
Bi-Directional Heuristic Planning in State-Spaces
Dimitris Vrakas and Ioannis Vlahavas

Department of Informatics
Aristotle University of Thessaloniki
[dvrakas,vlahavas]@csd.auth.gr

Abstract
One of the most promising trends in Domain Independent AI Planning, nowadays, is state –

space heuristic planning. The planners of this category construct general but efficient heuristic
functions, which are used as a guide to traverse the state space either in a forward or a backward
direction. Although specific problems may favor one or the other direction, there is no clear
evidence why any of them should be generally preferred.

This paper proposes a hybrid search strategy that combines search in both directions. The search
begins from the Initial State in a forward direction and proceeds with a weighted A* search until no
further improving states can be found. At that point, the algorithm changes direction and starts
regressing the Goals trying to reach the best state found at the previous step. The direction of the
search may change several times before a solution can be found. Two domain-independent heuristic
functions based on ASP/HSP planners enhanced with a Goal Ordering technique have been
implemented. The whole bi-directional planning system, named BP, was tested on a variety of
problems adopted from the recent AIPS-00 planning competition with quite promising results.

1. Introduction
Motivated by the work of Drew McDermott in the mid 90’s on heuristic state-space planning, a

number of researchers turned to this direction. During the last few years a great amount of work has
been done in the area of domain-independent, state-space, heuristic planning and a significant
number of planning systems with remarkable performance were developed.

These planners usually adopt the STRIPS [] notation. A planning problem in STRIPS is a tuple
<I,A,G> where I is the Initial state, A a set of available Actions and G a set of goals. States in
STRIPS are represented as sets of atomic facts. Each action A has three lists of facts containing:
a) the preconditions of A (noted as prec(A))
b) the facts that are added to the state (noted as add(A)) and
c) the facts that are deleted from the state (noted as del(A)).
• An action A is applicable to a state S’ if prec(A) S’. ⊆
• If A is applied to S, the following formula holds for the successor state S’:
 S’ = S / del(A) add(A) ∪
• The solution to such a problem is a sequence of actions, which if applied to I leads to a state S’

such as S’ G. ⊇
• If no solution can be found for a problem, the problem is characterized as unsolvable.

Although the efficiency of these planners depends strongly on the accuracy of their heuristic
function, the direction in which they search the space of states plays an important role as shown by
experimental results. Planners as UNPOP, GRT and HSP/ASP progress the Initial State until they
have reached the goals. On the contrary, HSP-R and AltAlt regress the Goals of the problem until
they have reached the Initial State.

Hector Geffner in his recent work on HSP-2 studies the matter of search direction and the HSP-
2 planning system enables the user to decide for the direction of the search. It is clear from the
experimental results that there are specific problems, which favor one or the other search directions,
but in general there is no clear evidence why any of the two directions should be preferred.

In this paper we propose a hybrid search strategy for domain-independent, state-space heuristic
planning that combines both progression (forward chaining) and regression (backward chaining).
The search begins from the Initial State and proceeds with a weighted A* search until no further
improving states can be found from the Goals. At that point the algorithm changes direction and
regress the Goals trying to reach the best state found at the previous step The direction of the search
may change several times before a solution can be found.

Two domain-independent heuristic functions based on ASP/HSP enhanced with a Goal
Ordering technique were implemented and the whole bi-directional planning system, named BP,
was tested on a variety of problems adopted from the recent AIPS-00 planning competition with
quite promising results.

The rest of the paper is organized as follows: Section 2 provides a brief review of the work
related to state-space, heuristic planning, and other approaches to bi-directional planning. Section 3
describes the bi-directional search strategy in details and deals with certain issues that arise while
regressing the goals of a problem. Section 4 describes the heuristic functions of BP, proposes a fast
and efficient technique for the elimination of useless information from the problem’s definition and
describes the adoption of a Goal Ordering technique to heuristic state space planning. Section 5
presents experimental results that illustrate the efficiency of BP on a variety of problems adopted
from the AIPS-00 planning competition. Finally section 6 concludes the paper and poses future
directions.

2. Related Work
Two of the most promising trends in domain-independent planning were presented over the last

few years.
The first one consists of the transformation of the classical search in the space of states to other

kinds of problems which can be solved more easily. Examples of this category are the SATPLAN []
and BLACKBOX [] planning system, the evolutionary GRAPHPLAN [] and certain extensions of
GRAPHPLAN as the famous STAN [] planner.

SATPLAN and BLACKBOX transform the planning problem into a satisfiability problem,
which consists of a number of boolean variables and certain clauses between these variables. The
goal of the problem is to assign values to the variables in such a way that establishes all of the
clauses.

GRAPHPLAN [] on the other hand creates a concrete structure, called the planning graph,
where the nodes correspond to facts of the domain and edges to actions that either achieve or delete
these facts. Then the planner searches for solutions in the planning graph. GRAPHPLAN has the
ability to produce parallel plans, where the number of steps is guaranteed to be minimum.

Fox and Long developed STAN [], a powerfull planning system, extending GRAPHPLAN with
State Analysis techniques. Apart from the State Analysis techniques, the efficiency of STAN is due
to the construction of the planning graph in STAN, which is done very efficiently through bit-wise
operators on vectors of bits. In its latest version, called Hybrid STAN [], the system is cable of
identifying specific sub-problems (e.g. TSP sub-problems) from the definition of the original
problem. The planner then uses specialized techniques to tackle each of the sub-problems
separately.

The second category is based on a relatively simple idea where a general domain independent
heuristic function is embodied in a heuristic search algorithm such as Hill Climbing, Best-First
Search or A*. A detailed survey of search algorithms can be found in []. Examples of planning
systems in this category are UNPOP[], the ASP/HSP family [], GRT[], AltAlt[] and FF[], which
was awarded for outstanding performance in the last AIPS-00 planning competition.

The planners of the latter category rely on the same idea to construct their heuristic function.
They relax the planning problem by ignoring the delete lists of the domain operators and starting
either from the Initial State or the Goals they construct a leveled graph of facts, noting for every fact
f the level at which it was achieved L(f). In order to evaluate a state S, the heuristic function takes
into account the values of L(f) for each f ∈ S.

McDermott’s UNPOP [] was the first planner in the area of state space heuristic planning.
UNPOP extended the well-known Means-ends analysis by building a graph, named greedy
regression-match graph, consisting of subgoals and actions that achieve these subgoals. The
subgoals of a planning problem are the goals of the problem and the preconditions of actions that
achieve other subgoals. The creation of the greedy regression-match graph starts from the goals of
the problem and proceeds backwards until all the subgoals at the last level exist in the Initial state of
the problem. The information drawn from this graph is then used in the search phase in order to: a)
estimate the distance between a given state S’ and the Initial state and b) prune the actions that do
not appear in the graph. The search starts from the goals and proceeds backwards, reconstructing at
each intermediate state a new greedy regression-match graph.

The direct ancestor of UNPOP was Bonet & Geffner’s HSP[] planning system. Given an Initial
state I, HSP constructs a graph of facts starting from I by adding the facts that are added by actions
whose preconditions already exist in the graph. A value v(f) is assigned to each fact f in the graph
corresponding to the number of actions needed to achieve this fact starting from I. If all the
preconditions of an action a already exist in the graph, HSP assigns a value v(a) to action a, where
v(a) = for each f)(∑ ifv i ∈ prec(a). The value of v(a) is then inherited to the facts in the add list

of a using the following formula:
))(),(min()(avqvqv ii = for each qi∈ add(a).

The expansion of the graph stops when all the goals of the domain are included in the graph. In the
search phase HSP starts from the Initial state and proceeds forwards with a Hill Climbing strategy
(A* in the case of ASP) constructing the graph from scratch at each intermediate state.

In [] Bonet and Geffner present a variation of HSP called HSP-R. HSP-R uses the same
heuristic function and the same search strategy as HSP, but searches the state-space backwards,
starting from the goals and regressing them until it reaches the Initial state. The graph is still
constructed in the same direction as in HSP and this enables HSP-R to compute the heuristic
function only once and thus speed up the planning process.

The latest member of the HSP/ASP family is the HSP2 planner1, which integrates HSP and
HSP-R under a common environment from which apart from the direction of the search, the user
can also select the heuristic function that will guide the search

GRT is another extension to HSP, which was developed by Refanidis and Vlahavas []. GRT
creates a graph, similar to the one created by HSP, starting from the goals of the problem and
proceeding backwards. The graph is created only once and it is used to extract a heuristic function
that will be later used to guide the search. The search starts from the Initial state and proceeds
forwards, using a best first search strategy. The main innovation of GRT is the use of Related Facts,
which monitor the interactions between the facts in the graph. GRT has been also improved with a
number of techniques for enriching incomplete goal states, eliminating irrelevant objects from the
problem.

Nigenda, Nguyen and Kambhampati presented a hybrid planning system, named AltAlt [],
which was created using programming modules from STAN [] and HSP-R []. In the first phase,
AltAlt uses the module from STAN to create a planning graph similar to the one created by
GRAPHPLAN[]. From the planning graph AltAlt creates an admissible heuristic function. The
heuristic function is used in the second phase to guide the backward hill-climbing search, which is
performed in an HSP-R manner.

One of the latest planners in this category and the most effective according to the results of the
AIPS-00 planning competition2 is Hoffmann’s FF planning system []. The construction of the
heuristic function in FF is done in a process very similar to GRAPHPLAN. FF starts from the Initial
state and constructs a leveled graph with the facts of the domain, noting for each fact the level at
which it was achieved. In the next phase FF performs a relaxed backward search on the fixpoint (the

1 The HSP-2 planning system can be found at the URL: http://www.ldc.usb.ve/~hector/
2 A complete review of the participating systems, the domains and the results of the AIPS-00 competition can be found
at the URL: http://www.cs.toronto.edu/aips2000/

graph of the facts) trying to find a sketch plan containing parallel steps. The sketch plan, which may
not be valid, is then used in a forward enforced hill-climbing search in two ways. Firstly, the length
of the sketch plan is used as an estimate for the distance between the Initial state and the goals and
secondly a set of helpful actions, i.e. the actions at the first level of the sketch plan, is extracted
which helps in cutting down the branching factor of the search.

Bi-directional search is a well-known search strategy mentioned in almost any textbook about
Artificial Intelligence. However, it has not been broadly adopted as a search strategy. Especially in
planning, there are only a few systems performing a combined search in both directions. The only
bi-directional planners that have been developed, to the knowledge of the authors, are PRODIGY [],
NOLIMIT[],FLECS[] and RASPUTIN[]. All of these planners have been developed by researchers
of the Carnegie Mellon University’s PRODIGY project3 and are based on the combination of goal-
directed backward chaining with simulation of plan execution, a technique developed by Veloso et
al [], which extends means-end analysis. Although these planners perform some kind of search in
both directions, they are actually forward-direction planners, which utilize the backward search as
an action selection mechanism.

3. The Search Strategy of BP
The planners presented in the previous section have shown quite impressive performance and

they have proved to be able to handle a large variety of difficult problems. However, their
performance is unstable and they frequently present precessions in their efficiency between
different domains or even between problems of the same domain.

There are two main reasons that justify this behavior:
a) Although the heuristic functions constructed by all the planners are general, they seem to work

better with specific domains.
b) There are domains and problems that clearly favor one of the two search directions (forward or

backward).
The first argument, which is also a conclusion drawn from the experience of the authors, has

been stated by Stone, Veloso and Blythe in [].
The second argument is the main conclusion drawn by Bart Massey in an extensive study in the

directions of planning presented in []. Bonet and Geffner have pushed the same argument one step
further: “Although we don’t fully understand yet when HSP will run better than HSP-R, the results
suggest nonetheless that in many domains a bi-directional planner combining HSP-R and HSP
could probably do better than each planner separately”. The answer to the question posed by Bonet
and Geffner above has been answered by Massey in []. Massey discriminates planning problems
into forward and backward problems, in the sense that strongly directed planners will find the
problems of the opposite direction intractable.

 Motivated by the conclusions stated above we developed BP, a heuristic state-space planner,
which combines search in both directions. A part of the plan is constructed with the progression
module (forward chainer) and the rest is constructed with the regression module (backward
chainer). The sub-plan of the regression module is inversed and merged with that of the progression
module in order to produce the final plan. However the case is not always that simple, because
usually BP interleaves the execution of both modules several times before a solution is found.
Details about the search strategy will be presented later in this section but first we have to describe
the progression and the regression search modules.

3.1 The Progression Module
The progression module employs a best-first search method starting from the initial state and

moving forward trying to reach the goals. It is worth noting here that the initial state and the goals
refer to the specific sub-problem that is passed to the progression module and not necessary to the

More information about the PRODIGY project can be found at the URL: http://www.cs.cmu.edu/~prodigy/

initial problem. This means that as the execution of the two search modules interleave, the initial
state and the goals change in a matter that will be explained in more details later in this section.

The progression module takes five arguments, which are: a) the initial state I’ of the sub-
problem, b) the goals G’ of the sub-problem, c) the maximum size SOF_AGENDA of the planning
agenda and d) a threshold T declaring when should the search stop and e) a heuristic function h
capable of estimating distances between states. The progression module returns a new state S, which
is the state closer to G’ that the module could find. Figure 3.1 illustrates the algorithm of the
progression module.

Progression_Module
Input: I’, G’, SOF_AGENDA, T, h , Output: S
Set Agenda = [I’], K=I’
While (Agenda) ≠ ∅
begin

G = the first state in the Agenda
⊆If G’ G

 Return G
If G∉Closed List
begin

If h(G)>h(K)+T
 Return (K)
If h(G)<h(K)
 K=G
For all actions A’ : q∈prec(A’) q∀ → ∈G
begin

S’=G add(A’)/del(A’) ∪
 Add S’ to the Agenda sorted by h(S’)

If size of Agenda>SOF_AGENDA
remove the last element from Agenda

 Add G to the Closed List
end

end
Remove G from Agenda

End
Return K

The progression module employs a simple forward best first search strategy with two main
differences:

a) the size of the planning agenda is limited by an upper limit SOF_AGENDA. This means that
if there are N states (N>SOF_AGENDA) that should be stored in the Agenda, only the
SOF_AGENDA most promising (according to h) states will be stored and the rest will be
pruned. As a consequence, the algorithm is not complete and it may stop without returning a
solution even if a solution exists. However, the memory requirements in order to maintain
completeness may become unrealistic in hard real world problems. Moreover, the overhead
in computational workload increases with the size of the Agenda, as the last one must be
kept sorted.

b) The search may stop before reaching the goals or ending up in a deadlock, as it usually
happens with search algorithms. The progression module also stops the search when it is not
further possible to move to a state with a smaller distance from the goals than the one of the
current state. In fact, the policy adopted by BP is a little bit more lenient and the search will
not stop even if it can’t find any improving state, as long as there is at least one successor
state, which distance is not greater than the distance of the current state plus T, a constant
passed as an argument to the progression module. This part of the algorithm is crucial to the
unified bi-directional search strategy, since the value of T determines how frequently will
the algorithm change the search direction.

3.2 The Regression Module
The algorithm of the regression module is quite similar to that of the progression module

described in the previous section, since the search strategy is symmetric. However, there are certain
key points that need to be clarified and all these points refer to common problems caused to the
regression planners by the representation of the planning problems. The main idea behind
regression planners is that they don’t deal with states, as progression planners do, but with sets of
states. This originates from the fact that the goals do not usually form a complete state description
and therefore a more sophisticated technique than simply reversing the actions, as done in GRT [],
is necessary in order to regress the goals.

The regression module makes extensive use of binary mutual exclusions between facts []. Two
facts p and q are mutual exclusive, we note mx(p,q), if no valid state contains both of them at the
same time. For example, in the BLOCKS domain the facts clear(A) and on (B,A) are mutual
exclusive. Mutual exclusions are calculated in a way similar to the one they are calculated in
GRAPHPLAN. BP progressively builds a graph of facts noting at the same time the mutual
exclusions between them using the following formulae:

mx(p,q) if :
∀ action A’ : p ∈ add(A’) q ∈del(A’) and →
∀ action A’ : q ∈ add(A’) p ∈del(A’) →

mx(p,q) if :
∀ action A’: p ∈ add(A’) and action B’: q ∀ ∈ add(B’) ∈(x,y): x∈prec(A’), y prec(B’), mx(x,y) ∈

It is worth noting here that BP does not detect mutual exclusions of order higher than two and
this may cause problems with certain domains. Consider, for example, a BLOCKS problem and a
state S’=[on(A,B), on(B,C), on(C,A))]. Although there is no binary mutual exclusion between any
two of the facts in S’, it is quite clear that S’ is not a valid state. However, since the detection of
mutual exclusions is a hard process, this was a necessary compromise.

Bonet and Geffner in HSP-R [] define two criteria for identifying whether an action A is
backwards applicable to a state S’:

a) relativeness: add(A)∩ S’ ≠ ∅
b) consistency: del(A)∩ S’=∅

The consistency check is not very strict and frequently HSP-R encounters invalid states. In order to
prune these states, HSP-R checks to see if they contain pairs of facts that contain mutual exclusions.
BP extends the consistency check of HSP-R in order to prune the actions that lead to invalid states
before they are applied to the current state. So the criteria for backwards applicability in BP can be
formed as:

Regressibility test
An action A is backwards applicable to state S if:

1. add(A)∩ S’ ≠ ∅
2. del(A)∩ S’= ∅
3. (q,p): q∈add(A), p∈S’, mx(q,p) ¬∃
4. (q,p): q∈(prec(A)-del(A)), p¬∃ ∈S’, mx(q,p)

State S’ that is produced after the backward application of action A to state S by the following
formula:

State Regression
S’=S-add(A)∪ prec(A)

Note however that there may be common elements in S and prec(A), so the double entries have to
be eliminated from S’.

 The regression module takes the same arguments with the progression module: a) the initial
state I’ of the sub-problem, b) the goals G’ of the sub-problem, c) the maximum size
SOF_AGENDA of the planning agenda and d) a threshold T declaring when should the search stop
and e) a heuristic function h capable of estimating distances between states. The module returns a
set of facts (not necessarily a complete state), which resulted from the regression of G’ and are the
closer to I’ that the module could find. Figure 3.2 illustrates the algorithm of the regression module.

Regression_Module
Input: I’, G’, SOF_AGENDA, T, h, Output: S
Set Agenda = [G’], K=G’
While (Agenda) ≠ ∅
begin

G = the first state in the Agenda
⊆If G I’
Return G

If G∉Closed List
begin

If h(G)>h(K)+T
Return (K)

If h(G)<h(K)
 K=G

For each fact f in G
 For each action A’ that has f in its add list
 If (del(A’)∩ G=∅)

 begin
Set E=prec(A’)-del(A’) add(A’) ∪
If there are no mutual exclusions between facts in E and G
Begin

S’=S prec(A’)-del(A’) ∪
Remove double entries from S’
Add S’ to the Agenda sorted by h(S’)
If size of Agenda>SOF_AGENDA

remove the last element from Agenda
end

end
 Add G to the Closed List

 end
 Remove G from Agenda
End
Return K

The only differences between the algorithms of the two search modules lie in the way they identify
the applicable actions and produce the successor states. The other parts of the algorithm are
identical. They both employ a best first search strategy with limited agenda, which stops and returns
the best state (or set of states in the regression module) found so far, when the search cannot
proceed any further to states that do not transcend the distance limit of T.

3.3 Combining the two Modules into an integrated Search Strategy
The underlying framework of the bi-directional search strategy is based on a relatively simple

idea. Very frequently, single-directional planners reach a point in the search process where the
heuristic function becomes less informative and they proceed with blind search. Two of the main
reasons that justify this behavior are: a) the branching factor of the current sub-problem is too large
for the heuristic to produce accurate estimates b) the sub-problem is much too complex and the
heuristic function becomes less informative as the search goes on. The second reason though
applies only to planners that construct the heuristic function only once at the beginning.

In a few words, BP constructs the heuristic function in the backward direction and starts
performing a forward directed search until it reaches a state SB from where it is difficult to proceed
towards the goals. Then it reconstructs the heuristic function in the opposite (forward) direction and
starts searching, in the opposite direction (backward), from the Goals towards S

B

BB. If the backward
search is also blocked after some steps in a state SB2, BP will restart the planning process replacing
the Initial state with SB and the Goals with SB B2. In order to avoid infinite loops between the two
search modules, if one of the modules returns without improving its initial (or final in the case of
regression) state, the Threshold of the search is increased by a constant number. The bi-directional
search strategy of BP is outlined in Figure 3.3.

Search Algorithm of BP
Input I, G, Output Plan
Set Plan1=Plan2=[], S = I, F = G, Direction = Forward, Threshold = Init_Thr

⊇While S F
Begin
 If Direction = Forward
 begin

Create backward heuristic function hB
St=Progression_module(S,F,MAX_SOF_AGENDA,Threshold,hB)
If St S ≠
 Set Plan1=Plan1+St.plan, Threshold=Init_Thr, S=St

 Else
 Threshold=Threshold+STEP
 Direction = Backward

end
 Else

begin
Create forward heuristic function hF
St=Progression_module(S,F,MAX_SOF_AGENDA,Threshold,hF)

≠If St F
 Set Plan2=St.plan+Plan2, Threshold=Init_Thr, F=St

 Else
 Threshold=Threshold+STEP
 Direction = Forward

End
end
Return Plan1+Plan2

The changes in the direction of BP aim to deal with the problems stated above and this can be
understood with the following two arguments: a) The change in the direction enables BP to
reconstruct the heuristic function and thus make it more informative. b) The adaptive way in which
BP changes directions tends to solve the major part of the problem following the search direction,
which best fits the specific problem.

4. BP’s Heuristic Functions
In order to test the efficiency of the bi-directional search strategy, we developed two, relatively

simple, domain independent heuristics functions that were embedded in BP planning system. The
two heuristic functions are quite similar and are based on exactly the same idea, but the first one is
used for the progression module and the other for the regression one. Note here, that both search
modules of BP adopt a weighted A* search strategy, where the total cost of a state S is calculated
as: w1*L(S)+w2*h(S). In the previous formula L(S) is the number of steps needed to achieve state S,
starting from the Initial state, h(S) the value returned by the heuristic function and w1 and w2 user-
defined constants. Sub-section 4.1 presents the progression heuristic function, while the regression
one is presented in sub-section 4.2. Finally sub-section 4.3 describes the adoption of a goal ordering
technique in order to refine the estimates of the heuristic functions.

4.1 The Progression Heuristic Function
The heuristic function used for the progression module is similar to the one of the GRT

planning system. As in GRT the heuristic function is extracted from a leveled graph, similar to the
one built by GRAPHPLAN. The graph consists of all the facts of the domain (the action levels of
the GRAPHPLAN are omitted) that are achievable from the Initial state, tagging them with a
number K, identifying the minimum number of steps needed to achieve them starting from the
Goals. The graph construction begins from the Goals of the problem (level 0) and proceeds
backwards adding iteratively a new level L with all the facts that are added by actions that are
applicable at level L-1. Note however, that since the creation of the graph proceeds backwards and
the Goals do not necessarily form a complete state, a level L is built from level L-1 through relaxed
regression and not by progression, as done in GRT.

Relaxed regressibility test
An action A is backwards applicable to level M of the graph if
∃ fact f: f add(A), f∈level M of the graph ∈

 The relaxed regressibility test is similar to the first criterion of the regressibility test of section
3.2, if we treat the levels of the graph as states. However, the last three criteria of the test have been
omitted since the graph is just used for estimates of the real distances between each fact and the
goals.

Graph Expansion
For each action A that passes the relaxed regressibility test for level L-1, the algorithm computes a
value V as the sum of the tags of all the facts in add(A). The facts in its precondition list are then
added at level L and tagged with V+1 if they have not already been tagged with a smaller value than
V+1.
 The expansion of the graph reiterates until the graph reaches level LMAX, where no more facts
can be achieved with a cost smaller than the one in its tags.
 After the creation of the graph, which is done only once as long as the planner does not change
direction, the tags of the facts are used to produce estimates for the distance between any state S in
the domain and the goals, just by summing up the tags of the facts in S.

4.2 The Regression Heuristic Function
 As stated earlier in this section, the regression heuristic function is similar to the progression
one and they just differ in the direction in which the graph is created. The graph for the regression is
built starting from the facts in the Initial state (level 0) and proceeding forwards until it reaches a
level LMAX, where no more facts can be added to the graph with a cost smaller than the one in their
tags. The progressibility test is not relaxed and an action A is selected for expanding level L+1 of
the graph if all the preconditions of A exist in level L of the graph. Again a value V summing up the
tags of the preconditions of A is calculated and the facts in add(A) are added to level L+1 of the
graph and tagged with V+1 if they have not already been tagged with a smaller value than V+1.
 The graph of the regression is built only once each time the planner selects the backward
direction for its search. In order to estimate the distance between each state S in the domain and the
Initial state, the heuristic function just sums up the tags of all the facts in S.

4.3 Refining the heuristic functions with Goal Ordering
 Goal ordering for planning has been an active research topic over the last years and although
the technology is not yet mature, goal-ordering techniques have been successfully used in state-of-
the-art planning systems. The research so far has been focused on two tasks: a) how to
automatically extract as much information as possible about orderings among the goals of the
problem, with minimum computational cost and b) how to use this information during planning.
McCluskey and Porteous with their work on PRECEDE[] proposed a method for identifying goal

orderings between pairs of atomic facts, based on direct domain analysis. The more recent work of
Koehler and Hoffman on GAM [] have resulted in two techniques for identifying goal orderings,
one based on domain analysis and another utilizing the information gained by the construction of a
planning graph. The simplest and yet quite effective orderings extracted by these techniques have
been described as reasonable orders and are based on the following idea:

“A pair of goals A and B can be ordered so that B is achieved before A if it isn’t
possible to reach a state in which A and B are both true, from a state in which A is
true, without having to temporarily destroy A.” [].

 IPP [] and FF[] make use of reasonable orderings during planning through the construction of a
goal agenda that divides the goals into an order set of sub-goals. The planners sequentially try to
achieve the first sub-goal in the agenda, which has not yet been achieved. Experimental results have
shown that the use of the goal agenda yields in significance improvement in terms of both planning
time and plan quality.
 BP adopts a slightly different method to compute reasonable orderings between goals, which is
based on mutual exclusions between facts of the domain. Since the planner calculates the set of
binary mutual exclusions, in order to use them for the regression phase, the overhead imposed by
the calculation of reasonable orderings is negligible. Function OB, which is outlined in figure X, is
iteratively ran on every pair of goals in order to identify the possible orderings between the goals of
the problem.

Function OB
Input: Goals a and b
Output: True (a should be ordered before b) or False (a should not be ordered before b)
For each action O: a∈add(O)
begin
 Result =true
 For each fact f: f∈prec(O)
 begin
 If mx(b,f)=true
 Result=false
 end
 If result = true return false
end
Return true

 Function OB is not complete and it may miss certain goal orderings (e.g. in problems with
mutual exclusions of higher order than two). However it is a fast method for identifying a
respectable number of goal orderings.
 The orderings extracted by OB are used in the planning phase, in order to refine the results of
the heuristic functions and not to divide the goals into sub-sets. More specifically, after the
evaluation of a state S by one of the two heuristic functions, as exemplified by sub-sections 4.1 and
4.2, BP searches S for possible breaches of the goal orderings.

Ordering breach
Fact f of a state S is an ordering breach if:
1. f∈Goals
2. goal g: g∉S and OB(g,f)=true ∃

 For every ordering breach found in state S, the latter is penalized (i.e. the estimated distance
between S and the Goals is increased by a constant number), since at some point later the ordering
breaches will have to destroyed and re-achieved after the correct ordering has been reinstated.
 It is straightforward that function OB can only be used be the progression module, so there is a
slightly different function called OB-R (figure X) that is used by the regression one.

Function OB-R
Input: Initial facts a and b
Output: True (a should be ordered before b) or False (a should not be ordered before b)
For each action O: a∈del(O)
begin
 Result =true
 For each fact f: f∈(prec(O)-del(O) add(O)) ∪
 begin
 If mx(a,f)=true
 Result=false
 end
 If result = true return false
end
Return true

RESULTS OF THE GOAL-ORDERING

5. Domain Analysis through Planning Graphs

6. Experimental Results
In order to test the efficiency of BP we implemented two additional planners: a) PMP, a

progression planner using the progression module and heuristic function of BP and b) RMP, a
regression one using the regression module and heuristic function of BP. The search modules in
PMP and RMP were slightly modified, so as to continue their search until a solution is found. The
three planning systems were tested on a large variety of problems adopted by the recent AIPS-2000
planning competition.

The codes of the planners were based on the publicly available code of the second version of
GRT4 and were implemented in C++. All the tests were run on a SUN ENTERPRISE 3000 parallel
computer, with a SPARC-1 processor at 167 MHz and 256 MB of RAM. The underlying operating
system was SUN Solaris 2.6 and the programs were compiled by GNU c++ compiler.For the tests
we chose the following configuration for the three planners:

1. The size of the planning agenda is limited to 200 states
2. The initial value for the search threshold (variable Init_Thr in the search algorithms) is 2
3. The step for the increases in the search threshold (variable STEP in the search algorithms) is

also set to 2
4. The values of the weights for the weighted A* search algorithm are set as: 0.4 for the

accumulated cost of the actions applied so far (w1=0.4) and 1.0 for the estimated remaining
cost (w2=1.0).

The three planners (PMP, RMP and BP) were thoroughly tested on all problems of the Blocks
world, the Logistics, the MIC-10 and the Freecell domains used in the AIPS-00 planning
competition. Tables 6.1, 6.2, 6.3 and 6.4 present the results of the tests. Columns 2,4 and 6 of all
tables present the length of the produced plans (number of actions) and columns 3,5 and 7 the time
(in milliseconds) needed to solve the problems. Note that a dash in cell means that the problem
could not be solved, within the 180 seconds limit in CPU time set on all planners and plan lengths
written in bold note the minimum plan length found by the three planners.

6.1 Blocks world
It is clear from table 6.1 that the specific problems of the Blocks world used in the competition

favor regression planners. RMP was able to solve 47% more problems than PMP producing in all
problems shorter plans in much less time. BP presented results quite similar to RMP. Specifically, it

4 The code of GRT is available at the URL: http://www.csd.auth.gr/~lpis/GRT/main.html

solved 1 problem less than RMP, producing 16% lengthier plans, spending though 45% less time on
average. BP clearly outrivaled PMP, producing 67% shorter plans and spending almost 20 times
(1930%) less time on average.

Problem PMP
(length)

PMP
(time)

RMP
(length)

RMP
(time)

BP
(length)

BP
(time)

4-0 6 40 6 40 6 60
4-1 10 40 10 50 10 70
4-2 6 30 6 40 6 50
5-0 12 790 12 100 12 110
5-1 10 810 10 90 20 180
5-2 24 880 16 330 16 140
6-0 42 14790 12 140 18 270
6-1 10 80 10 110 10 150
6-2 54 15820 24 640 22 260
7-0 44 12930 20 410 22 390
7-1 70 13990 22 430 24 440
7-2 106 42890 20 530 22 410
8-0 122 54310 18 430 122 19220
8-1 88 27360 20 490 30 850
8-2 18 250 16 410 16 390
9-0 92 37750 60 61010 84 8160
9-1 - - 30 5150 30 3570
9-2 - - 26 5130 28 1740
10-0 - - - - - -
10-1 - - 38 21350 42 7490
10-2 - - - - 114 40200
11-0 62 5270 34 4730 78 8490
11-1 - - 30 2080 - -
11-2 - - - - 220 125030
12-0 - - 34 5040 48 8680
12-1 - - 38 18380 - -
13-0 - - - - - -
13-1 - - - - - -
14-0 - - 38 8170 - -
14-1 - - 36 5910 - -
15-0 - - - - - -
15-1 - - - - - -
16-0 - - - - - -
16-1 - - - - - -
17-0 - - - - 50 59280

Table 6.1: Blocks world problems

6.2 Logistics
In the logistics problems the choice of planning direction didn’t seem to play a very important

role. RMP and BP solved more problems than PMP, but produced slightly worse plans than the
latter. Specifically, BP produced 3% lengthier plans than PMP but solved 32% more problems in
7% less time on average. RPM solved the same number of problems with BP and was quite faster
(9%) than the latter. However the plans it produced were 5% lengthier than those of BP.

Problem PMP

(length)
PMP
(time)

RMP
(length)

RMP
(time)

BP
(length)

BP
(time)

4-0 20 150 23 240 20 240
4-1 19 180 25 300 19 260
4-2 17 410 17 220 20 300
5-0 27 220 32 350 27 350
5-1 17 150 20 270 21 340
5-2 8 100 8 200 10 240
6-0 25 210 33 440 28 450
6-1 14 150 16 270 16 400
6-2 25 210 32 440 26 400
7-0 38 720 44 1340 41 1210
7-1 62 10730 51 1340 50 1830
8-0 31 640 41 1230 37 1340
8-1 44 810 54 1710 46 1490
9-0 37 700 47 1510 39 1430
9-1 32 590 34 1230 32 1320
10-0 74 29650 54 3790 50 5010

10-1 43 1570 53 2890 45 3140
11-0 52 3070 62 4370 54 4010
11-1 66 6330 75 5190 66 7040
12-0 45 4590 51 3820 45 4960
12-1 70 2600 82 5480 72 4070
13-0 79 7500 97 17000 93 38460
13-1 - - 83 17620 81 24160
14-0 - - 78 15490 79 31140
14-1 76 5970 93 20410 87 30120
15-0 112 70170 95 21480 106 38620
15-1 76 20240 85 20070 82 24410
16-0 - - 109 35820 112 47130
16-1 83 10330 108 40890 85 16430
17-0 - - 116 41350 114 53130
17-1 - - 120 45650 120 85490
18-0 - - 145 61470 152 99020
18-1 104 90900 101 46410 102 59810
19-0 - - 128 71670 129 98540
19-1 - - 119 70160 113 89260
20-0 - - 127 73580 138 116440
20-1 110 22620 123 66510 112 33480

Table 6.2: Logistics problems

6.3 MIC-10
 MIC-10 is a domain that clearly favored progression planners, as shown by the experimental
results. RMP was unable to solve problems harder than s4-1, while PMP and BP solved almost
every problem of the domain. We tried to increase the size of the planning agenda for RMP and as a
result the planner was able to solve a few more problems (up to s5-2) but this had a negative impact
on planning time. Concerning the other two planners, BP clearly outperformed PMP by solving
7.5% more problems in 35% less time on average and by producing 10% shorter plans. Although in
the tests we used 100 problems of the MIC-10 domain (s1-0 to s20-4), due to limitation in space
table 6.3 only presents part of the problems.

Problem PMP
(length)

PMP
(time)

RMP
(length)

RMP
(time)

BP
(length)

BP
(time)

S1-0 4 0 4 10 4 20
S1-4 4 10 4 10 4 0
S2-0 8 20 7 40 8 20
S2-4 8 20 7 40 7 30
S3-0 12 40 10 320 11 40
S3-4 11 40 10 350 10 40
S4-0 16 100 - - 15 100
S4-1 16 120 16 1230 13 90
S4-2 16 100 - - 16 100
S4-4 16 110 - - 15 100
S5-0 20 190 - - 19 190
S5-4 20 180 - - 18 170
S9-0 36 1420 - - 32 920
S9-4 33 1000 - - 29 950
S10-0 40 1980 - - 36 1390
S11-0 41 2400 - - 39 1580
S12-0 48 4280 - - 41 2500
S15-0 60 8710 - - 52 5130
S17-0 67 12840 - - 62 7880
S17-2 65 9950 - - 60 8050
S17-3 - - - - 61 7870
S17-4 65 14280 - - 57 8040
S18-0 70 19000 - - 65 11150
S18-4 70 16050 - - 62 9140
S19-0 - - - - 66 11520
S19-1 - - - - 69 12740
S19-2 74 26090 - - 64 11990
S19-3 - - - - 67 12100
S19-4 77 21910 - - 66 11570
S20-0 - - - - 70 16560
S20-1 84 28640 - - 71 13450
S20-2 79 23800 - - 65 12850
S20-3 - - - - 72 14770
S20-4 - - - - 70 15570

Table 6.3: MIC-10 problems

6.4 Freecell
Like the Logistics domain, Freecell does not clearly favor a specific planning direction. However

PMP seemed to perform a little bit better than RMP and this is probably due to the fact that there is
too much implied information that is omitted from the goals. In this domain BP solved 3 problems
more than RMP and 2 less than PMP, producing plans of lower quality (approx. 6% lengthier plans)
than both RMP and PMP. However, concerning planning time, BP clearly outperformed the other
two needing 35% less time than PMP and 614% less time than RMP on average.

Problem PMP
(length)

PMP
(time)

RMP
(length)

RMP
(time)

BP
(length)

BP
(time)

2-1 9 3920 9 37660 11 4240
2-2 8 3910 8 34110 9 4150
2-3 8 3510 8 38860 9 3940
2-4 8 4110 8 32920 9 4150
2-5 9 3930 9 33770 11 4390
3-1 18 18990 15 88360 18 43870
3-2 17 20190 19 100650 19 15000
3-3 16 30130 19 90870 15 10580
3-4 15 14950 13 71910 13 9990
3-5 16 38760 16 83530 17 19310
4-1 27 106590 - - 28 93750
4-2 24 25090 21 150020 - -
4-3 28 78620 - - 38 86140
4-4 26 67300 19 127580 - -
4-5 30 100620 - - 24 27880
5-1 - - - - - -
5-2 28 159790 - - - -
5-3 - - - - 46 152930
5-4 29 85080 - - 39 153630

Table 6.4: Freecell problems

7. Conclusions and Future Work

8. References
[1] Fikes, R., and Nilsson, N., 1971, STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving. Artificial Intelligence, 2: 189-208.
[2] Blum, L., and Furst M., 1995, Fast planning through planning graph analysis, In

Proceedings, 14th International Joint Conference on Artificial Intelligence, Montreal,
Canada, pp. 636-642.

[3] Kautz, H. and Selman, B. 1996, Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proceedings, AAAI-96, Portland Oregon, pp. 1194-1201

[4] Kautz, H. and Selman, B. 1999, Unifying SAT-based and Graph-based Planning. In
Proceedings, IJCAI-99, Stockholm.

[5] Long, D. and Fox, M. 1998. Efficient Implementation of the Plan Graph in STAN, JAIR,
10, pp. 87-115.

[6] Long, D. and Fox, 2000, M. Hybrid STAN: Identifying and Managing Combinatorial Sub-
problems in Planning, In Proceedings, 18th Workshop of the UK Planning and Scheduling
SIG

[7] Korf, R. 1998, Artificial intelligence search algorithms, CRC Handbook of Algorithms
and Theory of Computation, Atallah, M. J. (Ed.), CRC Press, Boca Raton, FL, pp. 36-1 to
36-20

[8] McDermott, D. 1996, A Heuristic Estimator for Means-End Analysis in Planning, In
Proceedings, AIPS-96

[9] Hoffmann, J. 2000, A Heuristic for Domain Independent Planning and its Use in an
Enforced Hill-climbing Algorithm, In Proceedings, 12th Int. Symposium on Methodologies
for intelligent Systems.

[10] Refanidis, I., and Vlahavas, I., 1999, GRT: A Domain Independent Heuristic for STRIPS
Worlds based on Greedy Regression Tables, In Proceedings, 5th European Conference on
Planning, Durham, UK, pp. 346-358.

[11] Nguyen, X., Kambhampati, S. and Nigenda, R. 2000, AltAlt: Combining the advantages
of Graphplan and Heuristics State Search, In Proceedings, 2000 International Conference
on Knowledge-based Computer Systems, Bombay, India.

[12] Bonet, B., Loerincs, G., and Geffner, H., 1997, A robust and fast action selection
mechanism for planning, In Proceedings, 14th International Conference of the American
Association of Artificial Intelligence (AAAI-97), Providence, Rhode Island, pp. 714-719.

[13] Bonet, B. and Geffner, H. 1999, Planning as Heuristic Search: New Results, In
Proceedings, ECP-99, Durham UK.

[14] Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E. and Blythe, J. 1995, Integrating
Planning and Learning: The PRODIGY Architecture, Journal of Experimental and
Theoretical Artificial Intelligence, 7(1).

[15] Veloso, M. and Stone, P. 1995, FLECS: Planning with a Flexible Commitment Strategy,
JAIR (3).

[16] Veloso, M. 1994, Planning and learning by Analogical Reasoning, Springer-Verlag.
[17] Fink, E. and Blythe, J. 1998, A complete bidirectional planner, In proceedings, 4th

International Conference on AI Planning Systems.
[18] Stone, P., Veloso, M. and Blythe, J. 1994, The Need for Different Domain-Independent

Heuristics, In proceedings, AIPS-94, Chicago, USA.
[19] Massey, B. 1999, Directions In Planning: Understanding the Flow of Time in Planning,

Available as a Technical Report from the University of Oregon.
[20] McCluskey, T. and Porteous, J. 1997, Engineering and Compiling Planning Domain

Models to Promote Validity and Efficiency, Artificial Intelligence, 95.
[21] Koehler, J. and Hoffmann, J. 2000, On Reasonable and Forced Goal Orderings and their

Use in an Agenda-Driven Planning Algorithm, JAIR (12).
[22] Porteous, J. and Sebastia, L., 2000, Extracting and ordering Landmarks for Planning, In

Proceedings, 18th Workshop of the UK Planning and Scheduling SIG

	1.
	1. Introduction
	2. Related Work
	3. The Search Strategy of BP
	3.1 The Progression Module
	3.2 The Regression Module
	3.3 Combining the two Modules into an integrated Search Strategy
	4. BP’s Heuristic Functions
	4.1 The Progression Heuristic Function
	4.2 The Regression Heuristic Function
	4.3 Refining the heuristic functions with Goal Ordering

	5. Domain Analysis through Planning Graphs
	6. Experimental Results
	6.1 Blocks world
	6.2 Logistics
	6.3 MIC-10
	6.4 Freecell

	7. Conclusions and Future Work
	8. References

