
Ensemble Approaches for Large-Scale
Multi-Label Classification and Question

Answering in Biomedicine

Yannis Papanikolaou1, Dimitrios Dimitriadis1, Grigorios Tsoumakas1, Manos
Laliotis2, Nikos Markantonatos3, and Ioannis Vlahavas1

1 Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
yannis.papanik@gmail.com,{dndimitr,greg,vlahavas}@csd.auth.gr

2 Atypon, 5201 Great America Parkway Suite 510, Santa Clara, CA 95054, USA
elalio@atypon.com

3 Atypon Hellas, Dimitrakopoulou 7, Agia Paraskevi 15341, Athens, Greece
nikos@atypon.com

Keywords: ensemble learning, multilabel learning, SVM, LDA, Metalabeler,
BioASQ

Abstract. This paper documents the systems that we developed for
our participation in the BioASQ 2014 large-scale biomedical semantic
indexing and question answering challenge. For the large-scale semantic
indexing task, we employed ensembles consisting of support vector ma-
chines, both vanilla and tuned to handle class imbalance, labeled latent
Dirichlet allocation models and meta-models predicting the number of
relevant labels. For the question answering task we ensembled different
scorings of candidate answers based on work in recent literature.

1 Introduction

This paper discusses our approaches to the large-scale semantic indexing and
question-answering tasks of the 2nd (2014) version of the BioASQ challenge.
We mainly worked on the semantic indexing task. Section 2 offers background
knowledge on the models and algorithms we employed. Section 3 presents our
classifier selection approaches for multi-label data. Section 4 describes the actual
systems we used for the challenge and the experiments we performed. Section 5
presents our results. Section 6 presents our work on the question answering task.
Finally, Section 7 concludes this paper.

2 Background

This section provides a brief description of the models/algorithms used in our
participation in Task 2A of the BioAsQ challenge along with the necessary the-
ory.

2 Authors Suppressed Due to Excessive Length

2.1 Support Vector Machines

Support Vector Machines [1] have been extensively used in the literature for
classification and regression tasks. Being a non-probabilistic binary classification
algorithm in its essence, it has managed to achieve state-of-the art performance
in numerous tasks and has been applied in multiple domains for solving learning
problems. In our experiments we used the Liblinear package [2], along with some
minor modifications, which fitted perfectly our needs for a very fast and scalable
implementation.

2.2 MetaLabeler

The MetaLabeler [3] is essentially a meta-model employed in multilabel tasks
that serves to automatically determine the cardinality of the label set for a given
instance. The idea is to train a linear regression model (e.g. with an SVM) with
input from some feature space (an easy option could be simply the word tokens
of each instance) and output the number of labels associated to the particular
instance.

The need for the above meta-model arises in multi-label problems where,
given an instance, the model’s output for each label is a score or a probability.
In this case, every instance is associated with a ranking of labels and we need
to properly set a threshold so that we get a hard-assignment of labels. It should
be noted here, that apart from the metalabeler a great deal of work exists in
literature to address that particular problem [4] [5] but alternative solutions usu-
ally require a crossvalidation procedure which proves to be too time-consuming
for large-scale datasets. We also experimented with an approach similar to the
metalabeler [6]. In this case, the output of the regression training problem is
not the actual number of labels but the one that maximizes some evaluation
measure (the F-measure in our case). Thus, given a trained model, we employ
it on a validation set to determine the number of labels that would maximize
the F-measure for every instance. Even if unintuitively this approach would do
better as it captures also the misclassification errors of the classifiers, in practice
results were inferior compared to the metalabeler.

2.3 Topic Models

Latent Dirichlet Allocation (LDA) is a powerful probabilistic model first into-
duced by [7] [8] in an unsupervised learning context. The key idea is that a corpus
of documents hides a number of topics; this model, given the corpus, attempts to
learn the distibution of topics to documents (namely the Θ distribution) and the
distribution of topics to word tokens (Φ distribution respectively). After learning
these distributions, the trained model can be used either in a generative task (e.g.
given some topics, produce a new document(s)) or in an inference task (given
some new documents, determine the topics they belong to). It is rather obvious
to note that this model seems naturally fitted to deal with multi-label problems,

Title Suppressed Due to Excessive Length 3

apart from the fact that, being totally unsupervised, its resulting topics may be
hard to interpret.

[9] and [10] incorporated the LDA theory into a supervised learning context
where each topic corresponds to a label of the corpus in a one-to-one correspon-
dence. We implemented the LLDA and the prior LLDA variant of [10]. The only
difference between the two is that the prior LLDA model takes into account the
relative frequencies of labels in the corpus, a crucial fact in case of a problem with
power-law statistics4 like the one we address. In experiments, the prior LLDA
model was performing significantly better than the simple LLDA so we used that
one for our systems. Eventhough this model’s performance didn’t match that of
the SVMs, we opted to use it with the motivation that it could do better for
some labels and therefore used it in two ensembles (see section 4.2).

3 A classifier selection multilabel ensemble

3.1 Previous work

The main idea behind ensembles is to exploit the fact that different classifiers
may do well in different aspects of the learning task so combining them could
improve overall performance. Ensembles have been extensively used in literature
[12] with stacking [13], bagging [14] and boosting [15] being the main methods
employed. In the context of multilabel problems, [16] proposes a fusion method
where the probabilistic outputs of heterogeneous classifiers are averaged and the
labels above a threshold are chosen. [17] propose a classifier selection scheme
based on the F-measure. For each label and for each of the classifiers the F-
measure is computed and the best performing is chosen to predict that particular
label. We tried the last approach and even for large validation datasets we found
a systematic decline on the micro-F measure.

In this work, we propose a different method, a mostly simple and fast ensem-
ble technique oriented towards a classifier selection (rather than fusion) scheme.
Essentially, we treat the problem as having L different classification tasks and
requiring to be able to tell which of the models used is more suitable for each of
them. In the description below, we suppose that there is a baseline model (i.e. a
model that has a better overall performance than the others) but our idea can
be applied with minor modifications without this assumption.

Formally, suppose we have a baseline model A and q different models Bi and
we want to combine them in a multilabel task with input feature vectors x and
output y,y ∈ L,L being the set of labels. Instead of choosing a voting system
for all labels, we could see for which labels each Bi performs better than A on
some validation set and according to some evaluation metric eval. Let’s denote

LBi = {l : eval(Bi) > eval(A), eval(Bi) > eval(Bj)}, with l ∈ L and j 6= i

4 by referring to a dataset with power-law statistics we mean that the vast majority
of labels have a very low frequency and only very few have a high frequency, for a
more elaborate explanation refer to [11]

4 Authors Suppressed Due to Excessive Length

and
LA = L−

∑
LBi

respectively. Then, when predicting on unseen data, we could predict labels that
belong to LA from model A and labels belonging to each LBi from the respective
model Bi.

There are two remaining issues to be solved; a) choose a valid evaluation
metric eval and b) assure that results pointed by eval on a validation set can
be generalised to new, unseen data. As the contest’s main evaluation metric was
the micro-F measure we opted for it. As mentioned, we also tried to use the
F-measure (per label) but it was not improving overall performance, even on the
validation dataset.

Concerning the second isssue, initially we tried to address it by just relying
on using a large validation dataset. However, after obtaining unfavorable results
on the competition, we relied on a siginficance test, namely a McNemar test
with a confidence level of 95%. To sum up, we first predict with A (our baseline
model) on a validation dataset and then for each label and for each model Bi

we check if choosing Bi to predict for that label improves the overall micro-F
measure. If yes, that label is candidate to belong to LBi. Then, for all labels that
belong to the candidate sets, we run a McNemar test, or multiple McNemar tests
accordingly, to check if the difference in performance is statistically significant.
and if there is a Bi significanlty better than A on that label then we add that
label to LBi. Below we show the pseudocode for this technique. This approach
worked quite well, even for smaller validation datasets.

1. For all documents ∈ V alidationDataset assign the relevant labels ∈ L pre-
dicting with model A

2. For each model Bi

– For all documents ∈ V alidationDataset assign the relevant labels ∈ L
predicting with Bi

3. For each label l ∈ L calculate the true positives tpAl, false positives fpAl

and false negatives fnAl for A
4. For each model Bi

– For each label ∈ L calculate tpBil, fpBil and fnBil

5. Set tpA =
∑
tpAl and fpA, fnA respectively

6. Set the micro-F measure as mfA = 2tpA

2tpA+fpA+fnA

7. For each label l ∈ L
– For each model Bi

• substract tpAl, fpAl and fnAl from tpA and fpA, fnA respectively
• add tpBil, fpBil and fnBil to tpA and fpA, fnA respectively
• If the new mfA is better than the previous add l in candidateListi

8. For each label l
(a) If l belongs to just one candidateListi

– perform a McNemar test between models A and Bi with significance
level 0.95

– if Bi is significantly better than A add l to LBi

Title Suppressed Due to Excessive Length 5

(b) If l belongs to more than one candidateListi
– perform a McNemar test between models A and each Bi with signif-

icance level 0.95 applying a FWER correction with the Bonferoni-
Holms step method

– If just one Bi is significantly better than A add l to LBi

– Else if many Bi’s are significantly better than A choose the model
Bi that has the highest score in the McNemar test with A 5

9. Compute LA as LA = L−
∑
LBi

10. For all documents ∈ TestDataset assign the relevant labels ∈ LA predicting
with model A

11. For each model Bi

– For all documents ∈ TestDataset assign the relevant labels ∈ LBi pre-
dicting with model Bi

A final note is that when performing multiple statistical comparisons (that
is for more than two models) we need to keep control of the family-wise error
rate (FWER) in order for the statistical comparisons to be valid. [18] refers to
many techniques of controlling that error. In our case, as the tests we performed
were parametrical, we used the Bonferroni-Holms step method.

4 Description of Systems and experiments

This section provides the description of our systems, the training procedure and
the experiments. We present all results for the systems in the following section,
so whenever speaking about e.g. a model being better than another or about
performances, we refer the reader to section 5.

4.1 Description of the experiments

In our experiments we used a subset of the corpus, keeping only the documents
belonging to the journals from which the new, unseen data would be taken. Thus
we ended up with about 4.3 million documents. For all systems, we extracted
a dictionary from the corpus keeping words and bigrams (pairs of words) with
more than 6 ocurrences and less than half of the size of the corpus, removing
stopwords (e.g. ”and”, ”the”, etc) and non-arithmetic symbols. In case of the
SVMs’ training, each feature was represented by its tf-idf value 6, where tf stands
for term frequency and idf, inverse document frequency. In that case we also
applied zoning for features belonging in the title and features that were a label
(e.g. features such as ”humans”, ”female”, etc). In the context of the BioAsq
competition we used the last 50 thousand documents for validation and the
preceding 1.5 million documents for training.

5 It is needless at this point to apply again McNemar tests among the Bi models
because we are not interested on determining if their differences in performance are
significant; we just need to choose one among them as we know they are all doing
better than A

6 apart from the BNS SVMs in which case we used the BNS value

6 Authors Suppressed Due to Excessive Length

4.2 Systems used in the competition

We used five systems in the competition, opting to name them as Asclepios,
Hippocrates, Sisyphus, Galen and Panacea.

The first two systems are identical but trained in different size datasets.
We trained L binary SVMs in a one-vs-all approach (one for each label) and a
second-level model, the Metalabeler (for predicting an instance’s label cardinal-
ity). During prediction we slightly changed the Liblinear code to output a score
instead of a binary decision for the SVMs. This way, for each instance we obtain
a descending ranking of labels, from the ones with the highest scores to the ones
with the lowest. Then, by using the Metalabeler we predict a label cardinality
c for that instance and thus choose the top c labels from the ranking. Asclepios
was trained on the last 950 thousand documents while Hippocrates was trained
on the last 1.5 million documents.

The rest of the systems are ensembles implemented just as described in sec-
tion 3. They all have Hippocrates as a component, which was the best performing
system, so from now and forth we will refer to it as the baseline model.

The third system, Sisyphus, consists of an ensemble of two models, the base-
line and a model of simple binary SVMs. We initially used vanilla (not tuned)
SVMs for the second model but then proceeded in trying also to tune them. Fea-
ture scaling with BNS [19] was our first effort, but the trained models performed
worse and training required very long times. The reason for the last observation
is that if performing scaling or feature selection in a multilabel problem, the
features’ scaling factors for training will be different for each label. This means
that we need to vectorize the training corpus L times, a non-trivial task in our
case where L is of the order of 104. If using common scaling factors for all la-
bels instead (e.g. by tf-idf as we did) vectorizing needs to be done only once for
all labels. Another effort for tuning the SVMs was to experiment with different
values for the C parameter (other than the default 1) which did not really yield
significant improvements. We then used the idea of [20] to change the weight
parameter for positive instances (w1). When training a classifier with very few
positive instances we can choose to penalize a false negative (a positive instance
being misclassified) more than a false positive (a negative instance being mis-
classified). We followed this approach unfortunately just before the end of the
third batch, but nonetheless it yielded very good results for the binary models.

The fourth model, Galen, is an ensemble of the baseline model and a prior
LLDA model and the fifth, Panacea, combines in an ensemble the baseline model
(SVMs with score ranking and Metalabeler), the tuned binary SVMs, the prior
LLDA model (all trained on the last 1.5× 106 documents) and a baseline model
trained on the whole corpus (about 4.3m documents, except the last 50k docu-
ments). Even if from at first glance it seems redundant to combine two identical
models, the reason we did this is the following: the corpus contains articles from
1974 to 2014. During this period a lot of things have changed concerning the se-
mantics of some entities, the semantics of some labels and most importantly the
distribution of labels to words. This leads to the effect of the first model, trained
in 1.5 million documents (papers from 2007-2012) having a better performance

Title Suppressed Due to Excessive Length 7

than the second one, trained on the whole corpus (papers between 1974-2012),
in terms of the micro-f measure. Nonetheless, the second model learns more
labels and is expected to do better in some very rare labels, having more train-
ing instances. Driven by this observation we added this model in the ensemble,
combining four models in total.

5 Results

5.1 Parameter setup

All SVM-based models were trained with default parameters (C=1, e=0.01).
For the LLDA model, we used 10 Markov chains and averaged them, taking
a total of 600 samples (one sample every 5 iterations), after a burn-in period
of 300 iterations. Alpha and beta parameters were equal for all labels during
training with alpha = 50/L and beta = 0.001. As noted in [10], the prior LLDA
model reduces during prediction to an LDA model with the alpha parameter
proportional to the frequency of each label. We set

alpha(l) =
50× frequency(l)

totalNumberOfLabels
+

30

L

and took 200 samples (one every 5 iterations) after a burn-in of 300 iterations,
from a single Markov chain. We note here that there was a lot of room for
improving the LLDA variant (e.g. average from many Markov Chains or take
more samples) but unfortunately we didn’t have the time to do so.

Experiments were conducted on a machine with 40 processors and 1Tb of
RAM. For the SVM models (apart from those with BNS scaling) the whole
training procedure (dictionary extraction, vectorizing and training) for 1.5×106

documents, a vocabulary of 1.5 × 106 features and 26281 labels takes around
32 hours. The SVMs trained with BNS scaling, require a lot longer, about 106
hours while the LLDA model needs around 72 hours. Predicting for the 35×104

documents of Table 1 needs around 20 minutes for the SVMs and around 3
hours for the BNS SVMs. The prior LLDA model needs a very long time for
predicting, around 33 hours. The reason for this is that the time needed for the
Gibbs sampling algorithm is proportional to the number of documents and the
number of labels, which in our case, are of the order of tens of thousands. In
case of the size of the BioAsq datasets (∼ 5000 documents) predicting for the
LLDA needed around 4 hours.

5.2 Results

In this section we present the results of our experiments. Table 1 shows the
performance of our component models in terms of the micro-F and macro-F
measures. We can see that the Metalabeler on 1.5m documents is performing
better overally, with the tuned SVMs following. Also, we can easily observe
that the Metalabeler on 4.2 million documents is worse compared to the one on

8 Authors Suppressed Due to Excessive Length

Table 1. Results for the models with which we experimented trained on the last
1.5 million documents of the corpus and tested on 35k documents already annotated
documents from the competition batches

Classifier no. of labels Micro-F Macro-F

Vanilla SVMs 26281 0.56192 0.33190
Metalabeler(1.5m documents) 26281 0.59461 0.43622

SVMs with BNS scaling 26281 0.51024 0.27980
tuned SVMs(-w1 parameter) 26281 0.58330 0.37729
Metalabeler(4.2m documents) 26509 0.58508 0.42929

Prior labeled LDA 26281 0.38321 0.29563

Table 2. Results for the component models of our systems trained on the last 1.5
million documents of the corpus and tested on 12.3k documents already annotated
documents from the competition batches

Classifier no. of labels Micro-F Macro-F

Metalabeler(1.5m documents) 26281 0.60921 0.44745
tuned SVMs(-w1 parameter) 26281 0.60296 0.40705
Metalabeler(4.2m documents) 26509 0.55350 0.39926

Prior labeled LDA 26281 0.37662 0.40125

1.5m documents, learning though 228 more labels. The prior LLDA model is not
performing not as near well as the SVM variants.

Tables 2 and 3 show respectively the performance of the models and the
four systems described in section 4.2. Asclepios is ommited as it is identical to
Hippocrates. Results are shown for 12.3k documents, having used 35k documents
for validation. We can see that the ensemble systems perform better than the
baseline (Hippocrates), with Panacea reaching the best performance even though
the validation dataset is relatively small.

Table 3. Results for the systems that participated in the BioAsq challenge

Systems Micro-F Macro-F

Hippocrates 0.60921 0.44745
Sisyphus 0.61323 0.44816

Galen 0.60949 0.44880
Panacea 0.61368 0.44893

Title Suppressed Due to Excessive Length 9

6 Question Answering

Being newcomers in the area of question answering, our modest goal was to
replicate work already existing in the literature. We decided to focus on [21],
an approach presented in the 2013 BioASQ Workshop for extracting answers
to factoid questions. Furthermore, we only focused on phase B of the question
answering task, taking the gold (correct) relevant concepts, articles, snippets,
and RDF triples from the benchmark datasets as input.

For each factoid question, our system firsts extracts the lexical answer type
(LAT). This is achieved by splitting the question into words, extracting the
part-of-speech for each word and finally extracting the first consecutive nouns
or adjectives in the word list of the question. Then, each of the relevant snippets
is split into sentences and each of these sentences are processed with the 2013
Release of MetaMap [22] in order to extract candidate answers.

For each candidate answer c, we calculated five scores similarly to [21]. Let I
denote an indicator function, returning 1 if each input is true and 0 otherwise.
The first score is prominence, which considers the frequency of each candidate
answer c within the set of sentences S of the relevant snippets:

Prominence(c) =

∑
s∈S I(c ∈ s)
|S|

(1)

The second score is a version of prominence that further takes into account
the cosine similarity of the question q with each sentence:

WeightedProminence(c) =

∑
s∈S similarity(q, s)I(c ∈ s)∑

s∈S similarity(q, s)
(2)

The third score, specificity, considers the (in)frequency of each candidate
answer in the corpus of PubMed abstracts A released by BioASQ:

Specificity(c) = log

(
|A|∑

a∈A I(c ∈ a)

)
/ log(|A|) (3)

The fourth and fifth scores consider the semantic type(s) of the candidate
answers as detected by MetaMap. In particular they examine whether these
types intersect with the semantic types(s) of the questions’s LAT (fourth score)
and the whole question (fifth score):

TypeCoercionLAT(c) =

{
1 if SemType(c) ∩ SemType(LAT) 6= ∅
0 otherwise

(4)

TypeCoercionQuestion(c) =

{
0.5 if SemType(c) ∩ SemType(q) 6= ∅
0 otherwise

(5)

10 Authors Suppressed Due to Excessive Length

Table 4 presents the results of the above scores as well as their ensembling
on the 42 factoid questions out of the 100 questions provided by BioASQ as
training set. Results are presented in terms of the three metrics of the BioASQ
competition: Strict accuracy (SAcc), which compares the correct answer with
the top candidate, lenient accuracy (LAcc), which compares the correct answer
with the top 5 candidates and mean reciprocal rank (MRR), which takes into
account the position of the correct answer within the ranking of candidates.

Table 4. Results of the different scores and their ensembling

Scoring SAcc LAcc MRR

Prominence (P) 9% 31% 16%
WeightedProminence (WP) 23% 31% 25%

Specificity (S) 4% 23% 11%
P + WP + S 31% 43% 35%

P + WP + S + TypeCoercionLAT (TCLAT) 26% 40% 31%
P + WP + S + TCLAT × 0.5 29% 45% 35%

P + WP + S + TypeCoercionQuestion (TCQ) 24% 45% 33%
P + WP + S + TCQ × 0.5 29% 48% 36%

P + WP + S + TCQ × 0.5 + TCLAT 24% 43% 32%
P + WP + S + TCQ + TCLAT × 0.5 24% 48% 35%

Interestingly, we notice that in terms of SAcc, the best results are obtained
by combining the first three non-semantic scorings. In terms of LAcc, the best re-
sults are obtained when combining the first three scorings with TCLAT weighted
by 0.5 or with TCQ weighted by 1 and TCLAT weighted by 0.5. The best results
in terms of MRR are obtained when combining the first three scorings with TCQ
weighted by 0.5.

7 Conclusions and future work

While experimenting with different datasets, we noticed a significant change in
the performance of models with time. It would be really interesting to study
in a systematic way this concept drift along time, as it could yield interesting
observations about trends in the literature, changes of meaning of terms and,
from a machine learning view, changes in the hidden distribution. Concerning
the algorithms we put into practice we think that, despite its poor performance,
the LLDA model has a lot to offer in a multilabel classification task as the one
we dealt with, and that there is a lot of room for improvements as well. For
instance, a possible parallelization or some variant of a faster Gibbs sampling
implementation scheme during the prediction phase could improve performance
by allowing to draw more samples. Either way, a hybrid approach to exploit
both the SVM and the LDA theory could bring significant improvements over
the multilabel classification problem.

Title Suppressed Due to Excessive Length 11

References

1. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3) (1995)
273–297

2. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. J. Mach. Learn. Res. 9 (June 2008) 1871–1874

3. Tang, L., Rajan, S., Narayanan, V.K.: Large scale multi-label classification via
metalabeler. In: WWW ’09: Proceedings of the 18th international conference on
World wide web, New York, NY, USA, ACM (2009) 211–220

4. Yang, Y.: A study of thresholding strategies for text categorization. In: SIGIR ’01:
Proceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, ACM (2001) 137–
145

5. Fan, R.E., Lin, C.J.: A study on threshold selection for multi-label classification.
Technical report, National Taiwan University (2007)

6. Nam, J., Kim, J., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classi-
fication - revisiting neural networks. CoRR abs/1312.5419 (2013)

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3 (March 2003) 993–1022

8. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National
Academy of Sciences 101(Suppl. 1) (April 2004) 5228–5235

9. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled lda: A supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume
1 - Volume 1. EMNLP ’09, Stroudsburg, PA, USA, Association for Computational
Linguistics (2009) 248–256

10. Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M.: Statistical topic models for
multi-label document classification. Mach. Learn. 88(1-2) (July 2012) 157–208

11. Yang, Y., Zhang, J., Kisiel, B.: A scalability analysis of classifiers in text catego-
rization. In: Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Informaion Retrieval. SIGIR ’03, New York, NY,
USA, ACM (2003) 96–103

12. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Proceedings of the
1st International Workshop in Multiple Classifier Systems. (2000) 1–15

13. Wolpert, D.H.: Original contribution: Stacked generalization. Neural Netw. 5(2)
(February 1992) 241–259

14. Breiman, L.: Bagging predictors. Mach. Learn. 24(2) (August 1996) 123–140
15. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2) (July 1990)

197–227
16. Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using hetero-

geneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5) (2012)
513–523

17. Jimeno-Yepes, A., Mork, J.G., Demner-Fushman, D., Aronson, A.R.: A one-
size-fits-all indexing method does not exist: Automatic selection based on meta-
learning. JCSE 6(2) (2012) 151–160

18. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7 (2006) 1–30

19. Forman, G.: BNS feature scaling: an improved representation over tf-idf for svm
text classification. In: Proceedings of the 17th ACM conference on Information and
knowledge management. CIKM ’08, New York, NY, USA, ACM (2008) 263–270

12 Authors Suppressed Due to Excessive Length

20. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5 (2004) 361–397

21. Weissenborn, D., Tsatsaronis, G., Schroeder, M.: Answering factoid questions in
the biomedical domain. In Ngomo, A.C.N., Paliouras, G., eds.: BioASQ@CLEF.
Volume 1094 of CEUR Workshop Proceedings., CEUR-WS.org (2013)

22. Aronson, A.R., Lang, F.M.: An overview of metamap: historical perspective and
recent advances. JAMIA 17(3) (2010) 229–236

