
Bi-Directional Heuristic Planning in State-Spaces 
Dimitris Vrakas and Ioannis Vlahavas 

Department of Informatics 
Aristotle University of Thessaloniki 
[dvrakas,vlahavas]@csd.auth.gr 

 
 

Abstract 
One of the most promising trends in Domain Independent AI Planning, nowadays, is state – 

space heuristic planning. The planners of this category construct general but efficient heuristic 
functions, which are used as a guide to traverse the state space either in a forward or a backward 
direction. Although specific problems may favor one or the other direction, there is no clear 
evidence why any of them should be generally preferred.  

This paper proposes a hybrid search strategy that combines search in both directions. The search 
begins from the Initial State in a forward direction and proceeds with a weighted A* search until no 
further improving states can be found. At that point, the algorithm changes direction and starts 
regressing the Goals trying to reach the best state found at the previous step. The direction of the 
search may change several times before a solution can be found. Two domain-independent heuristic 
functions based on ASP/HSP planners enhanced with a Goal Ordering technique have been 
implemented. The whole bi-directional planning system, named BP, was tested on a variety of 
problems adopted from the recent AIPS-00 planning competition with quite promising results. 

1. Introduction 
Motivated by the work of Drew McDermott in the mid 90’s on heuristic state-space planning, a 

number of researchers turned to this direction. During the last few years a great amount of work has 
been done in the area of domain-independent, state-space, heuristic planning and a significant 
number of planning systems with remarkable performance were developed.  

These planners usually adopt the STRIPS [] notation. A planning problem in STRIPS is a tuple 
<I,A,G> where I is the Initial state, A a set of available Actions and G a set of goals. States in 
STRIPS are represented as sets of atomic facts. Each action A has three lists of facts containing:  
a) the preconditions of A (noted as prec(A)) 
b) the facts that are added to the state (noted as add(A)) and 
c) the facts that are deleted from the state (noted as del(A)). 
• An action A is applicable to a state S’ if prec(A) S’.  ⊆
• If A is applied to S, the following formula holds for the successor state S’: 
 S’ = S / del(A) add(A) ∪
• The solution to such a problem is a sequence of actions, which if applied to I leads to a state S’ 

such as S’ G. ⊇
• If no solution can be found for a problem, the problem is characterized as unsolvable. 

Although the efficiency of these planners depends strongly on the accuracy of their heuristic 
function, the direction in which they search the space of states plays an important role as shown by 
experimental results. Planners as UNPOP, GRT and HSP/ASP progress the Initial State until they 
have reached the goals. On the contrary, HSP-R and AltAlt regress the Goals of the problem until 
they have reached the Initial State.  

Hector Geffner in his recent work on HSP-2 studies the matter of search direction and the HSP-
2 planning system enables the user to decide for the direction of the search. It is clear from the 
experimental results that there are specific problems, which favor one or the other search directions, 
but in general there is no clear evidence why any of the two directions should be preferred.  



In this paper we propose a hybrid search strategy for domain-independent, state-space heuristic 
planning that combines both progression (forward chaining) and regression (backward chaining). 
The search begins from the Initial State and proceeds with a weighted A* search until no further 
improving states can be found from the Goals. At that point the algorithm changes direction and 
regress the Goals trying to reach the best state found at the previous step The direction of the search 
may change several times before a solution can be found.  

Two domain-independent heuristic functions based on ASP/HSP enhanced with a Goal 
Ordering technique were implemented and the whole bi-directional planning system, named BP, 
was tested on a variety of problems adopted from the recent AIPS-00 planning competition with 
quite promising results. 

The rest of the paper is organized as follows: Section 2 provides a brief review of the work 
related to state-space, heuristic planning, and other approaches to bi-directional planning. Section 3 
describes the bi-directional search strategy in details and deals with certain issues that arise while 
regressing the goals of a problem. Section 4 describes the heuristic functions of BP, proposes a fast 
and efficient technique for the elimination of useless information from the problem’s definition and 
describes the adoption of a Goal Ordering technique to heuristic state space planning. Section 5 
presents experimental results that illustrate the efficiency of BP on a variety of problems adopted 
from the AIPS-00 planning competition. Finally section 6 concludes the paper and poses future 
directions. 

2. Related Work 
Two of the most promising trends in domain-independent planning were presented over the last 

few years.  
The first one consists of the transformation of the classical search in the space of states to other 

kinds of problems which can be solved more easily. Examples of this category are the SATPLAN [] 
and BLACKBOX [] planning system, the evolutionary GRAPHPLAN [] and certain extensions of 
GRAPHPLAN as the famous STAN [] planner.  

SATPLAN and BLACKBOX transform the planning problem into a satisfiability problem, 
which consists of a number of boolean variables and certain clauses between these variables. The 
goal of the problem is to assign values to the variables in such a way that establishes all of the 
clauses.  

GRAPHPLAN [] on the other hand creates a concrete structure, called the planning graph, 
where the nodes correspond to facts of the domain and edges to actions that either achieve or delete 
these facts. Then the planner searches for solutions in the planning graph. GRAPHPLAN has the 
ability to produce parallel plans, where the number of steps is guaranteed to be minimum. 

Fox and Long developed STAN [], a powerfull planning system, extending GRAPHPLAN with 
State Analysis techniques. Apart from the State Analysis techniques, the efficiency of STAN is due 
to the construction of the planning graph in STAN, which is done very efficiently through bit-wise 
operators on vectors of bits. In its latest version, called Hybrid STAN [], the system is cable of 
identifying specific sub-problems (e.g. TSP sub-problems) from the definition of the original 
problem. The planner then uses specialized techniques to tackle each of the sub-problems 
separately.  

The second category is based on a relatively simple idea where a general domain independent 
heuristic function is embodied in a heuristic search algorithm such as Hill Climbing, Best-First 
Search or A*. A detailed survey of search algorithms can be found in []. Examples of planning 
systems in this category are UNPOP[], the ASP/HSP family [], GRT[], AltAlt[] and FF[], which 
was awarded for outstanding performance in the last AIPS-00 planning competition.  

The planners of the latter category rely on the same idea to construct their heuristic function. 
They relax the planning problem by ignoring the delete lists of the domain operators and starting 
either from the Initial State or the Goals they construct a leveled graph of facts, noting for every fact 
f the level at which it was achieved L(f). In order to evaluate a state S, the heuristic function takes 
into account the values of L(f) for each  f ∈  S. 



McDermott’s UNPOP [] was the first planner in the area of state space heuristic planning. 
UNPOP extended the well-known Means-ends analysis by building a graph, named greedy 
regression-match graph, consisting of subgoals and actions that achieve these subgoals. The 
subgoals of a planning problem are the goals of the problem and the preconditions of actions that 
achieve other subgoals. The creation of the greedy regression-match graph starts from the goals of 
the problem and proceeds backwards until all the subgoals at the last level exist in the Initial state of 
the problem. The information drawn from this graph is then used in the search phase in order to: a) 
estimate the distance between a given state S’ and the Initial state and b) prune the actions that do 
not appear in the graph. The search starts from the goals and proceeds backwards, reconstructing at 
each intermediate state a new greedy regression-match graph.  

The direct ancestor of UNPOP was Bonet & Geffner’s HSP[] planning system. Given an Initial 
state I, HSP constructs a graph of facts starting from I by adding the facts that are added by actions 
whose preconditions already exist in the graph. A value v(f) is assigned to each fact f in the graph 
corresponding to the number of actions needed to achieve this fact starting from I. If all the 
preconditions of an action a already exist in the graph, HSP assigns a value v(a) to action a, where 
v(a) =  for each f)(∑ ifv i ∈  prec(a). The value of v(a) is then inherited to the facts in the add list 

of a using the following formula: 
))(),(min()( avqvqv ii = for each qi∈  add(a).  

The expansion of the graph stops when all the goals of the domain are included in the graph. In the 
search phase HSP starts from the Initial state and proceeds forwards with a Hill Climbing strategy 
(A* in the case of ASP) constructing the graph from scratch at each intermediate state.    

In [] Bonet and Geffner present a variation of HSP called HSP-R. HSP-R uses the same 
heuristic function and the same search strategy as HSP, but searches the state-space backwards, 
starting from the goals and regressing them until it reaches the Initial state. The graph is still 
constructed in the same direction as in HSP and this enables HSP-R to compute the heuristic 
function only once and thus speed up the planning process.  

The latest member of the HSP/ASP family is the HSP2 planner1, which integrates HSP and 
HSP-R under a common environment from which apart from the direction of the search, the user 
can also select the heuristic function that will guide the search 

GRT is another extension to HSP, which was developed by Refanidis and Vlahavas []. GRT 
creates a graph, similar to the one created by HSP, starting from the goals of the problem and 
proceeding backwards. The graph is created only once and it is used to extract a heuristic function 
that will be later used to guide the search. The search starts from the Initial state and proceeds 
forwards, using a best first search strategy. The main innovation of GRT is the use of Related Facts, 
which monitor the interactions between the facts in the graph. GRT has been also improved with a 
number of techniques for enriching incomplete goal states, eliminating irrelevant objects from the 
problem. 

Nigenda, Nguyen and Kambhampati presented a hybrid planning system, named AltAlt [], 
which was created using programming modules from STAN [] and HSP-R []. In the first phase, 
AltAlt uses the module from STAN to create a planning graph similar to the one created by 
GRAPHPLAN[]. From the planning graph AltAlt creates an admissible heuristic function. The 
heuristic function is used in the second phase to guide the backward hill-climbing search, which is 
performed in an HSP-R manner. 

One of the latest planners in this category and the most effective according to the results of the 
AIPS-00 planning competition2 is Hoffmann’s FF planning system []. The construction of the 
heuristic function in FF is done in a process very similar to GRAPHPLAN. FF starts from the Initial 
state and constructs a leveled graph with the facts of the domain, noting for each fact the level at 
which it was achieved. In the next phase FF performs a relaxed backward search on the fixpoint (the 

                                                 
1 The HSP-2 planning system can be found at the URL: http://www.ldc.usb.ve/~hector/ 
2 A complete review of the participating systems, the domains and the results of the AIPS-00 competition can be found 
at the URL: http://www.cs.toronto.edu/aips2000/ 



graph of the facts) trying to find a sketch plan containing parallel steps. The sketch plan, which may 
not be valid, is then used in a forward enforced hill-climbing search in two ways. Firstly, the length 
of the sketch plan is used as an estimate for the distance between the Initial state and the goals and 
secondly a set of helpful actions, i.e. the actions at the first level of the sketch plan, is extracted 
which helps in cutting down the branching factor of the search. 

Bi-directional search is a well-known search strategy mentioned in almost any textbook about 
Artificial Intelligence. However, it has not been broadly adopted as a search strategy. Especially in 
planning, there are only a few systems performing a combined search in both directions. The only 
bi-directional planners that have been developed, to the knowledge of the authors, are PRODIGY [], 
NOLIMIT[],FLECS[] and RASPUTIN[]. All of these planners have been developed by researchers 
of the Carnegie Mellon University’s PRODIGY project3 and are based on the combination of goal-
directed backward chaining with simulation of plan execution, a technique developed by Veloso et 
al [], which extends means-end analysis. Although these planners perform some kind of search in 
both directions, they are actually forward-direction planners, which utilize the backward search as 
an action selection mechanism. 

3. The Search Strategy of BP 
The planners presented in the previous section have shown quite impressive performance and 

they have proved to be able to handle a large variety of difficult problems. However, their 
performance is unstable and they frequently present precessions in their efficiency between 
different domains or even between problems of the same domain. 

There are two main reasons that justify this behavior: 
a) Although the heuristic functions constructed by all the planners are general, they seem to work 

better with specific domains. 
b) There are domains and problems that clearly favor one of the two search directions (forward or 

backward).  
The first argument, which is also a conclusion drawn from the experience of the authors, has 

been stated by Stone, Veloso and Blythe in [].  
The second argument is the main conclusion drawn by Bart Massey in an extensive study in the 

directions of planning presented in []. Bonet and Geffner have pushed the same argument one step 
further: “Although we don’t fully understand yet when HSP will run better than HSP-R, the results 
suggest nonetheless that in many domains a bi-directional planner combining HSP-R and HSP 
could probably do better than each planner separately”. The answer to the question posed by Bonet 
and Geffner above has been answered by Massey in []. Massey discriminates planning problems 
into forward and backward problems, in the sense that strongly directed planners will find the 
problems of the opposite direction intractable.  

 Motivated by the conclusions stated above we developed BP, a heuristic state-space planner, 
which combines search in both directions. A part of the plan is constructed with the progression 
module (forward chainer) and the rest is constructed with the regression module (backward 
chainer). The sub-plan of the regression module is inversed and merged with that of the progression 
module in order to produce the final plan. However the case is not always that simple, because 
usually BP interleaves the execution of both modules several times before a solution is found. 
Details about the search strategy will be presented later in this section but first we have to describe 
the progression and the regression search modules. 

3.1 The Progression Module 
The progression module employs a best-first search method starting from the initial state and 

moving forward trying to reach the goals. It is worth noting here that the initial state and the goals 
refer to the specific sub-problem that is passed to the progression module and not necessary to the 

                                                 
More information about the PRODIGY project can be found at the URL: http://www.cs.cmu.edu/~prodigy/ 



initial problem. This means that as the execution of the two search modules interleave, the initial 
state and the goals change in a matter that will be explained in more details later in this section. 

The progression module takes five arguments, which are: a) the initial state I’ of the sub-
problem, b) the goals G’ of the sub-problem, c) the maximum size SOF_AGENDA of the planning 
agenda and d) a threshold T declaring when should the search stop and e) a heuristic function h 
capable of estimating distances between states. The progression module returns a new state S, which 
is the state closer to G’ that the module could find.  Figure 3.1 illustrates the algorithm of the 
progression module. 

 
Progression_Module       
Input: I’, G’, SOF_AGENDA, T, h , Output: S 
Set Agenda = [I’], K=I’ 
While (Agenda ) ≠ ∅
begin 

G = the first state in the Agenda 
⊆If G’ G  

   Return G 
If G∉Closed List  
begin 

If h(G)>h(K)+T  
    Return (K) 
If h(G)<h(K) 
    K=G 
For all actions A’ : q∈prec(A’) q∀ → ∈G 
begin 

S’=G add(A’)/del(A’) ∪
   Add S’ to the Agenda sorted by h(S’) 

If size of Agenda>SOF_AGENDA  
remove the last element from Agenda 

     Add G to the Closed List 
end 

end 
Remove G from Agenda 

End 
Return K 
 
The progression module employs a simple forward best first search strategy with two main 
differences: 

a) the size of the planning agenda is limited by an upper limit SOF_AGENDA. This means that 
if there are N states (N>SOF_AGENDA) that should be stored in the Agenda, only the 
SOF_AGENDA most promising (according to h) states will be stored and the rest will be 
pruned. As a consequence, the algorithm is not complete and it may stop without returning a 
solution even if a solution exists. However, the memory requirements in order to maintain 
completeness may become unrealistic in hard real world problems. Moreover, the overhead 
in computational workload increases with the size of the Agenda, as the last one must be 
kept sorted. 

b) The search may stop before reaching the goals or ending up in a deadlock, as it usually 
happens with search algorithms. The progression module also stops the search when it is not 
further possible to move to a state with a smaller distance from the goals than the one of the 
current state. In fact, the policy adopted by BP is a little bit more lenient and the search will 
not stop even if it can’t find any improving state, as long as there is at least one successor 
state, which distance is not greater than the distance of the current state plus T, a constant 
passed as an argument to the progression module. This part of the algorithm is crucial to the 
unified bi-directional search strategy, since the value of T determines how frequently will 
the algorithm change the search direction. 

 



3.2 The Regression Module 
The algorithm of the regression module is quite similar to that of the progression module 

described in the previous section, since the search strategy is symmetric. However, there are certain 
key points that need to be clarified and all these points refer to common problems caused to the 
regression planners by the representation of the planning problems. The main idea behind 
regression planners is that they don’t deal with states, as progression planners do, but with sets of 
states. This originates from the fact that the goals do not usually form a complete state description 
and therefore a more sophisticated technique than simply reversing the actions, as done in GRT [], 
is necessary in order to regress the goals. 

The regression module makes extensive use of binary mutual exclusions between facts []. Two 
facts p and q are mutual exclusive, we note mx(p,q), if no valid state contains both of them at the 
same time. For example, in the BLOCKS domain the facts clear(A) and on (B,A) are mutual 
exclusive. Mutual exclusions are calculated in a way similar to the one they are calculated in 
GRAPHPLAN. BP progressively builds a graph of facts noting at the same time the mutual 
exclusions between them using the following formulae: 
 
mx(p,q) if : 
∀ action A’ : p ∈  add(A’) q ∈del(A’) and →
∀ action A’ : q ∈  add(A’) p ∈del(A’)  →
 
mx(p,q) if : 
∀ action A’: p ∈  add(A’) and action B’: q ∀ ∈  add(B’) ∈(x,y): x∈prec(A’), y prec(B’), mx(x,y) ∈
 

It is worth noting here that BP does not detect mutual exclusions of order higher than two and 
this may cause problems with certain domains. Consider, for example, a BLOCKS problem and a 
state S’=[on(A,B), on(B,C), on(C,A))]. Although there is no binary mutual exclusion between any 
two of the facts in S’, it is quite clear that S’ is not a valid state. However, since the detection of 
mutual exclusions is a hard process, this was a necessary compromise.  

Bonet and Geffner in HSP-R [] define two criteria for identifying whether an action A is 
backwards applicable to a state S’: 

a) relativeness: add(A)∩ S’  ≠ ∅
b) consistency: del(A)∩ S’=∅  

The consistency check is not very strict and frequently HSP-R encounters invalid states. In order to 
prune these states, HSP-R checks to see if they contain pairs of facts that contain mutual exclusions. 
BP extends the consistency check of HSP-R in order to prune the actions that lead to invalid states 
before they are applied to the current state. So the criteria for backwards applicability in BP can be 
formed as:  
 
Regressibility test 
An action A is backwards applicable to state S if: 

1. add(A)∩ S’  ≠ ∅
2. del(A)∩ S’=   ∅
3.  (q,p): q∈add(A), p∈S’, mx(q,p)  ¬∃
4.  (q,p): q∈(prec(A)-del(A)), p¬∃ ∈S’, mx(q,p)  

 
State S’ that is produced after the backward application of action A to state S by the following 
formula: 
 
State Regression 
S’=S-add(A)∪ prec(A) 
 



Note however that there may be common elements in S and prec(A), so the double entries have to 
be eliminated from S’.  

 The regression module takes the same arguments with the progression module: a) the initial 
state I’ of the sub-problem, b) the goals G’ of the sub-problem, c) the maximum size 
SOF_AGENDA of the planning agenda and d) a threshold T declaring when should the search stop 
and e) a heuristic function h capable of estimating distances between states. The module returns a 
set of facts (not necessarily a complete state), which resulted from the regression of G’ and are the 
closer to I’ that the module could find. Figure 3.2 illustrates the algorithm of the regression module. 

 
Regression_Module       
Input: I’, G’, SOF_AGENDA, T, h, Output: S 
Set Agenda = [G’], K=G’ 
While (Agenda ) ≠ ∅
begin 

G = the first state in the Agenda 
⊆If G I’  
Return G 

If G∉Closed List  
begin 

If h(G)>h(K)+T  
Return (K) 

If h(G)<h(K) 
   K=G 

For each fact f in G 
   For each action A’ that has f in its add list 
    If (del(A’)∩ G=∅) 

  begin 
Set E=prec(A’)-del(A’) add(A’) ∪
If there are no mutual exclusions between facts in E and G 
Begin 

S’=S prec(A’)-del(A’) ∪
Remove double entries from S’ 
Add S’ to the Agenda sorted by h(S’) 
If size of Agenda>SOF_AGENDA  

remove the last element from Agenda 
end 

end    
 Add G to the Closed List 

 end   
 Remove G from Agenda 
End 
Return K 
 
The only differences between the algorithms of the two search modules lie in the way they identify 
the applicable actions and produce the successor states. The other parts of the algorithm are 
identical. They both employ a best first search strategy with limited agenda, which stops and returns 
the best state (or set of states in the regression module) found so far, when the search cannot 
proceed any further to states that do not transcend the distance limit of T.  

3.3 Combining the two Modules into an integrated Search Strategy 
The underlying framework of the bi-directional search strategy is based on a relatively simple 

idea. Very frequently, single-directional planners reach a point in the search process where the 
heuristic function becomes less informative and they proceed with blind search. Two of the main 
reasons that justify this behavior are: a) the branching factor of the current sub-problem is too large 
for the heuristic to produce accurate estimates b) the sub-problem is much too complex and the 
heuristic function becomes less informative as the search goes on. The second reason though 
applies only to planners that construct the heuristic function only once at the beginning. 



In a few words, BP constructs the heuristic function in the backward direction and starts 
performing a forward directed search until it reaches a state SB from where it is difficult to proceed 
towards the goals. Then it reconstructs the heuristic function in the opposite (forward) direction and 
starts searching, in the opposite direction (backward), from the Goals towards S

B

BB. If the backward 
search is also blocked after some steps in a state SB2, BP will restart the planning process replacing 
the Initial state with SB and the Goals with SB B2. In order to avoid infinite loops between the two 
search modules, if one of the modules returns without improving its initial (or final in the case of 
regression) state, the Threshold of the search is increased by a constant number. The bi-directional 
search strategy of BP is outlined in Figure 3.3.  
 
Search Algorithm of BP 
Input I, G, Output Plan   
Set Plan1=Plan2=[], S = I, F = G, Direction = Forward, Threshold = Init_Thr 

⊇While S F 
Begin 
 If Direction = Forward 
 begin 

Create backward heuristic function hB 
St=Progression_module(S,F,MAX_SOF_AGENDA,Threshold,hB) 
If St S ≠
 Set Plan1=Plan1+St.plan, Threshold=Init_Thr, S=St 

  Else 
   Threshold=Threshold+STEP  
  Direction = Backward 

end 
 Else 

begin 
Create forward heuristic function hF
St=Progression_module(S,F,MAX_SOF_AGENDA,Threshold,hF) 

≠If St F 
 Set Plan2=St.plan+Plan2, Threshold=Init_Thr, F=St 

  Else 
   Threshold=Threshold+STEP  
  Direction = Forward 

End 
end 
Return Plan1+Plan2 
   

The changes in the direction of BP aim to deal with the problems stated above and this can be 
understood with the following two arguments: a) The change in the direction enables BP to 
reconstruct the heuristic function and thus make it more informative. b) The adaptive way in which 
BP changes directions tends to solve the major part of the problem following the search direction, 
which best fits the specific problem. 

4. BP’s Heuristic Functions 
In order to test the efficiency of the bi-directional search strategy, we developed two, relatively 

simple, domain independent heuristics functions that were embedded in BP planning system. The 
two heuristic functions are quite similar and are based on exactly the same idea, but the first one is 
used for the progression module and the other for the regression one. Note here, that both search 
modules of BP adopt a weighted A* search strategy, where the total cost of a state S is calculated  
as: w1*L(S)+w2*h(S). In the previous formula L(S) is the number of steps needed to achieve state S, 
starting from the Initial state, h(S) the value returned by the heuristic function and w1 and w2 user-
defined constants. Sub-section 4.1 presents the progression heuristic function, while the regression 
one is presented in sub-section 4.2. Finally sub-section 4.3 describes the adoption of a goal ordering 
technique in order to refine the estimates of the heuristic functions. 



4.1 The Progression Heuristic Function 
The heuristic function used for the progression module is similar to the one of the GRT 

planning system. As in GRT the heuristic function is extracted from a leveled graph, similar to the 
one built by GRAPHPLAN. The graph consists of all the facts of the domain (the action levels of 
the GRAPHPLAN are omitted) that are achievable from the Initial state, tagging them with a 
number K, identifying the minimum number of steps needed to achieve them starting from the 
Goals. The graph construction begins from the Goals of the problem (level 0) and proceeds 
backwards adding iteratively a new level L with all the facts that are added by actions that are 
applicable at level L-1. Note however, that since the creation of the graph proceeds backwards and 
the Goals do not necessarily form a complete state, a level L is built from level L-1 through relaxed 
regression and not by progression, as done in GRT.  
 
Relaxed regressibility test 
An action A is backwards applicable to level M of the graph if  
∃ fact f: f add(A), f∈level M of the graph ∈
 
 The relaxed regressibility test is similar to the first criterion of the regressibility test of section 
3.2, if we treat the levels of the graph as states. However, the last three criteria of the test have been 
omitted since the graph is just used for estimates of the real distances between each fact and the 
goals. 
 
Graph Expansion 
For each action A that passes the relaxed regressibility test for level L-1, the algorithm computes a 
value V as the sum of the tags of all the facts in add(A). The facts in its precondition list are then 
added at level L and tagged with V+1 if they have not already been tagged with a smaller value than 
V+1.   
 The expansion of the graph reiterates until the graph reaches level LMAX, where no more facts 
can be achieved with a cost smaller than the one in its tags. 
 After the creation of the graph, which is done only once as long as the planner does not change 
direction, the tags of the facts are used to produce estimates for the distance between any state S in 
the domain and the goals, just by summing up the tags of the facts in S.    

4.2 The Regression Heuristic Function 
 As stated earlier in this section, the regression heuristic function is similar to the progression 
one and they just differ in the direction in which the graph is created. The graph for the regression is 
built starting from the facts in the Initial state (level 0) and proceeding forwards until it reaches a 
level LMAX, where no more facts can be added to the graph with a cost smaller than the one in their 
tags. The progressibility test is not relaxed and an action A is selected for expanding level L+1 of 
the graph if all the preconditions of A exist in level L of the graph. Again a value V summing up the 
tags of the preconditions of A is calculated and the facts in add(A) are added to level L+1 of the 
graph and tagged with V+1 if they have not already been tagged with a smaller value than V+1. 
 The graph of the regression is built only once each time the planner selects the backward 
direction for its search. In order to estimate the distance between each state S in the domain and the 
Initial state, the heuristic function just sums up the tags of all the facts in S.  

4.3 Refining the heuristic functions with Goal Ordering 
 Goal ordering for planning has been an active research topic over the last years and although 
the technology is not yet mature, goal-ordering techniques have been successfully used in state-of-
the-art planning systems. The research so far has been focused on two tasks: a) how to 
automatically extract as much information as possible about orderings among the goals of the 
problem, with minimum computational cost and b) how to use this information during planning. 
McCluskey and Porteous with their work on PRECEDE[] proposed a method for identifying goal 



orderings between pairs of atomic facts, based on direct domain analysis. The more recent work of 
Koehler and Hoffman on GAM [] have resulted in two techniques for identifying goal orderings, 
one based on domain analysis and another utilizing the information gained by the construction of a 
planning graph. The simplest and yet quite effective orderings extracted by these techniques have 
been described as reasonable orders and are based on the following idea: 
 

“A pair of goals A and B can be ordered so that B is achieved before A if it isn’t 
possible to reach a state in which A and B are both true, from a state in which A is 
true, without having to temporarily destroy A.” []. 
 

 IPP [] and FF[] make use of reasonable orderings during planning through the construction of a 
goal agenda that divides the goals into an order set of sub-goals. The planners sequentially try to 
achieve the first sub-goal in the agenda, which has not yet been achieved. Experimental results have 
shown that the use of the goal agenda yields in significance improvement in terms of both planning 
time and plan quality.   
 BP adopts a slightly different method to compute reasonable orderings between goals, which is 
based on mutual exclusions between facts of the domain. Since the planner calculates the set of 
binary mutual exclusions, in order to use them for the regression phase, the overhead imposed by 
the calculation of reasonable orderings is negligible. Function OB, which is outlined in figure X, is 
iteratively ran on every pair of goals in order to identify the possible orderings between the goals of 
the problem.    
 
Function OB 
Input: Goals a and b 
Output: True (a should be ordered before b) or False (a should not be ordered before b) 
For each action O: a∈add(O) 
begin 
 Result =true 
 For each fact f: f∈prec(O) 
 begin 
  If mx(b,f)=true 
   Result=false 
 end 
 If result = true return false 
end 
Return true 
 
 Function OB is not complete and it may miss certain goal orderings (e.g. in problems with 
mutual exclusions of higher order than two). However it is a fast method for identifying a 
respectable number of goal orderings. 
 The orderings extracted by OB are used in the planning phase, in order to refine the results of 
the heuristic functions and not to divide the goals into sub-sets. More specifically, after the 
evaluation of a state S by one of the two heuristic functions, as exemplified by sub-sections 4.1 and 
4.2, BP searches S for possible breaches of the goal orderings.  
 
Ordering breach 
Fact f of a state S is an ordering breach if:  
1. f∈Goals   
2.  goal g: g∉S and OB(g,f)=true ∃
 
 For every ordering breach found in state S, the latter is penalized (i.e. the estimated distance 
between S and the Goals is increased by a constant number), since at some point later the ordering 
breaches will have to destroyed and re-achieved after the correct ordering has been reinstated.  
 It is straightforward that function OB can only be used be the progression module, so there is a 
slightly different function called OB-R (figure X) that is used by the regression one.  



 
Function OB-R 
Input: Initial facts a and b 
Output: True (a should be ordered before b) or False (a should not be ordered before b) 
For each action O: a∈del(O) 
begin 
 Result =true 
 For each fact f: f∈(prec(O)-del(O) add(O)) ∪
 begin 
  If mx(a,f)=true 
   Result=false 
 end 
 If result = true return false 
end 
Return true 
 
RESULTS OF THE GOAL-ORDERING 
    

5. Domain Analysis through Planning Graphs 

6. Experimental Results 
In order to test the efficiency of BP we implemented two additional planners: a) PMP, a 

progression planner using the progression module and heuristic function of BP and b) RMP, a 
regression one using the regression module and heuristic function of BP. The search modules in 
PMP and RMP were slightly modified, so as to continue their search until a solution is found. The 
three planning systems were tested on a large variety of problems adopted by the recent AIPS-2000 
planning competition. 

The codes of the planners were based on the publicly available code of the second version of 
GRT4 and were implemented in C++. All the tests were run on a SUN ENTERPRISE 3000 parallel 
computer, with a SPARC-1 processor at 167 MHz and 256 MB of RAM. The underlying operating 
system was SUN Solaris 2.6 and the programs were compiled by GNU c++ compiler.For the tests 
we chose the following configuration for the three planners:  

1. The size of the planning agenda is limited to 200 states 
2. The initial value for the search threshold (variable Init_Thr in the search algorithms) is 2 
3. The step for the increases in the search threshold (variable STEP in the search algorithms) is 

also set to 2 
4. The values of the weights for the weighted A* search algorithm are set as: 0.4 for the 

accumulated cost of the actions applied so far (w1=0.4) and 1.0 for the estimated remaining 
cost (w2=1.0).  

The three planners (PMP, RMP and BP) were thoroughly tested on all problems of the Blocks 
world, the Logistics, the MIC-10 and the Freecell domains used in the AIPS-00 planning 
competition. Tables 6.1, 6.2, 6.3 and 6.4 present the results of the tests. Columns 2,4 and 6 of all 
tables present the length of the produced plans (number of actions) and columns 3,5 and 7 the time 
(in milliseconds) needed to solve the problems. Note that a dash in cell means that the problem 
could not be solved, within the 180 seconds limit in CPU time set on all planners and plan lengths 
written in bold note the minimum plan length found by the three planners.  

6.1 Blocks world 
It is clear from table 6.1 that the specific problems of the Blocks world used in the competition 

favor regression planners. RMP was able to solve 47% more problems than PMP producing in all 
problems shorter plans in much less time. BP presented results quite similar to RMP. Specifically, it 

                                                 
4 The code of GRT is available at the URL: http://www.csd.auth.gr/~lpis/GRT/main.html 



solved 1 problem less than RMP, producing 16% lengthier plans, spending though 45% less time on 
average. BP clearly outrivaled PMP, producing 67% shorter plans and spending almost 20 times 
(1930%) less time on average.    
 
 
 

Problem PMP  
(length) 

PMP  
(time) 

RMP  
(length) 

RMP  
(time) 

BP  
(length) 

BP   
(time) 

4-0 6 40 6 40 6 60 
4-1 10 40 10 50 10 70 
4-2 6 30 6 40 6 50 
5-0 12 790 12 100 12 110 
5-1 10 810 10 90 20 180 
5-2 24 880 16 330 16 140 
6-0 42 14790 12 140 18 270 
6-1 10 80 10 110 10 150 
6-2 54 15820 24 640 22 260 
7-0 44 12930 20 410 22 390 
7-1 70 13990 22 430 24 440 
7-2 106 42890 20 530 22 410 
8-0 122 54310 18 430 122 19220 
8-1 88 27360 20 490 30 850 
8-2 18 250 16 410 16 390 
9-0 92 37750 60 61010 84 8160 
9-1 - - 30 5150 30 3570 
9-2 - - 26 5130 28 1740 
10-0 - - - - - - 
10-1 - - 38 21350 42 7490 
10-2 - - - - 114 40200 
11-0 62 5270 34 4730 78 8490 
11-1 - - 30 2080 - - 
11-2 - - - - 220 125030 
12-0 - - 34 5040 48 8680 
12-1 - - 38 18380 - - 
13-0 - - - - - - 
13-1 - - - - - - 
14-0 - - 38 8170 - - 
14-1 - - 36 5910 - - 
15-0 - - - - - - 
15-1 - - - - - - 
16-0 - - - - - - 
16-1 - - - - - - 
17-0 - - - - 50 59280 

Table 6.1: Blocks world problems 

6.2 Logistics 
In the logistics problems the choice of planning direction didn’t seem to play a very important 

role.  RMP and BP solved more problems than PMP, but produced slightly worse plans than the 
latter. Specifically, BP produced 3% lengthier plans than PMP but solved 32% more problems in 
7% less time on average. RPM solved the same number of problems with BP and was quite faster 
(9%) than the latter. However the plans it produced were 5% lengthier than those of BP. 

 
Problem PMP  

(length) 
PMP  
(time) 

RMP  
(length) 

RMP  
(time) 

BP  
(length) 

BP  
(time) 

4-0 20 150 23 240 20 240 
4-1 19 180 25 300 19 260 
4-2 17 410 17 220 20 300 
5-0 27 220 32 350 27 350 
5-1 17 150 20 270 21 340 
5-2 8 100 8 200 10 240 
6-0 25 210 33 440 28 450 
6-1 14 150 16 270 16 400 
6-2 25 210 32 440 26 400 
7-0 38 720 44 1340 41 1210 
7-1 62 10730 51 1340 50 1830 
8-0 31 640 41 1230 37 1340 
8-1 44 810 54 1710 46 1490 
9-0 37 700 47 1510 39 1430 
9-1 32 590 34 1230 32 1320 
10-0 74 29650 54 3790 50 5010 



10-1 43 1570 53 2890 45 3140 
11-0 52 3070 62 4370 54 4010 
11-1 66 6330 75 5190 66 7040 
12-0 45 4590 51 3820 45 4960 
12-1 70 2600 82 5480 72 4070 
13-0 79 7500 97 17000 93 38460 
13-1 - - 83 17620 81 24160 
14-0 - - 78 15490 79 31140 
14-1 76 5970 93 20410 87 30120 
15-0 112 70170 95 21480 106 38620 
15-1 76 20240 85 20070 82 24410 
16-0 - - 109 35820 112 47130 
16-1 83 10330 108 40890 85 16430 
17-0 - - 116 41350 114 53130 
17-1 - - 120 45650 120 85490 
18-0 - - 145 61470 152 99020 
18-1 104 90900 101 46410 102 59810 
19-0 - - 128 71670 129 98540 
19-1 - - 119 70160 113 89260 
20-0 - - 127 73580 138 116440 
20-1 110 22620 123 66510 112 33480 

Table 6.2: Logistics problems 
 

6.3 MIC-10 
 MIC-10 is a domain that clearly favored progression planners, as shown by the experimental 
results. RMP was unable to solve problems harder than s4-1, while PMP and BP solved almost 
every problem of the domain. We tried to increase the size of the planning agenda for RMP and as a 
result the planner was able to solve a few more problems (up to s5-2) but this had a negative impact 
on planning time. Concerning the other two planners, BP clearly outperformed PMP by solving 
7.5% more problems in 35% less time on average and by producing 10% shorter plans. Although in 
the tests we used 100 problems of the MIC-10 domain (s1-0 to s20-4), due to limitation in space 
table 6.3 only presents part of the problems.    
 

Problem PMP  
(length) 

PMP  
(time) 

RMP  
(length) 

RMP  
(time) 

BP  
(length) 

BP  
(time) 

S1-0 4 0 4 10 4 20 
S1-4 4 10 4 10 4 0 
S2-0 8 20 7 40 8 20 
S2-4 8 20 7 40 7 30 
S3-0 12 40 10 320 11 40 
S3-4 11 40 10 350 10 40 
S4-0 16 100 - - 15 100 
S4-1 16 120 16 1230 13 90 
S4-2 16 100 - - 16 100 
S4-4 16 110 - - 15 100 
S5-0 20 190 - - 19 190 
S5-4 20 180 - - 18 170 
S9-0 36 1420 - - 32 920 
S9-4 33 1000 - - 29 950 
S10-0 40 1980 - - 36 1390 
S11-0 41 2400 - - 39 1580 
S12-0 48 4280 - - 41 2500 
S15-0 60 8710 - - 52 5130 
S17-0 67 12840 - - 62 7880 
S17-2 65 9950 - - 60 8050 
S17-3 - - - - 61 7870 
S17-4 65 14280 - - 57 8040 
S18-0 70 19000 - - 65 11150 
S18-4 70 16050 - - 62 9140 
S19-0 - - - - 66 11520 
S19-1 - - - - 69 12740 
S19-2 74 26090 - - 64 11990 
S19-3 - - - - 67 12100 
S19-4 77 21910 - - 66 11570 
S20-0 - - - - 70 16560 
S20-1 84 28640 - - 71 13450 
S20-2 79 23800 - - 65 12850 
S20-3 - - - - 72 14770 
S20-4 - - - - 70 15570 

Table 6.3: MIC-10 problems 



6.4 Freecell 
Like the Logistics domain, Freecell does not clearly favor a specific planning direction. However 

PMP seemed to perform a little bit better than RMP and this is probably due to the fact that there is 
too much implied information that is omitted from the goals. In this domain BP solved 3 problems 
more than RMP and 2 less than PMP, producing plans of lower quality (approx. 6% lengthier plans) 
than both RMP and PMP. However, concerning planning time, BP clearly outperformed the other 
two needing 35% less time than PMP and 614% less time than RMP on average.     
 

Problem PMP  
(length) 

PMP  
(time) 

RMP  
(length) 

RMP  
(time) 

BP  
(length) 

BP  
(time) 

2-1 9 3920 9 37660 11 4240 
2-2 8 3910 8 34110 9 4150 
2-3 8 3510 8 38860 9 3940 
2-4 8 4110 8 32920 9 4150 
2-5 9 3930 9 33770 11 4390 
3-1 18 18990 15 88360 18 43870 
3-2 17 20190 19 100650 19 15000 
3-3 16 30130 19 90870 15 10580 
3-4 15 14950 13 71910 13 9990 
3-5 16 38760 16 83530 17 19310 
4-1 27 106590 - - 28 93750 
4-2 24 25090 21 150020 - - 
4-3 28 78620 - - 38 86140 
4-4 26 67300 19 127580 - - 
4-5 30 100620 - - 24 27880 
5-1 - - - - - - 
5-2 28 159790 - - - - 
5-3 - - - - 46 152930 
5-4 29 85080 - - 39 153630 

Table 6.4: Freecell problems 

7. Conclusions and Future Work 

8. References 
[1] Fikes, R., and Nilsson, N., 1971, STRIPS: A New Approach to the Application of 

Theorem Proving to Problem Solving. Artificial Intelligence, 2: 189-208. 
[2] Blum, L., and Furst M., 1995, Fast planning through planning graph analysis, In 

Proceedings, 14th International Joint Conference on Artificial Intelligence, Montreal, 
Canada, pp. 636-642. 

[3] Kautz, H. and Selman, B. 1996, Pushing the envelope: Planning, propositional logic, and 
stochastic search. In Proceedings, AAAI-96, Portland Oregon, pp. 1194-1201 

[4] Kautz, H. and Selman, B. 1999, Unifying SAT-based and Graph-based Planning. In 
Proceedings, IJCAI-99, Stockholm. 

[5] Long, D. and Fox, M. 1998. Efficient Implementation of the Plan Graph in STAN, JAIR, 
10, pp. 87-115. 

[6] Long, D. and Fox, 2000, M. Hybrid STAN: Identifying and Managing Combinatorial Sub-
problems in Planning, In Proceedings, 18th Workshop of the UK Planning and Scheduling 
SIG 

[7] Korf, R. 1998, Artificial intelligence search algorithms, CRC Handbook of Algorithms 
and Theory of Computation, Atallah, M. J. (Ed.), CRC Press, Boca Raton, FL, pp. 36-1 to 
36-20 

[8] McDermott, D. 1996, A Heuristic Estimator for Means-End Analysis in Planning, In 
Proceedings, AIPS-96 

[9] Hoffmann, J. 2000, A Heuristic for Domain Independent Planning and its Use in an 
Enforced Hill-climbing Algorithm, In Proceedings, 12th Int. Symposium on Methodologies 
for intelligent Systems. 



[10] Refanidis, I., and Vlahavas, I., 1999, GRT: A Domain Independent Heuristic for STRIPS 
Worlds based on Greedy Regression Tables, In Proceedings, 5th European Conference on 
Planning, Durham, UK, pp. 346-358.  

[11] Nguyen, X., Kambhampati, S. and Nigenda, R. 2000, AltAlt: Combining the advantages 
of Graphplan and Heuristics State Search, In Proceedings, 2000 International Conference 
on Knowledge-based Computer Systems, Bombay, India. 

[12] Bonet, B., Loerincs, G., and Geffner, H., 1997, A robust and fast action selection 
mechanism for planning, In Proceedings, 14th International Conference of the American 
Association of Artificial Intelligence (AAAI-97), Providence, Rhode Island, pp. 714-719. 

[13] Bonet, B. and Geffner, H. 1999, Planning as Heuristic Search: New Results, In 
Proceedings, ECP-99, Durham UK. 

[14] Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E. and Blythe, J. 1995, Integrating 
Planning and Learning: The PRODIGY Architecture, Journal of Experimental and 
Theoretical Artificial Intelligence, 7(1). 

[15] Veloso, M. and Stone, P. 1995, FLECS: Planning with a Flexible Commitment Strategy, 
JAIR (3). 

[16] Veloso, M. 1994, Planning and learning by Analogical Reasoning, Springer-Verlag. 
[17] Fink, E. and Blythe, J. 1998, A complete bidirectional planner, In proceedings, 4th 

International Conference on AI Planning Systems.  
[18] Stone, P., Veloso, M. and Blythe, J. 1994, The Need for Different Domain-Independent 

Heuristics, In proceedings, AIPS-94, Chicago, USA. 
[19] Massey, B. 1999, Directions In Planning: Understanding the Flow of Time in Planning, 

Available as a Technical Report from the University of Oregon. 
[20] McCluskey, T. and Porteous, J. 1997, Engineering and Compiling Planning Domain 

Models to Promote Validity and Efficiency, Artificial Intelligence, 95. 
[21] Koehler, J. and Hoffmann, J. 2000, On Reasonable and Forced Goal Orderings and their 

Use in an Agenda-Driven Planning Algorithm, JAIR (12). 
[22] Porteous, J. and Sebastia, L., 2000, Extracting and ordering Landmarks for Planning, In 

Proceedings, 18th Workshop of the UK Planning and Scheduling SIG 
   


	1.  
	1. Introduction 
	2. Related Work 
	3. The Search Strategy of BP 
	3.1 The Progression Module 
	3.2 The Regression Module 
	3.3 Combining the two Modules into an integrated Search Strategy 
	4. BP’s Heuristic Functions 
	4.1 The Progression Heuristic Function 
	4.2 The Regression Heuristic Function 
	4.3 Refining the heuristic functions with Goal Ordering 

	5. Domain Analysis through Planning Graphs 
	6. Experimental Results 
	6.1 Blocks world 
	6.2 Logistics 
	6.3 MIC-10 
	6.4 Freecell 

	7. Conclusions and Future Work 
	8. References 


