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Abstract 
 

In this paper we present a method for classifying 
accurately SAGE (Serial Analysis of Gene Expression) 
data. The high dimensionality of the data, namely the 
large number of features, in combination with the small 
number of samples poses a great challenge and demands 
more accurate and robust algorithms for classification. 
The prediction accuracy of the up to now proposed 
approaches is moderate. In our approach we exploit the 
associations among the expressions of genes in order to 
construct more accurate classifiers. For validating the 
effectiveness of our approach we experimented with two 
real datasets using numerous feature selection and 
classification algorithms. The results have shown that our 
approach improves significantly the classification 
accuracy, which reaches 99%. 
 
1. Introduction 
 

The vast amounts of biological data that have been 
accumulated the last years due to the rapid progress in the 
field of biology have posed new questions and new 
demands. However, the parallel progress in the field of 
computer science compensates for these needs and assists 
the efficient management and analysis of these data. In 
particular, the fields of data mining and machine learning 
provide biologists a powerful set of tools to analyze these 
data fast, accurately and reliably.  

Proteins are the main structural and functional units of 
an organism’s cell. DNA and RNA, have the role to carry 
the genetic information of the organisms. In particular, the 
genetic information that is coded in the genes of DNA is 
transcribed into messenger (mRNA) and then is translated 
into a protein. The functions of an organism depend on 
the abundance of proteins which is partly determined by 
the levels of mRNA which in turn are determined by the 
the expression of the corresponding gene. Changes in 
gene expression underlie many biological phenomena. 

The study of gene expression levels may guide to very 
important findings. One of the basic aims of gene 
expression data mining is to discover differences between 
the gene expression profiles of diseased and healthy 
tissues and use this knowledge to predict the health state 

of new samples. SAGE (Serial Analysis of Gene 
Expression) is a method that provides the quantitative and 
simultaneous analysis of the whole gene function of a cell 
[12]. The method works by counting short tags of all the 
mRNA transcripts of a cell. The set of all tag counts in a 
single sample is called a SAGE library, and describes the 
gene expression profile of the sample. 

Some recent efforts have utilized data mining methods 
for analyzing SAGE data. Decision trees (C4.5) and 
support vector machines were used in [3] to classify the 
data according to cell state (normal or cancerous) and 
tissue type (colon, brain, ovary, etc.). Hierarchical 
clustering of SAGE libraries was also studied [3, 9]. In 
[11] hierarchical and partitional (K-Means) clustering 
algorithms as well as various cluster validation criteria 
were studied. Other approaches have also been applied on 
SAGE data, including mining of strong emerging patterns 
[10], association rules [2], and frequent closed itemsets 
[5]. The effect of dimensionality reduction methods was 
studied in [1]. Data cleaning was considered in [8] as well 
as the process of the attribution of a tag to a gene. Finally, 
various feature ranking, classification, and error 
estimation methods were presented in [7]. 

The small number of studies of SAGE data 
classification and the moderate classification accuracy of 
the so far proposed approaches motivated our work and 
guided us to an effort to define a better approach that 
improves prediction accuracy. An important advantage of 
the SAGE method is that the experimenter does not have 
to select the mRNA sequences that will be counted in a 
sample. This is quite important, since the appropriate 
sequences for studying various diseases such as cancer are 
not usually known in advance. This advantage of SAGE 
makes it a fairly promising method, especially for cancer 
studies as in this paper. 

Our contribution is a new approach that uses frequent 
pattern mining for discovering any associations among 
the expressions of genes that can assist the construction of 
more accurate classifiers. As shown by the experimental 
results, our approach improves notably the prediction 
accuracy. The paper is outlined as follows. In the next 
section provide a detailed description of our approach. In 
section three, we present the datasets that were used and 
define our experimental setup. Then, in section four we 



present our results and finally, in section five we 
conclude. 
 
2. Our Approach 
 

In this section we provide a detailed description of the 
proposed approach. Before presenting the basic steps of 
this approach (discretization, frequent pattern mining, 
feature selection, and classification) we will describe the 
structure of the input data. 

The data are structured in a gene expression matrix A. 
The columns of the matrix represent the tags of the genes 
and the rows represent the different samples (SAGE 
libraries). The intersection of the ith row with the jth 
column, namely the element aij, is the gene expression 
level for the gene j in the sample i. A sample i is 
associated with a class label ci. In our setup ci ∈{0, 1}, 
where 0 denotes the normal cell state and 1 denotes the 
cancerous cell state. 
 
2.1 Discretization 
 

The discretization procedure followed in our approach 
is important for two basic reasons: 
1. For detecting the strong under-expressions 

(expressions of genes that are significantly lower 
than the mean gene expression) or over-expressions 
(expressions of genes that are significantly higher 
than the mean gene expression) of genes. 

2. For transforming the data in a binary context, so that 
a frequent pattern mining algorithm can be applied. 

The discretization process works as follows. First, the 
initial data matrix A is divided into two new matrices A0 
and A1 that contain the samples of the normal and 
cancerous cell states respectively. Then, for each matrix 
we calculate a 99% confidence interval for the expression 
levels of each gene. So, for each gene j we get two 
confidence intervals [left(j,0), right(j,0)] and [left(j,1), 
right(j,1)] for the normal and cancerous cell states 
respectively. Finally, we create two new matrices 0A′  and 

1A′ , where 0, 1,, { 1,0,1}.ij ija a′ ′ ∈ −  These values are assigned 
as follows: 
• 

ic , 1,ija′ = −  if aij < left(j,ci) AND aij ≠ 0 

• 
ic , 0,ija′ =  if aij ∈ [left(j,ci), right(j,ci)] OR aij = 0 

• 
ic , 1,ija′ = +  if aij > right(j,ci) 

Assigning the value of -1 to 
ic , ija′ , means that gene j is 

significantly under-expressed in the sample i with respect 
to the expression levels of this gene in class ci. Similarly, 
an assignment of +1 to 

ic , ija′ , means that gene j is 
significantly over-expressed in the sample i with respect 
to the expression levels of this gene in class ci. A value of 

zero assigned to 
ic , ija′  means that there is not a significant 

under-expression or over-expression.  
The term “aij ≠ 0” is used in order not to consider zero 

values as under-expressions. The rationale behind this is 
that a zero value means that a tag is not found in a sample, 
so the corresponding gene is not just under-expressed, but 
it is not expressed at all. According to biochemists, the 
vast majority of genes in the human genome are only 
expressed in one tissue type, and only some 
“housekeeping genes” are expressed in all cells [9]. In 
line with this consideration, it is very probable that a gene 
with zero expression level in a particular sample is never 
expressed in the tissue type from which the sample was 
taken. So it would be inaccurate if we considered it as an 
under-expression.  

Matrices 0A′  and 1A′  are the input to the next step that 
involves mining for frequent gene expression patterns. 

 
2.2 Frequent pattern mining 
 

In this step we use the discretized gene expression 
matrices in order to find frequent patterns for each class 
(cell state) separately. We may use any of the known 
frequent pattern mining algorithms (i.e. FPGrowth [6]). 
After applying the frequent pattern mining algorithm we 
get two sets of frequent patterns F0 and F1 for matrices 

0A′  and 1A′  respectively. Then, we create a new set of 
frequent patterns F, so that F = F0 ∪ F1 - F0 ∩ F1. F 
contains only the patterns that are frequent only in one of 
the two classes. The rationale behind this is that the 
patterns that are frequent in both classes do not provide 
adequate information for discriminating samples of 
different classes. 

The set of patters F is the new set of features that will 
be used to describe the initial data. This means that the 
initial gene tags will be substituted by patterns of frequent 
gene under-expressions and/or over-expressions. This is 
done by creating a new data matrix A′ . The columns of 
the matrix are the patterns in F and the rows represent the 
different samples. The intersection of the ith row with the 
kth column (the element {0,1}ika′ ∈ ) denotes the presence 
or the absence of pattern k∈F in the sample i. 
 
2.3 Feature selection and classification 

 
In this final step we use the data matrix A′  as an input 

to a classification algorithm in order to construct a model-
classifier that will be used to classify new samples. Before 
applying the classification algorithm we may use a feature 
selection method in order to select a feature subset. Note 
that applying feature selection to the transformed data 
matrix A′  requires much less time than applying it to the 
initial data matrix A. This is because the typical number 
of tags is in the order of tens of thousands, whereas 



typical number of patterns contained in F is in the order 
of hundreds or thousands. 
 
3. Experimental Setup 
 

In this section we define our experimental setup. First, 
we present the datasets that we experimented with. Then, 
we present the feature selection, classification, and 
evaluation methods that were utilized in our experiments. 
 
3.1 Datasets 
 

We have used two real SAGE datasets in our study. 
The first one consists of 90 SAGE libraries and 27679 
tags. The second one is a reduced dataset consisting of 74 
SAGE libraries and 822 tags. From now on we will refer 
to these datasets as the 90x27679 and the 74x822 dataset 
respectively. Both datasets have been provided by Dr 
Olivier Gandrillon’s team (Centre de Génétique 
Moléculaire et Cellulaire de Lyon, France) and have been 
studied and presented at the ECML/PKDD Discovery 
Challenge Workshops in 2004 and 2005. The SAGE 
libraries contained in these datasets are publicly available 
in the SAGEmap website (http://www.ncbi.nlm.nih.gov/ 
SAGE/index.cgi) and have been prepared as of December 
2002 [4]. They are collected from various human tissue 
types (colon, brain, ovary, etc.) and are labeled according 
to their cell state that is either normal or cancerous.  
 
3.2 Feature selection, classification, evaluation 
 

For the conduction of our experiments we have utilized 
the Weka library of machine learning algorithms [13]. For 
feature selection we have used X2 Statistic, Information 
Gain, and Relief F. We have also used four classification 
algorithms, namely C4.5, k-Nearest Neighbors (k-NN), 
Support Vector Machine (SVM) with a linear kernel, and 
RIPPER a propositional rule learner. Moreover, for 
comparison purposes we have utilized a baseline classifier 
(Majority) that always predicts the majority class. 

In order to evaluate our approach we used leave-one-
out cross-validation (LOOCV). All the steps of our 
approach (discretization, frequent pattern mining, feature 
selection, and classification) were undergone LOOCV. 
 
4. Results 
 

In this section we present the results of the 
experiments that were conducted according to the setup 
described in the previous section. We compared the 
results of our approach with a common approach, which 
includes feature selection and classification of the original 
data and was also followed in other studies [3, 7]. We will 
refer to it as the baseline approach. 

The six graphs in Figure 1 present the classification 
accuracy that was achieved on the 99x27679 dataset by 
all the feature selection and classification algorithms for 
both the baseline and our approach. The y-axis represents 
the classification accuracy and the x-axis represents the 
number of the top ranked features that were selected for 
constructing the classifiers. A first remark that can be 
made is that the accuracies of the classifiers of the 
baseline approach are near to the accuracy of the majority 
classifier. In particular, the accuracy of RIPPER is almost 
always worse than the majority classifier’s accuracy, 
whereas the accuracies of the other classifiers sometimes 
get worse than the majority classifier’s accuracy. The best 
accuracy of the baseline approach (84.44%) was achieved 
when the 1000 top-ranked (Relief F) features were used 
by the SVM classifier.  

In contrast, the classifiers of our approach achieved 
accuracies that are far higher than the accuracy of the 
majority classifier. In particular, the best accuracy 
(98.89%) was achieved in most cases by the SVM 
classifier (C4.5 and k-NN also achieved 98.89%), when at 
least 1000 features were used. The worst accuracy was 
achieved by k-NN (1000 features), but is 11 percentage 
points higher than majority classifier’s accuracy. 

An important observation for the results of X2 and 
Information Gain is that all the classifiers of our approach 
achieve very high (around 95%) and almost constant 
accuracy for the top 20 up to 50 selected features (recall 
that the features in our approach are frequent gene 
expression patterns). In the case of Relief F the accuracy 
increases with the number of features (from the 20 to the 
100 top selected features) reaching approximately 91% at 
100 features. This is particularly interesting and indicates 
that only a small number of patterns are required in order 
to build very accurate and efficient (using a few features 
the computational cost is considerably reduced) 
classifiers. 

The accuracies achieved by our approach applied on 
the 99x27679 dataset with all feature selection methods, 
with all classification algorithms and for each selected 
feature set are significantly better than the majority 
classifier’s accuracy at a 95% confidence level, with an 
exception of some classifiers when Relief F was used for 
feature selection and the 5, 10 and 20 top ranked features 
were selected. 

Figure 2 presents the results obtained on the 74x822 
dataset. The highest accuracy that was achieved by the 
baseline approach is 85.14% (Relief F, SVM, 500 
features), whereas the accuracy of the classifiers of our 
approach reaches 98.65% in many cases. The most 
remarkable fact is the early degradation of k-NN classifier 
constructed in our approach, especially for X2 and 
information gain. This can be explained, if we consider 
that the input data of the classification algorithms in our 
approach are binary and if we take into account that the 
distance function used by k-NN is not suitable for binary 



samples. Another important remark is that as with the 
other dataset, a small number of features (10-20) that is 
demanded for achieving very high accuracies in our 
approach. 

The accuracies achieved by our approach on the 
74x822 dataset except for k-NN with large feature sets are 
significantly better than the majority classifier’s accuracy 
at a 95% confidence level. 
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(a) Baseline approach – X2 Statistic (b) Baseline – Information Gain (c) Baseline – Relief F 
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(d) Our approach – X2 Statistic (e) Our approach – Information Gain (f) Our approach – Relief F 
Figure 1. Classification accuracy on 99x27679 dataset 
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(a) Baseline approach – X2 Statistic (b) Baseline – Information Gain (c) Baseline – Relief F 
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(d) Our approach – X2 Statistic (e) Our approach – Information Gain (f) Our approach – Relief F 
Figure 2. Classification accuracy on 74x822 dataset 

 



Both datasets contain samples collected from various 
tissue types. Since the genes that are expressed in each 
tissue type are different, an increased number of genes 
should be affect classification. As is shown by the 
experimental results of the baseline approach, about 500-
1000 features seem to be important. The remaining genes 
are rather irrelevant, but do not affect negatively the 
classification accuracy. However, in our approach, where 
we transform the original feature space from genes to 
patterns of gene expressions (each pattern may contain 
more than one gene) the number of the important 
features-patterns decreases dramatically, but the achieved 
accuracy increases remarkably. 

Table 1 presents the highest accuracies reported by 
previous approaches as well as ours. As shown in the 
table, the difference between the highest accuracy that 
was achieved by our approach on the 90x27679 is 13.29 
percentage points greater than the highest one reported in 
the literature for the same dataset. Similarly, the 
corresponding difference on the 74x822 dataset is 12.47 
percentage points. 
 

Table 1. Classification results reported so far 
 

Study Dataset Accuracy 
Gamberoni and Storari [3] 90x27679 82.20% 
Lin and Li [7] 90x27679 85.60% 
Alves et al. [1] 74x822 86.18% 
Our approach 90x27679 98.89% 
 74x822 98.65% 
 
5. Conclusions 

 
In this paper we proposed an approach for effectively 

and efficiently classifying gene expression data collected 
with the SAGE method. We have utilized the most 
prominent patterns of the expressions of genes in order to 
construct more accurate classifiers. The experiments 
shown that a small number of patterns (less than a 
hundred) is adequate to construct very accurate classifiers 
with accuracy around 95%. So, the benefit is twofold. 
First, we manage to significantly improve classification 
accuracy, and second we drastically reduce the data 
dimensionality and consequently the computational cost. 
All these are done in the cost of the use of a frequent 
pattern mining algorithm that is very efficient in datasets 
like SAGE; such an algorithm is usually devoted in 
finding frequent patterns in huge datasets with millions of 
samples and many thousands of features. 

Our future plans include the adaptation and application 
of our approach in gene expression data that were 
collected with other techniques, like DNA arrays. Also, 
we intend to study more in-depth the impact of 
sequencing errors and other possible sources of noise on 
the effectiveness of gene expression classification.  
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