
 

  

Abstract—The prediction of the translation initiation site in a 
genomic sequence with the highest possible accuracy is an im-
portant problem that still has to be investigated by the research 
community. Current approaches perform quite well, however 
there is still room for a more general framework for the re-
searchers who want to follow an effective and reliable method-
ology. We developed a prediction methodology that combines 
ad hoc as well as discovered knowledge in order to significantly 
increase the achieved accuracy reliably. Our methodology is 
modular and consists of three major decision components: a 
consensus component, a coding region classification component 
and a novel ATG location-based component that allows for the 
utilization of the advantages of the popular Ribosome Scanning 
Model while overcoming its limitations. All three of them are 
combined into a meta-classification system, using stacked gen-
eralization, in a highly effective prediction framework. We 
performed extensive comparative experiments on four different 
datasets, showing that the increase in terms of accuracy and 
adjusted accuracy is not only statistically significant, but also 
the highest reported. 

I. INTRODUCTION 
HE accurate identification of the Translation Initiation 
Site (TIS) in mRNA sequences has been extensively 

studied since the 80s. It was important that the expensive 
and slow in vitro methods should be replaced by computa-
tional tools that could deliver the desired knowledge not 
only cheap and fast but also accurately. However, the fact 
that the exact mechanism of translation initiation has not 
been discovered yet, has led the research community to a 
number of computational tools that perform quite well but 
the problem still seems to be far from trivial. What makes it 
even more challenging is the ongoing sequencing of a large 
number of organisms whose genome has not been annotated 
and studied yet. 

Data mining is a field of research and application that 
aims to provide efficient computational tools to overcome 
the obstacles and constraints posed by the traditional statisti-
cal methods. Experience has shown that general purpose 
data mining approaches may perform well on the TIS predic-
tion; however, we believe that we could be confident of an 
approach only if we identified the main components of the 
problem and then designed this approach so that it optimally 
maps each one of them separately, in a modular fashion. In 
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this direction one must embed the knowledge of the expert 
(molecular biologist) along with the knowledge that is auto-
matically discovered.  

In this paper, we propose a component-based data mining 
methodology, called MANTIS (the Greek word for “diviner” 
or “prophet”), that can be applied on virtually any TIS data-
set with optimal results. For this purpose, we developed a 
system that implements this methodology, utilizing a variety 
of tools and techniques and selecting those that not only 
were theoretically sound but also the most effective ones, in 
order to assemble the optimal system. We evaluated the re-
sults by extensive experiments over 4 different datasets. 
These experiments showed that with MANTIS the increase 
in prediction accuracy and adjusted accuracy is significant 
compared to a number of different approaches and combina-
tions.  

Since 1982, the prediction of TISs has been investigated 
using biological approaches, data mining techniques and 
statistical models. The perceptron algorithm was used in [16] 
in order to distinguish the TISs. Kozak developed the first 
weight matrix for the identification of TISs in cDNA se-
quences [5]. The consensus pattern derived from this matrix 
is GCC[AG]CCatgG (the underlined residues are the highly 
conserved positions). In [6] the scanning model of transla-
tion initiation was proposed, which was later updated by 
Kozak [4]. According to this model translation initiates at 
the first start codon that is in a particular context. 

Various data mining methods have been utilized for the 
prediction of TISs, including artificial neural networks [2, 
13], support vector machines [20], Gaussian mixture models 
[7], linear discriminant approaches [15], techniques based on 
statistical and similarity information [11]. In [9] feature gen-
eration (k-gram nucleotide patterns) and correlation based 
feature selection along with classification algorithms were 
used. Later, in [8] the same three-step method was used, but 
k-gram amino acid patterns were utilized instead. A com-
parative study of five methods for the prediction of TIS was 
presented in [10].  

This paper is outlined as follows: In the next section we 
describe the MANTIS methodology in detail, explaining 
every step of the process. In section III we present the data-
sets we used and Section IV contains the results of our ex-
periments. Finally, section V contains our conclusions.  
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II. THE MANTIS METHODOLOGY 
The proposed methodology, called MANTIS covers the 

entire knowledge discovery process, from data preprocessing 
to the fusion of the decision components into the final pre-
diction. MANTIS consists of three major decision compo-
nents as shown in Fig. 1. These components contribute to the 
final decision by considering different aspects of a candidate 
TIS. The first one is a classifier that captures differences in 
the coding potential around an ATG, the second is a 
Markov-chain based consensus pattern discovery algorithm 
and the third is a model based on the location of the ATG 
inside the sequence and the ribosome scanning model. 

A. The Coding Region Classification Component 
The most complex component of our methodology is the 

coding region classification component, which involves 
training a model to classify an ATG as a TIS or not, based 
on a feature set that is extracted from a sequence window 
that contains 99 nucleotides upstream and 99 downstream of 
the ATG. The basic mission of this component is to recog-
nize if the downstream region of an ATG is a coding region 
and consequently if the ATG is the TIS. 

This task requires the data to be preprocessed as follows: 
First, a window of size 201 (99 + 3(ATG) + 99) centered at 
each candidate ATG is constructed. Each window represents 
an instance in the training set. Then, for each window, a set 
of features is extracted.  

For the conduction of our experiments we have utilized 
the Weka library of machine learning algorithms [19].  

1)   Feature Reduction and Transformation 
The original feature set consists of features that were used in 
previous studies [18, 8] and were found to produce good 
classifiers in terms of classification accuracy. However, 
some features are correlated to each other. In order to build a 
feature space with a smaller number of uncorrelated features 
we applied Principal Component Analysis (PCA) and 
selected those components that have an eigenvalue greater 
than the mean of the eigenvalues of all the components. 

2) Classification Algorithms 
For the TIS prediction, we used the following 4 

classification algorithms, representative of 4 different 
categories: Naïve Bayes, C4.5, k-Nearest Neighbors (1 to 15 
neighbors selected via leave-one-out cross-validation) and 
SVM. 

B. The Consensus Component 
Previous studies [2, 14] have shown that for the identifica-

tion of the TIS, it is important to examine a narrow area 
around it. This component uses Markov chains to capture the 
consensus pattern starting from position -7 and ends at posi-
tion +5, as shown in Figure 4. The use of a Markov-chain 
based technique allows capturing not only the probability of 
the occurrence of a nucleotide at a certain position (as con-
sensus pattern mining algorithms usually do) but also how 
the occurrence of one affects the occurrence of another.  

We experimented with three Markov chains: 
• A 1st order homogeneous Markov chain 
• A 2nd order homogeneous Markov chain 
• A 1st order non-homogeneous Markov chain. 

 
We train a Markov chain using examples of the positive 

class only and another Markov chain using examples of the 
negative class only. When a new instance arrives for classi-
fication, each of the two Markov chains produces a score for 
this instance. These scores are scaled so that their sum 
equals to 1, as follows: 
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C. The ATG Location Component 
This is a novel component, based on the location of the 

ATG inside the sequence and the Ribosome Scanning Model 
(RSM), as described by Kozak [3]. According to this model, 
the ribosome scans the sequence until it finds the first ATG 
that is in an optimal nucleotide context. In previous studies, 
an ATG was chosen by the RSM as a TIS, when it was the 
one among those selected by a classifier as a positive exam-
ple that was closest to the 5’. In that case, all other ATGs 
were assigned to the negative class, even those that had been 
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Fig. 1. The MANTIS methodology. 



 

given a higher probability by the classifier. However, this 
rule has several exceptions that are explained in [3, 12].  

In some cases, there is another positive ATG not long af-
ter and with a higher probability than the one selected by the 
RSM. Without the RSM, we would choose the ATG that has 
been classified as the most probable to be the TIS. The main 
parameters of this problem are the order of the ATG in the 
sequence (or distance from the 5’ end) and the probability 
assigned by the classifier(s). Both of them must be incorpo-
rated into a model that learns how to combine them.  

In MANTIS methodology we create two models, one 
which is order-based and one which is distance based. The 
first calculates the probabilities of an ATG to be the TIS 
according to its order in the sequence, whereas the second 
calculates the probability according to its distance from the 
5’. Each of the two models is built on the positive and nega-
tive instances separately. The final scores are scaled as in 
equation 1. These two probabilities are the output of the 
ATG location component. 

D. Stacked Generalization 
The final stage in MANTIS is the fusion of the decision 

components described so far. In MANTIS we apply a popu-
lar classifier fusion technique called Stacked Generalization 
or Stacking. Stacking is a scheme for minimizing the gener-
alization error rate of one or more models. According to that 
technique, a number of models (called level-0 models) that 
are trained on the original data (called level-0 data), produce 
the input (level-1 data) to a classifier, (level-1 classifier). In 
MANTIS, the level-0 models are produced by the algorithms 
of the three components, described earlier. 

We tested 2 different level-1 classifiers, namely M5’ and 
Multi-response Linear Regression (MLR). MLR is suitable 
for this task because in stacking it is necessary to use output 
class probabilities rather than class predictions (0/1) as 
shown in [17]. M5’ is a continuous class, model tree classi-
fier whereas MLR involves estimating several response vari-
ables using a common set of input variables. Stacking with 
M5’ has been proposed as an extension of stacking with 
MLR in [1] and presented improved performance. 

E. Candidate TIS Ranking 
MANTIS output is a probability estimate of an ATG to be 

a TIS, instead of a single true/false decision. When probabil-
ity estimates are available, one could rank the top scoring 
ATGs in order to consider alternatives.  

III. DATASETS 
In our study we have used four datasets. Three of them 

(Vertebrates, H.sapiens and A.thaliana) were used in previ-
ous studies [13, 2, 7, 18] whereas one of them is new 
(A.aegypti). Vertebrates dataset consists of 3312 genomic 
sequences collected from various vertebrate organisms. 
H.sapiens dataset consists of 480 human sequences [2]. 
A.thaliana dataset contains 523 sequences collected from 
Arabidopsis thaliana, an organism that shows large deviation 
from vertebrates. The sequences of the Vertebrates and 

A.thaliana were extracted from GenBank, release 95. Only 
nuclear genes with an annotated start codon were selected. 
The DNA sequences have been processed and the interlacing 
non-coding regions (introns) have been removed. From the 
resulting data set, sequences containing at least 10 nucleo-
tides upstream of the initiation point and at least 150 nucleo-
tides downstream (relative to the A in ATG) were selected. 
All sequences containing non-nucleotide symbols in the in-
terval mentioned above (typically due to incomplete se-
quencing) were excluded. Moreover, the datasets have been 
gone through very thorough reduction of redundancy [13]. 
The H.sapiens dataset was extracted from Swissprot protein 
database. All the human proteins whose N-terminal sites are 
sequenced at the amino acid level were collected and manu-
ally checked. Then, the full-length mRNAs for the proteins 
with TISs that had been indirectly experimentally verified 
were retrieved and the corresponding human cDNAs, com-
pletely sequenced and annotated, were found [2]. A.aegypti 
dataset contains 262 sequences retrieved from Ensembl (re-
lease 42) concerning Aedes aegypti also known as yellow 
fever mosquito. Based on the fact Ensembl gene annotations 
are based on experimental evidence, we selected the 
A.aegypti cDNA sequences from genes marked as “known” 
and contained a 5’ UTR and a 3’ UTR. Then, for our ex-
periments we included only those, whose coding region be-
gins with an ATG. Table I summarizes the information about 
the datasets. 
 

TABLE I 
DATASETS 

Dataset Name Sequences ATGs TISs/ATGs 
A.aegypti 262 6453 4.0% 
A.thaliana 523 2048 25.5% 
H.sapiens 480 14108 3.4 % 
Vertebrates 3312 13503 24.5% 

 

IV. RESULTS 
We compared the results of MANTIS to a standard ap-

proach, which is common in TIS prediction literature [2, 8, 
9]. This approach consists of combinations of a coding 
and/or a consensus component, followed by the RSM. In this 
paper, we present the results of our comparison of MANTIS 
to the best combination (coding + consensus + RSM). This 
approach from now on will be referred to as “reference ap-
proach”.  The coding and consensus components were com-
bined using stacking with MLR and M5’ as level-1 classifi-
ers, in order to make it comparable to MANTIS.  

Table II contains the results of previous approaches in 
terms of accuracy and adjusted accuracy, which is a skew-
insensitive version of accuracy and is defined below:   
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We performed extensive experiments over the 4 datasets 
mentioned in section III, using stratified 10-fold cross-
validation (CV), which is considered to be standard for clas-
sification model evaluation [22]. All stages of the knowledge 
discovery process (feature reduction and transformation, 
level-0 and level-1 model training and testing) were incorpo-
rated into the evaluation procedure. It is also important here 
to clarify that all the experimental runs were made over the 
same folds for all reference approaches, which makes the 
comparison as fair as possible. 

 
TABLE II 

RESULTS OF PREVIOUS STUDIES 
Study Dataset Accuracy Adjusted 

Accuracy 
Pedersen & Nielsen [13] A.thaliana 88.00% 88.50% 
Pedersen & Nielsen [13] Vertebrates 85.00% 82.50% 
Zien et al. [20] Vertebrates  88.10% 82.00% 
Rajapakse and Ho [14] Vertebrates  96.10% 95.35% 
Liu et al. [8] Vertebrates  92.45% 88.34% 
Liu et al. [8] H.sapiens 98.46% 85.34% 
Hatzigeorgiou [2] H.sapiens 94.00% - 
Li et al. [7] H.sapiens - 95.24% 

 
After we applied MANTIS on the four datasets described 

in section III, in order to estimate its accuracy and adjusted 
accuracy, we considered the single, top-ranked ATG, for 
every sequence. Concerning the reference approach, we ap-
ply the RSM by scanning the sequence until the “ribosome” 
reads the first ATG that has been assigned a probability 
greater than or equal to 0.5. Given the high skewness of the 
datasets and the fact that most classifiers produce probability 
estimates, which do not always converge to the empirical 
class membership probabilities, it is important to stress out 
that 0.5 may not be the correct decision threshold. For that 
reason we calibrate the probability estimates of the classifi-
ers. Given a probabilistic classifier C and a class c, C is said 
to be well-calibrated if the empirical class membership prob-
ability P(c|s(x) = s) converges to the score value s(x) = s, as 
the number of examples goes to infinity [21]. The algorithm 
we used for the calibration is Pool Adjacent Violators 
(PAV), which performs isotonic regression.  

Tables III and IV contain the results from the comparison 
of MANTIS against the reference approach, using MLR and 
M5’ as level-1 classifiers, respectively. It is clear that 
MANTIS outperforms the reference approach on all datasets, 
both in terms of accuracy and adjusted accuracy. Moreover, 
MANTIS-M5’ scores the highest reported accuracy for the 
three datasets that have been used in other studies. It is im-
portant to stress out that MANTIS’ advantage over the refer-
ence study is even greater in terms of adjusted accuracy, 
which is a more appropriate measure, due to the data skew-
ness. In particular, MANTIS-MLR outperforms the refer-
ence study in terms of accuracy by 2.19 percentage points 
and in terms of adjusted accuracy by 8.86 percentage points. 
Similarly, MANTIS-M5’ outperforms the reference study in 
terms of accuracy by 2.87 percentage points and in terms of 
adjusted accuracy by 9.62 percentage points. 

Table V contains the statistical comparison of the 

MANTIS against the reference approach. For this purpose 
we applied the non-parametric Wilcoxon signed-rank test, in 
order to perform a fold to fold comparison for each dataset. 
A +(a) denotes a statistically significant superiority (win) of 
MANTIS with confidence 1-a. Note that in all cases the su-
periority of MANTIS is statistically significant. 

 
TABLE III 

COMPARISON OF MANTIS VS. REFERENCE APPROACH, 
USING MLR AS A LEVEL-1 CLASSIFIER 

 MANTIS Coding + Consensus  
+ RSM 

 Accuracy Adjusted 
Accuracy 

Accuracy Adjusted  
Accuracy 

A.aegypti 98.61% 91.05% 97.86% 79.15% 
A.thaliana 96.58% 95.51% 92.82% 87.33% 
H.sapiens 99.08% 92.99% 98.69% 86.05% 
Vertebrates 95.16% 93.46% 91.32% 85.04% 
Average 97.36% 93.25% 95.17% 84.39% 
St. dev. 1.82% 1.83% 3.65% 3.62% 

 
TABLE IV 

COMPARISON OF MANTIS VS. REFERENCE APPROACH, 
USING M5’ AS A LEVEL-1 CLASSIFIER 

 MANTIS Coding + Consensus  
+ RSM 

 Accuracy Adjusted 
Accuracy 

Accuracy Adjusted  
Accuracy 

A. aegypti 98.64% 91.25% 97.99% 79.03% 
A. thaliana 97.07% 96.15% 92.43% 87.00% 
H. sapiens 99.14% 93.42% 98.89% 87.57% 
Vertebrates 97.26% 96.30% 91.34% 85.04% 
Average 98.03% 94.28% 95.16% 84.66% 
St. dev. 1.02% 2.42% 3.83% 3.91% 

 
TABLE V 

STATISTICAL COMPARISON OF MANTIS  
VS. REFERENCE APPROACH 

 Accuracy Adjusted 
Accuracy 

 MLR M5’ MLR M5’ 
A. aegypti + (0.05) + (0.01) + (0.01) + (0.01) 
A. thaliana + (0.01) + (0.01) + (0.01) + (0.01) 
H.sapiens + (0.01) + (0.01) + (0.01) + (0.01) 
Vertebrates + (0.01) + (0.01) + (0.01) + (0.01) 
wins:losses (a = 0.01) 3:0 4:0 4:0 4:0 
wins:losses (a = 0.05) 4:0 4:0 4:0 4:0 

 
Fig. 2 and 3 display the percentage of the TIS missed 

when the n top-ranked ATGs were selected, using MLR and 
M5’ respectively. What is really shown in these graphs is the 
quality of the alternative solutions provided by MANTIS. As 
we see, in all cases the percentage of missed TIS drops ex-
ponentially with respect to n. Additionally, the more bal-
anced the dataset is (A.thaliana and Vertebrates) the faster 
their missed TISs converge to 0. 
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Fig. 2. TISs missed over the number of top-ranked ATGs using MLR. 
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Fig. 3. TISs missed over the number of top-ranked ATGs using M5’. 

V. CONCLUSIONS 
In this paper we proposed a novel TIS prediction method-

ology, called MANTIS. MANTIS is an intuitive, compo-
nent-based approach, consisting of three main components 
that map the biological sub-problems identified. It is worth 
mentioning that the utilization of the new ATG location 
component provides the advantages of the typical RSM 
model and overcomes its limitations. The three components 
are combined using a state-of-the-art method, namely stack-
ing. The output of MANTIS is a (user-defined) number of 
ranked candidate TISs. Extensive experiments over 4 data-
sets (3 previously studied and 1 new) showed that MANTIS 
is a methodology that outperforms existing ones. We showed 
that the improvement in terms of accuracy and adjusted ac-
curacy is statistically significant. Moreover, to the best of 
our knowledge, the overall accuracy is the highest reported 
in the literature. 

We are currently working on a web-based version of 
MANTIS, which will be publicly available. Then, we aim to 
modify and extend MANTIS in order to apply it on other 
functional site prediction problems, such as splice site pre-
diction and transcription start site prediction. 
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