by Equation 5.



|D,| entropy (D,)
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In other words, the IG of feature X;, 7 = 1...M,
calculates the difference between the entropy of the dataset
D and the weighted sum of the entropy of each subset
D, c D, where D, consists in the set of examples where
X has the value v. Therefore, if X; has 10 distinct values'
in D, the sum would be applied to 10 different D, datasets.

IG (D, X;) = entropy (D) - > (%)

III. RELATED WORK ON MULTI-LABEL FS

Feature selection has been an active research topic in
supervised learning, with many related publications and
comprehensive surveys [1]. Although most publications are
related to single-label learning, a number of papers have
recently reported results to support multi-label learning.

Aiming at capturing a wide, replicable and rigorous
overview of the topic, we have instantiated the systematic
literature review process [6] for multi-label FS in [7], and re-
cently updated it in [8]. Table II summarizes the 72 publica-
tions found in terms of the two categorizations described in
Section II: order of label dependence and interaction with the
learning algorithm. The 72 references are listed in the sup-
plementary material available at http://www.labic.icmc.usp.
br/pub/mcmonard/ExperimentalResults/BRACIS2014.pdf.

Table 11
NUMBER OF RELATED PUBLICATIONS PER APPROACH (total = 72)

categorization approach #publications (%)
first-order 44 (61,11%)
order of label dependence ;ei;ﬁfl:r_g;fer éO( l(éSS’g?Z)b)
hybrid 3 (4,17%)
unrecognized | 6 (8,33%)
filter 50 (69,44%)
interaction with the embedded 10 (13,89%)
learning algorithm wrapper 7 (9,72%)
unrecognized | 5 (6,94%)

As can be observed, filters and first-order strategies have
been the most usual choices in multi-label FS. The proposed
method, described next, considers second-order relations
between labels.

IV. THE PROPOSED METHOD: LCFS

Given a multi-label dataset D with the set of single
labels L = {y1,y2,Y3,...,Yq}, the main idea of LCFS is
to construct ¢’ new single labels by combining the original
labels within pairs (y;,y;), ¢ # j, y; € L and y; € L. In
each iteration, LCFS selects a pair of labels (y;,y;) from L
and combines the labels within this pair to generate a new
label y;;. After repeating this procedure ¢’ times, the ¢’ new
labels are included in the label set L, such that information

IDiscretization is applied to numerical features before using IG.

about pairwise relationships between original labels can be
used by the binary relevance approach for feature selection.

The LCFS method consists of two steps, each one con-
cerned with answering a different question:

1) Selection: which pairs of labels (y;,y;) should be
chosen?

2) Generation: how to combine these labels to generate
the new labels y;;?

Figure 1 illustrates these steps for ¢" = 1.
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Figure 1. Applying the two steps of LCFS to construct ¢’ = 1 new labels

Thus, setting LCF'S involves choosing a strategy to select
label pairs and a strategy to combine the labels within each
pair. An additional parameter is the number of new labels
¢’ that will be constructed. In what follows, the two LCFS
steps are described.

A. Step 1: selection

Given the set of labels L = {y1,92,93,...,yq} of the
dataset D, LCFS chooses ¢’ different pairs of labels?
(vi,v;), i # j, according to a selection strategy. The idea is
that these pairs capture some pairwise relationships between
the labels to be considered by feature selection.

LCFS supports different selection strategies, such as the
simple Random Selection (RS), as well as, heuristic strate-
gies based on the number of instances labelled by each
original single label (label frequency). In particular, two
strategies considering label frequency are Co-occurrence-
based Selection (CS) and related Labels Selection (LS). CS
sorts in descending order label pairs according to the co-
occurrence c., i.e., the number of instances labelled by both
labels within a pair, and selects the first ¢" different pairs.
On the other hand, LS counts (1) the number of instances in
which the labels within a pair agree, c., and (2) the number
of instances in which the labels within a pair disagree, cq.
Then, the pairs are sorted, in descending order, into two lists
according to the values of ¢, and c4. The pair with greatest
value is selected, removed from the correspondent list and
the procedure is repeated until selecting ¢’ different pairs.

B. Step 2: generation

In this step, LCFS combines both labels from all previ-
ously selected pairs (y;,y,), ¢ # j, to construct the new

2In this work, two label pairs are considered different if they do not
have a common label.
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labels y;;. The idea is that the values of y;; represent a
pairwise relationship between y; and y;. In the end, all
instances in D are labeled by the ¢ original labels and the ¢
new labels. LCFS supports different combination strategies
between binary variables (labels). In this work, we use three
simple logical operators to generate the values of the new
labels of each instance in D. The logical operators are:

AND : y;; = 1iff y; = y; = 1; y;; = 0 otherwise.

XOR : y;; = 1iff y; # y;; y;; = 0 otherwise.

XNOR: y;; = 1iff y; = y;; yi; = 0 otherwise.

The AND operator clearly highlights co-ocurring labels.
XNOR, also known as the coincidence function, assigns the
value 1 to y;; iff the labels y; and y; agree, whereas XOR
does the opposite.

After generating the ¢’ new labels, the traditional BR
feature selection approach can be applied to the dataset now
labeled by the ¢+¢’ labels. Note that, by combining BR with
LCFS, any single-label FS algorithm can be applied to the
augmented dataset with second-order label information [5].

The LCFS method has been implemented in Mulan?, a
multi-label learning package based on Weka*.

V. EXPERIMENTAL EVALUATION

In this work, we use the lazy multi-label learning algo-
rithm BRKNN-b to evaluate the quality of the features se-
lected, as lazy algorithms are sensitive to irrelevant features.
BREKNN-b, which is implemented in Mulan, is an improved
adaptation of the single-label k-Nearest Neighbor (kNN)
algorithm to classify multi-label examples [9].

In the experiments, a filter FS approach based on In-
formation Gain combined with Binary Relevance (IG-BR)
is performed (1) in the dataset with the original set of
labels (standard approach) and (2) in the dataset with the
original labels and the ones constructed by a LCFS setting.
Regardless of the label set used, /G-BR transforms the multi-
label dataset into single-label datasets, applies /G in each
single-label dataset and averages the IG score of each feature
X, j = 1...M, across all labels. The resulting feature
ranking sorts the M averaged IG values in descending
order [10]. Recall that the labels constructed by LCFS are
only used to select features.

Afterwards, the subsets of features X' c X, |X'| =
10%M,20%M, . ..,90%DM, ranked by each FS method are
used to describe the dataset, which is submitted to BRkKNN-b.

Regarding LCFS, four settings combining different Se-
lection (S) and Generation (G) strategies — Sections IV-A
and IV-B — are considered:

LS-X. S: LS, G: XOR or XNOR is chosen based on the
lists sorted by the values of ¢, and cq4

CS-A. S: CS, G: AND

RS-A. S: RS, G: AND

3http://mulan.sourceforge.net
“http://www.cs.waikato.ac.nz/ml/weka

RS-X. S: RS, G: XOR or XNOR is randomly chosen

Recall that the LS strategy sorts the label pairs based on
the values of ¢, and c¢,. For a given label pair (y;,y,), LS-X
applies the XNOR operator to generate the new label y;; if
the pair was selected from the list sorted by c.; otherwise, it
applies the XOR operator. RS-X randomly selects the XOR
or XNOR operator. See the supplementary material for an
illustrative example.

We set the number of new labels ¢’ = [%J i.e., every
single label is selected once if ¢ is even, or one single label

is left out if ¢ is odd.
A. Multi-label datasets

Table III summarizes the characteristics of the 10 datasets
used in this work. For each dataset it shows: dataset name
(Dataset); dataset domain (Domain); number of instances
(N); number of features (M); feature type (1'ype); number
of labels (|L]|); label cardinality (LC), which is the average
number of labels associated with each example; label density
(LD), which is the cardinality normalized by |L|; and the
number of different multi-labels (#Diff).

Table IIT
DATASET DESCRIPTION

Dataset Domain N M Type |L| LC LD #Diff
1-Cal500 music 502 68 numeric 174 26.044 0.150 502
2-Corel5Sk image 5000 499 discrete 374 3.522 0.009 3175
3-Corell6k00I  image 13766 500 discrete 153 2.859 0.019 4803
4-Emotions music 593 72  numeric 6 1.869 0311 27
5-Fapesp text 332 8669 discrete 66 1.774 0.027 206
6-Genbase* biology 662 1185 discrete 27 1.252 0.046 32
7-Llog-f* text 1253 1004 discrete 75 1.375 0.018 303
8-Magtag5k music 5260 68 numeric 136 4.839 0.036 4163
9-Scene image 2407 294 numeric 6 1.074 0.179 15
10-Yeast biology 2417 103 numeric 14 4.237 0.303 198

Except for datasets 5-Fapesp and 8-Magtag5k, the other
datasets are available in the Mulan® and Meka® repositories.
In particular, 5-Fapesp was built by members of our research
laboratory’ [11]. 8-Magtag5k® is further described in [12].
Furthermore, 6-Genbase* and 7-Llog-f* are pre-processed
versions of the publicly available datasets in which an
identification feature and unlabeled examples, respectively,
were removed.

B. Results and discussion

First, we compared the learning performance of the classi-
fiers built from the datasets described by the features selected
by (1) the standard /G-BR approach and by (2) IG-BR after
applying the four LCFS settings to construct the new sets of
labels: LS-X, CS-A, RS-A and RS-X.

For each dataset, the number of nearest neighbors k
was set as the one that maximizes the Example-based

Shttp://mulan.sourceforge.net/datasets.html
Shttp://meka.sourceforge.net/#datasets

"The dataset can be obtained from the authors.
8http://tl.di.fc.ul.pt/t/magtagSk.zip
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F-measure of the BRKNN-b classifiers built using the
original dataset. This value was found in a preliminary
study, in which %k was varied in the interval [1..27]
with step 2 and in the interval [29..99] with step 10.
The k values used for each dataset in Table III were
[(17 59)’ (2a 21)7 (3749)a (4a 15)7 (57 29); (Ga 1)a (77 13)7 (87
17),(9,27),(10,21)]. All the remaining parameters related
to classification and FS were executed with default values.
Note that this experimental setup clearly favours the
classifiers built using the original datasets.

For each evaluation measure described in Section II-A2
and estimated according to the 10-fold cross-validation strat-
egy, the results for /G-BR in the original datasets, as well
as IG-BR in the datasets augmented by using the four LCFS
settings considering 10% up to 90% of the features selected
(5 FS methods x9 number of features = 45 cases) were
tabulated. Due to lack of space, this information is available
in the SM. For the sake of completeness, we also include
in these tables the performance of the BRKNN-b classifiers
built using All Features (AF), i.e., without feature selection,
as well as, the results of a baseline multi-label classifier
named Generalg [13].

Although most of the classifiers built using the selected
features are better than Generalg, no FS method was
significantly better in terms of each evaluation measure used
in this work and number of selected features | X’|. In fact,
when using the Friedman’s statistical test [14] under the
null hypothesis, which states that the performance of the
classifiers built after FS are equivalent, the hypothesis is
not rejected (significance level o = 0.05). Nevertheless, the
average rankings calculated by the Friedman’s test give us
information about the best method across the datasets —
Table IV. In this table, each symbol identifies a FS method:
— (IG-BR), * (LS-X), o (CS-A), x (RS-A) and + (RS-X).

Table IV
BEST FS METHOD BASED ON THE AVERAGE RANKINGS

X7 10% 20% 30% 40% 50% 60% 70% 80% 90%
F-measure + + - + X o - + -
Hammingloss + + - X X o + - -
Accuracy + + - + X o - * -
Fy + + X + X o - + -

As can be observed, RS-X often achieves the best average
rankings, specially when |X'| < P;—l, i.e., less than half of
the features are used, whereas the standard /G-BR comes
next. Thus, we decided to focus on the comparison of
both methods. We applied the Wilcoxon signed-ranks test,
recommended for comparisons of two algorithms [14], with
the null hypothesis that both methods are equivalent. Table V
shows the p-value for each evaluation measure and number
of selected features | X, as well as the best FS method when
the null hypothesis is rejected (a = 0.05 and 0.1).

Regardless of the evaluation measure, the classifiers built
using the features selected by /G-BR in the datasets aug-

Table V
WILCOXON STATISTICAL TEST RESULTS: IG-BR VS RS-X

[ X7 10% 20% 30% 40% 50% 60% 70% 80% 90%
F-measure

p-value | 0.03 0.08 043 0.05 0.10 0.50 091 091 0.57
a=0.05 +

a=0.1 + + + -

Hamming Loss

p-value | 0.06 0.02 0.08 046 047 0.84 095 0.58 0.16
a=0.05 +

a=0.1 + + -

Accuracy

p-value |0.04 0.13 0.55 0.16 025 0.50 0.57 1.00 0.31
a=0.05 +

a=0.1 +

Fy

p-value | 0.07 0.01 043 0.10 0.10 0.73 0.65 1.00 0.55
a=0.05 +

a=0.1 + + + -

mented by using RS-X are significantly better when the
number of features is small (13 cases: 4 for a = 0.05 and 9
for a = 0.1). However, the classifiers built using the features
selected directly by /G-BR achieve significant improvement
in only 3 cases for o = 0.1. These results show a clear
advantage of RS-X when the number of features selected is
small, which is the aim of FS. Furthermore, comparing to
IG-BR, the increase in complexity of RS-X is only related
to the cost of using XOR or XNOR to generate the set of
new labels, as the selection of the label pairs is random.

By outperforming /G-BR, which also aggregates the IG
scores of each feature by averaging them across all labels,
in small subsets of selected features, RS-X could be related to
previous work which compares different aggregation strate-
gies in the original set of labels [10]. This work suggests that
the averaging strategy is a good choice when the number of
selected features is small.

Up to now, we have compared the performance of the
classifiers built by BRkNN-b using the features selected by
IG-BR in the original datasets and /G-BR in the datasets
augmented by using the four settings of LCFS. In this com-
parison, RS-X shows better behavior when fewer features
are selected. However, the quality of the classifiers have
not been taken into account. To this end, we compare the
performance of the classifiers built by BRkKNN-b, using up
to 40% of the features selected by /G-BR in the datasets
augmented by using RS-X, with the performance achieved
by the BRKNN-b classifiers using All Features (AF), i.e., the
original dataset. Table VI shows, for each dataset, and for
each one of the four evaluation measures, i.e., F'-measure/
Hammingloss/ Accuracy/ F,, whenever the classifiers
built using the features selected by IG-BR in the datasets
augmented by RS-X have evaluation measure values better
than or equal to (indicated by ¥), or at most 5% worse than
the ones of the classifiers using AF (indicated by s%). The
symbol 0 indicates the other cases.



Table VI
CLASSIFIERS BUILT USING THE FEATURES SELECTED WITH THE AID OF
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As can be observed, very good results were obtained in
5 out of the 10 datasets, where the four evaluation measure
values of the classifiers based on our proposal are better than
or equal to the ones of the classifiers using AF (except for
dataset 7-Llog-f*, where Hamming loss is at most 5% worse
when 40% of the features are considered). Good results were
obtained in all cases in dataset 1-Cal500, as the results are
at most 5% worse than the AF ones, whereas there is a very
good Hamming loss result when 40% of the features are
considered. Similar results are obtained in dataset 10-Yeast
when 20% up to 40% of the features are considered. Good
results were obtained in dataset 4-Emotions only when 40%
of the features are considered (except for Hamming loss).
On the other hand, poor results are obtained in datasets 8-
Magtag5k and 9-Scene even when 40% of the features are
considered. In fact, it is necessary to consider 60% and 70%
of the features selected in datasets 8-Magtag5k and 9-Scene
respectively in order to obtain (¥¢/ ¥/ ¥/ ¥%).

VI. CONCLUSION

This work proposes LCFS, a method to construct labels
to support multi-label feature selection.

Four different LCFS settings are compared with the stan-
dard approach for FS, which only considers the original
label set, in 10 benchmark datasets. The best setting, RS-
X, which uses the XOR and XNOR operators to combine
labels within pairs randomly selected, gives rise to better
classifiers when a small number of selected features (up to
40%) is considered. This shows that constructing labels to
support multi-label feature selection is a promising research
topic and deserves further attention from the community.

As future work, we plan to evaluate more sophisticated
settings, such as strategies based on label weighting [15].
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