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Abstract

The main objective of Transfer Learning is to reuse knowledge acquired in a
previous learned task, in order to enhance the learning procedure in a new and
more complex task. Transfer learning comprises a suitable solution for speed-
ing up the learning procedure in Reinforcement Learning tasks. This work
proposes a novel method for transferring models to Reinforcement Learning
agents. The models of the transition and reward functions of a source task,
will be transferred to a relevant but different target task. The learning algo-
rithm of the target task’s agent takes a hybrid approach, implementing both
model-free and model-based learning, in order to fully exploit the presence of
a source task model. Moreover, a novel method is proposed for transferring
models of potential-based, reward shaping functions. The empirical evaluation,
of the proposed approaches, demonstrated significant results and performance
improvements in the 3D Mountain Car and Server Job Scheduling tasks, by
successfully using the models generated from their corresponding source tasks.

Keywords: Reinforcement Learning, Transfer Learning,
Model-Based Reinforcement Learning

1. Introduction

In Reinforcement Learning (RL), two of the most important approaches to
improve data efficiency and speed up the learning process are Transfer Learning
and Model - Based RL algorithms. Whereas Direct-RL algorithms compute
for long periods before finding good policies, Model-based algorithms learn an
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explicit model of the environment and at the same time, the value function
which determines the agent’s policy. The model generated from this learning
process can either be used for generating simulated experiences or planning.

Transfer learning (TL) refers to the process of using knowledge that has
been acquired in a previous learned task, the source task, in order to enhance
the learning procedure in a new and more complex task, the target task. The
more similar these two tasks are, the easier it is to transfer knowledge between
them.

These data efficient approaches are especially important in real world appli-
cations of reinforcement learning such as robotics, where extensive interaction
with the environment needs time and can be costly. Novel ways to combine
transfer learning and model-based learning should be considered.

This work proposes a new RL method dubbed Transfer learning in Model-
based Reinforcement Learning Agents (TiMRLA). In principle, TiMRLA is a
transfer learning framerwork for an agent implementing hybrid learning. A TiM-
RLA agent learns both from its interaction with the environment and also from
mental experiences generated by a model of the environment’s dynamics (model-
based learning). Both of its learning mechanisms are able to exploit knowledge
gathered from a related source task. TiMRLA’s model-based learning, can use
a transferred model of the full source task’s Markov Decision Process (MDP)
to assist learning in the target task. TiMRLA is able to choose whether it will
use a target or a source task model from which it will then generate mental
experiences from it learn directly from them.

TiMRLA’s direct learning part (model-free) can also use transferred knowl-
edge from a source task by encoding it in the agent’s reward signal. Concretely,
the transferred model of a source task is used to shape the reward the agent
receives in the target task, efficiently assisting learning.

Specifically, the key insight of our proposed approach is to achieve maximum
data efficiency and knowledge exploitation by combining transfer learning with
a hybrid learning mechanism (model-based and model-free). This paper extends
our previous work [4] with two new methods for transferring models of shaped
reward functions and a more sophisticated method for assisting direct learning
using model-based shaping. These methods demonstrate new possible ways to
further exploit a transferred model. Moreover, new experiments are conducted
in an new test-bed, the Low-Power Mountain Car 3D domain. Finally, this work
also offers new insights and discussion on the main-proposed method.

The main contributions of this paper are:

• Learning and transferring the model of a source task to a relative tar-
get task. A hybrid, Dyna-like [19] approach is proposed for the target
task’s learning algorithm implementing a revised version of the TiMRLA
algorithm.

• A novel method for transferring shaping rewards, that is, the transfer of
a, potential-based, shaping function that was successfully used to shape
the rewards in a source task (see section 4.3).
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• A novel method for model-based assisting of the direct-learning process is
also proposed and discussed (see section 4.4).

• The empirical evaluation, of these approaches, demonstrates significant
results and performance improvements in the 3D Mountain Car (3D MC)
task and the Low-Power 3D Mountain Car, by successfully using the mod-
els generated from the standard 2D Mountain Car (see section 7).

The remainder of this paper is organized as follows. In Section 2 the back-
ground knowledge needed for the proposed methods is presented. Section 3
discuses related work. Section 4 describes the proposed methods. Section 5 de-
scribes the RL domains used for the experiments and Section 6 the experimental
setup. Section 7 present and discuss the results and finally, Section 8 concludes
this work.

2. Background

2.1. Model-based Reinforcement Learning

Reinforcement learning methods that rely on temporal-difference updates,
such as Q-Learning or Sarsa, impose certain conditions for convergence to the
optimal policy π∗. One such condition is that each state-action pair 〈s, a〉 should
be visited an infinite amount of times [19]. These conditions cannot be easily
met in complex or continuous environments. Moreover, these direct-learning
algorithms are heavily based on the exploration of the state space, which is not
always feasible and can be costly in real-world domains.

On the contrary, model-based approaches try to learn a model of the environ-
ment by decomposing it to its main parts, the transition and reward functions
T and R, respectively. By learning a model of the underlying dynamics of an
environment, model-based RL algorithms can produce simulated experiences for
direct learning (e.g., Q-Learning), or use these models with dynamic program-
ming and planning, in order to construct a policy [19]. Doing so they are able
to learn a policy using significantly less interaction with the environment (expe-
riences). With less the need for interaction with the environment, model-based
learning is an approach towards better data efficiency. Such an approach also
minimizes the amount of exploration needed.

To generate models of the transition and reward functions of an environment,
model-based RL algorithms can use a variety of supervised learning techniques,
such as Artificial Neural Networks (ANN) [9]. Well known model-based RL
algorithms are Fitted R-max [8] and PEGASUS [13]. These algorithms have
demonstrated the ability to learn near-optimal policies given a small amount of
interaction with the environment.

2.2. Transfer Learning

Transfer Learning refers to the process of using knowledge that has been
acquired in a previously learned task, the source task, in order to enhance the
learning procedure in a new and more complex task, the target task. The more
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similar these two tasks are, the easier it is to transfer knowledge between them.
By similarity, we mean the similarity of their underlying Markov Decision Pro-
cesses (MDP) that is, the transition and reward functions of the two tasks as
also their state and action spaces.

The type of knowledge that can be transferred between tasks varies among
different TL methods. It can be value functions, entire policies as also a set
of samples from a source task used from a batch RL algorithm in a target
task. This work proposes the transfer of full task models, that is, models of the
transition and reward functions of a source task.

In order to enable TL across tasks with different state variables and action
sets (i.e. different representations of the state and action spaces), one must
define how these tasks are related to each other. One way to represent this
relation is to use a pair 〈XS , XA〉 of inter-task mappings [25], where the function
XS maps a target state variable to a source state variable and function XA maps
an action in the target task to an action in the source task.

Inter-task mappings have been used for transferring knowledge in several
settings like TD-learning [25], policy search and model-based algorithms [26,
21]. In all these approaches the inter-task mappings, are provided by a human
expert. Moreover, for RL domains where human intuition or knowledge can
not be applied, there are approaches for learning these inter-task mappings
autonomously [21].

2.3. Reward Shaping

In RL domains, the reward is the only evaluative feedback the agent receives.
The main idea of Reward Shaping (RS) methodologies is to provide an additional
reward to the agent, based on some prior knowledge about the task, aiming
this way to improve learning performance [7]. Essentially, this shaping reward
biases certain state-action values providing a more informative reward signal to
the agent, assisting him on solving its task faster.

The concept of reward shaping can be represented by the following formula
for the Q-learning algorithm:

Q(st, at)← Q(st, at) + α(rt+1 + F (st, at, st+1) + γmax
a′

Q(st+1, a
′)−Q(st, at)).

where F (st, at, st+1) (or by simpler notation, F (s, a, s′)) is the general form of
a shaping rewards function.

The proper selection of this function depends on the task, the prior knowl-
edge we have about it and a deeper understanding of how the agent’s goal can
be achieved. If such a selection can be done, reward shaping can significantly
improve the learning performance [6]. Improperly implemented, reward shap-
ing, which is directly incorporated in the value update process, can also harm
the convergence of a learning algorithm, modifying the optimum policy.

Towards this direction, of a reward shaping that could achieve policy in-
variance, major improvements have been made with the introduction of the
Potential-based Reward Shaping [14].
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Consider a Markov Decision Process (S,A,R, T, γ)1, its optimal policy π∗

and the same MDP but with reward shaping (S,A,R′, T, γ) where R′ = R+F .
In [14] Andrew Ng. et al. defined formal requirements for the form of a shaping
rewards function F that guarantees the convergence of the augmented MDP to
the same optimal policy π∗. The form of this shaping function in its general
form is:

F (s, a, s′) = γΦ(s′)− Φ(s) (1)

where Φ(s) is a potential function expressing a goal-oriented heuristic for the
task. Defining and using such potential-based reward functions also guarantees
a good learning behaviour, meaning agents that are not mislead to learn sub-
optimal policies. Finally, it is important to note that in the recent literature
there exist methodologies for learning the shaping rewards such as autonomous
shaping [10].

3. Related Work

This section presents related work in Transfer Learning and contrasts it
with the proposed approach. For a broader review of Transfer Learning in RL
domains the reader can refer to a comprehensive survey of the field [21].

Fernadez and Veloso [5] propose an approach that reuses past policies from
solved source tasks to speed up learning in the target task. A restriction of
this approach is that the tasks (source and target) must have the same action
and state space. Our method allows the state and action spaces to be different
between the target and the source task.

Advice based methods have been proposed in [24, 27]. Taylor and Stone
[24] proposed a method that uses a list of learned rules from the source task
as advice, to guide the learning procedure in the target task. The authors
introduce three different utilization schemes of the advice. Furthermore, Torrey
et al. [27] export rules in first-logic order and translate them into advices.

Taylor et al. [25] proposed a method, named Transfer via inter-task map-
pings, that initializes the weights of the target task, using the learned weights of
the source task, by utilizing mapping functions. The method depends strongly
on the function approximation scheme that is used in both tasks, as the function
that transfers the weights is altered according to the approximation method.

The transfer of samples have also been proposed in [22, 11]. Lazaric et al.
[11] proposed a method that uses samples gathered in the source task, in order
to train a batch RL algorithm in the target task. The state and action spaces
are not allowed to differ between the two tasks. Taylor et al. [22] present an
algorithm for transferring samples in model-based algorithms. The procedure
of transfer is accomplished on-line, that is, when the agent interacts with the
environment and the state-action space can change.

1Explaining the notation, S represents the state space, A the set of actions available, R
is the reward function, T the transition function of the task and γ the discount factor of the
return
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Figure 1: Schematic representation of the TiMRLA Algorithm. The dotted arrows represent
optional functions of the TiMRLA Alogrithm

4. Transfer Learning with TiMRLA

The TiMRLA method acquires task models from relative source tasks and
implements task model transfer to a direct learning agent of a more complex
target task. To make use of the transferred models it adds a model-based
learning mechanism in the direct learning agent of the target task, enabling it
to use such models. Thus, the transformed direct learning agent can said to
be Hybrid as it learns both using e.g. TD-learning from its interactions with
the environment and from a model (see Figure 1). It is important to note here
that with minor modifications, the proposed method could equally apply to plain
model-based learners but the scope of this work is to demonstrate many effective
usages of a model, including the assistance of direct learning. Concretely, this
hybrid-learning approach is followed in order to maximize the utility of a source
task model.

4.1. Learning the Model of a Source Task

In order to capture the dynamics of a source task environment we have to
learn models of the transition and reward functions of its underlying MDP. Our
main concern here is not the agent’s learning performance in the source task
but a balanced exploration of the state-action space in order to achieve a good
training set for the task’s model.

In order to generate the source task model, the agent is gathering experi-
ences and uses the model-based RL algorithm Model Based Policy Improvement
(MBPI) [9]. MBPI is a model-based learning algorithm that can learn, on-line,
the model of a task from real, gathered, experiences. Thereafter, MBPI uses
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that model to generate simulated experiences and learns directly from them
using Sarsa.

Our specific choice of the MBPI model-based learning algorithm in the source
task should not be considered as a limitation of the method as every other
model-based RL algorithm can be equally considered, as long as it can provide
us with models of the reward and transition functions of the task. The gathered
experiences, in the form of a tuple 〈s, a, r, s′〉, form a training set that will be
used to learn the transition and reward functions of the task.

In our specific implementation, two cascade neural networks are used to
learn the models of these functions. Cascade neural networks were chosen as
the characteristics of this type of networks were considered suitable for the RL
scheme [17, 15].

Providing a brief description of the cascade neural networks (CNN) we state
their basic characteristics. CNN’s are fully connected neural networks with
short-cut connections. Their topology is determined while learning, with new-
candidate neurons being trained separately from the network, adding to it only
the best of them (in terms of error). These candidate neurons are created as
short-cut connected neurons in a new hidden layer, which means that the final
CNN will consist of a number of hidden layers with one - short-cut connected
- neuron in each (short-cut connections are connections that skip layers and
connect to neurons in the later layers) [15]. Then, after each training epoch,
new candidate neurons are prepared, continuing in the same way.

Following up with the method’s flow, the source task agent starts to learn and
progressively creates the requested models. Every e episodes MPBI learns new
models of the transition and reward functions, based on the gathered experiences
so far. We should note here that, the newly generated models are discarded if
their validation mean square error (MSE) is more than that of the previously
generated model. This way the method keeps only the best models in terms of
validation MSE. We chose validation MSE (not train MSE) to avoid over-fitting
and also test the ability of the model to predict from unseen data, such as those
in the validation data set.

Furthermore, in continuous domains (e.g. Mountain Car), a value function
approximation technique is necessary in order to approximate the value of a
state, using nearby state values. We choose to use the Cerebral Model Articu-
lation Controller (CMAC) [1], a well-known, tile-coding, function approximator
[19] shown to have good performance in our experimental domains.

4.2. Model-Based Learning using Source Task Models

In a target task, TiMRLA implements model-based learning by generating
mental (simulated) experiences from a source task model and directly learn-
ing from them using Q-Learning or Sarsa (policy improvement) (see line 25 of
Algorithm 1).

This model can also be a new target task model which can be generated
while learning in the target task. In this case, the method doesn’t implement
transfer learning. It is important to note here that this work emphasizes and

7



empirically evaluates, the exclusive use of a source task model. Although it
is out of scope for this work, we also tested and propose a simple method for
choosing which model the agent should use at each episode (target or source).

In the beginning of each episode the two models will compete for being the
current episode’s ”Model” (line 6 of Algorithm 2). The choice can be based on
their error on predicting the after-states s′ from the current agent’s state s, this
error is calculated as the euclidean distance between a predicted state and the
one experienced (line 21 of algorithm 2).

Algorithm 1 Model Based Policy Improvement (MBPI)[9].
1: Q← Q0
2: D ← 0
3: repeat
4: for e episodes do
5: s← StartStateFromEnvironment()
6: repeat
7: α← SelectAction(Q)
8: r ← rewardFromEnvironment()
9: s′ ← nextStateFromEnvironment

10: D ← D ∪ (s, α, r, s′)
11: until s′ is terminal
12: end for
13: M ← LearnModel(D)
14: for n iterations do
15: s← randomStartStateFromSimulator()
16: d← 0
17: repeat
18: α← SelectActionSimulate(Q, s)
19: r ←M.PredictReward(s, α)
20: t←M.PredictTermination(s, α)
21: if t then
22: Q(s, α)← Q(s, α) + a(r −Q(s, α))
23: else
24: s′ ←M.PredictNextState(s, α)
25: Q(s, α)← Q(s, α) + a(r + γmaxα′Q(s′, α′)−Q(s, α))
26: s← s′

27: end if
28: d← d+ 1
29: until t = true or d = depth
30: end for
31: until Q has converged

4.3. Transferring Shaping Rewards

As discussed earlier in this text, Reward Shaping can be a feasible technique
to assist a goal-driven RL agent and improve its learning performance. This part
of the proposed method concerns a novel approach for transferring the source
task model of a successfully applied, potential-based, reward shaping function.
Starting with the source task, a potential-based reward shaping was used of the
form:

F (s, s′) = Φ(s′)− Φ(s),

where F is based on the general form of Eq. (1) which in this work is defined
as F : S × S → R, γ = 1.

Based on prior work [6] we choose to set Φ(s) = V (s) shown to be an ef-
fective potential function. TiMRLA which normally learns the original models
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of the transition and reward functions of the source task, now learns the aug-
mented reward function R′, forming a training set of tuples < s, a > with their
corresponding shaped rewards r = r + F (s, s′).

Same as in the previous section, a cascade neural network is used to learn
this potential-based reward function but with one major difference than before.
Since Φ(s) = V (s) the F (s, s′) function is based on the values of state variables
which are constantly changing and are time-dependent (i.e. while learning, R′

is changing in contrast with the original R which is stationary).
In order to learn this augmented reward function efficiently, its learning

starts only after the agent converges to a policy and no more learning takes
place. Then the specific values V (s) are stable and moreover, represent a better
policy than that of the early learning phase.

In the target task, the method transfers the model of this augmented re-
ward function and use that to assist both model-based learning and model-free
(direct) (see 4.4). For model-based learning, the model of R′ is used in the
same way as in the previous section (see 4.2) replacing the model of the orig-
inal reward function. Then, mental experiences are generated from the MBPI
algorithm directly learning from them with Sarsa (or Q-Learning).

4.4. Assisting Direct Learning using Source Task Models

In the target task, Direct-Learning is implemented using Sarsa(λ) accompa-
nied with eligibility traces for temporal-credit assignment. Although this is a
model-free approach, in our proposed method it is also assisted by a novel model-
based mechanism, Model-Based Shaping, which assists the model-free learning
process following a Reward Shaping approach. TiMRLA implements reward
shaping for the target task agent, providing him additional rewards generated
by the transferred models of the source task.

The TiMRLA algorithm can either use a model of the original reward func-
tion or a model of an augmented, potential-based reward function. Because the
original reward function of a source task can be less informative on the long-
term utility of a specific state-action pair (e.g. -1 reward for every state-action
pair), we propose and evaluate the use of the augmented reward function model,
when implementing model-based assistance of the direct learning process.

Specifically, we set the augmented reward function R′source of the source
task, as the target task’s potential function Φ(s) = R′source(s) forming a new
augmented and potential-based reward function for the target task, where:

R′trg(st, at) = Rtrg(st, at) + Ftrg(st−1, st)
= Rtrg(st, at) +R′src(st, at)−R′src(st−1, at−1)

The equation above could be seen as an ”update rule” for the target task’s
augmented reward function, executing two queries to the reward shaping model
of the source task, one for the current state st and one for the preceding state
st−1. Concluding with this part of the proposed approach, we could summa-
rize our key insight to the following: “When a certain, potential-based, reward
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shaping scheme is successfully used in a source task, a model of its resulting-
augmented reward function, could also be successfully used in a relevant target
task”.

Algorithm 2 Transferring Models in Reinforcement Learning Agents - TiM-
RLA
1: Q← Q0 D ← 0
2: Model← SourceModel
3: repeat for each episode
4: s← StartStateFromEnvironment()
5: α← Select e GreedyAction(Q)
6: if TargetModel.error < SourceModel.Error then //optional
7: Model← TargetModel
8: end if
9: until end

10: repeat for each step
11: s′ ← nextStateFromEnvironment
12: r ← reward
13: r ← r + SourceModel.PredictReward(s′) //Model-Based Reward Shaping
14: r ← r − SourceModel.PredictReward(s)
15: α′ ← Select e GreedyAction()
16: CMAC.Q(s, α)← CMAC.Q(s, α) + a(r + γCMAC.Q(s′, α′)− CMAC.Q(s, α))
17: s′trg ← TargetModel.PredictState(s, a)

18: s′src ← SourceModel.PredictState(s, a)
19: SourceModel.Error ← SourceModel.Error + d(s′src, s

′)2

20: TargetModel.Error ← TargetModel.Error + d(s′trg , s
′)2 //optional

21: s← s′;α← a′

22: if TrainingPeriodElpased = true then
23: ImprovePolicy(Q) //using MBPI in our case, see Alg. 1
24: LearnTargetModel(D) //optional
25: else
26: D ← D ∪ (s, α, r, s′)
27: end if
28: until s′ terminal

4.5. The TiMRLA Algorithm

Learning in the source task provides us with the best, in terms of Valida-
tion MSE, Neural Networks representing models of the transition and reward
functions (see section 4.1). These two networks are used by TiMRLA to predict
next states and their rewards. The reward function model can either represent
the real reward function of the source task or the augmented potential-based
one.

The flow of the proposed algorithm (see Algorithm 2), as it executes in the
target task, is the following: In lines 1-2 some basic initializations are made.
The weights in the CMAC, representing our value function Q(s, a), are all set
to zero and the initial model to be used is the Source Model. In the beginning
of each episode based on the the start state an action is selected (ε-greedy) with
respect to the policy. Next, takes place the (optional) process of choosing the
model that will be used (lines 6-7) in the specific episode. In lines 11-12, for
each step,the agent obtains the current state and its reward. Next, model-free
learning with Sarsa(λ) takes place, with its update rule using an added “CMAC”
notation to emphasize the fact that these values come from a CMAC function
approximator.
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Next, in lines 21-24 and for each even numbered step (not in every step,
for robustness) the two models (target and source) are queried for the new
state s′ (already known) based on the preceding state-action pair (s, a). Then,
the algorithm computes and compares two euclidean distances d(s′, s′target) and
d(s′, s′source) where the second argument in the distances, represents the state
predictions of the two models. The distances are stored in a tabular form with
a window of 1000 distances and the two mean errors are calculated for that
window. As mentioned previously, at the start of each episode, based on this
averaged error (distance), TiMRLA chooses to use the target or the source task
model (the one with the less error). Again, these steps are optional and we
can choose not to train an original target task model (only transfer source task
models).

In the next lines, the flow continues with the MBPI algorithm for policy
improvement using generated experiences from the models.

5. Empirical Domains

5.1. Generalized Mountain Car

The Mountain Car (MC) domain was originally proposed by [12] and ex-
tended by [18]. In the standard 2D task an underpowered car must be driven up
to a hill. The state of the environment is described by two continuous variables,
the horizontal position x ∈ [−1.2, 0.6], and velocity vx ∈ [−0.007, 0.007].The
actions are {Neutral, Left and Right} which modify the velocity by −0.001, 0
and 0.001 respectively. At each time step, an amount of −0.0025 ∗ cos 3x is
added to the velocity, in order to take gravity into account.

Each episode starts with the car at the bottom of the hill and ends when x
becomes greater than 0.5. At each time step, the agent selects among the three
available actions and receives a reward of -1. The objective is to move the car
to the goal state, as fast as possible. The main difficulty in this environment
is that the force of gravity is greater than the force that the engine is capable
to provide. Therefore, the agent controlling the underpowered car must move
back and forth, in order to exploit the effect of gravity to its favour and manage
to reach the goal state.

The 3D MC extends the 2D task by adding an extra spatial dimension.
The 3D task was originally proposed in [23]. The state is composed by four
continuous variables, the coordinates in space x, and y ∈ [−1.2, 0.6], as well
as the velocities vx and vy ∈ [−0.07.0.07]. The available actions are {Neutral,
West, East, South, Nourth}. The Neutral action has no impact on the velocity
of the car. The West and East actions add -0.001 and 0.001 to vx respectively,
while South and North add -0.001 and 0.001 to vy respectively. Additionally, in
order to simulate the effect of gravity, at each time step, −0.0025 ∗ cos 3x and
−0.0025 ∗ cos 3y is added to vx and vy respectively. Each episode starts with
the car at the bottom of the basin. The goal state is reached when x ≥ 0.5 and
y ≥ 0.5. At each time step, the agent receives a reward of -1.
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Figure 2: (a) The Mountain Car 2D task. (b) The Mountain Car 3D task.

In this work we use the MC software2 that is based on version 3.0 of the
RL-Glue library3 [20].

5.2. Low-Power Mountain Car 3D

Low-Power Mountain Car 3D is a variant of the MC 3D domain where the
car is even more underpowered. This significantly increases the difficulty of an
agent to find the goal as also, the time needed (steps) to reach it. Specifically,
the West and East actions now add -0.0008 and 0.0008 to vx, respectively, while
South and North add -0.0008 and 0.0008 to vy, respectively. It is important to
note that these changes in the dynamics of the environment, essentially alter
the transition function of the original task.

5.3. Server Job-Shop Scheduling

In the domain of Server Job Scheduling (SJS) [28] a specified number of
jobs wait in a queue of a server to be processed. There are certain types of
jobs and each of them has a utility function representing the user’s anticipation
over time. The goal of a scheduler for this domain is to pick a job (action)
based on the status of the queue (state). Its immediate reward in each step is
minus the summation of the utilities of the remaining jobs in the queue. Each
episode lasts 200 steps and begins with a 100 jobs pre-loaded in the queue.
Transfer learning experiments on this domain [28, 2] have used two job types
for the source tasks (eight state variables) and the standard four job types for
the target task (sixteen state variables). Finally, we should note that SJS is
considered a difficult RL domain having large state and action spaces. Also it
is a stochastic domain as for the first 100 time-steps, new jobs of random types
arrive in the queue.

2Available at http://library.rl-community.org/
3Available at http://glue.rl-community.org/

12



6. Experiments

6.1. Source task Setup

First, after thorough experimentation we concluded to a set of parameters
for the MBPI agent in the source task. We set ε to 0.5 decaying by a factor of
0.99, the step-size parameter α to 0.2 and γ, the discounting factor, to 1 as this
task is an episodic one. Also, depth d of the MBPI algorithm was set to 1 as
[9] show that a greater depth decreases the overall learning performance.

As the standard MBPI algorithms specifies, after every e episodes, the ANN’s
train based on the set of experiences D gathered so far. We set e to 40 episodes.
So, every 40 episodes the ANNs produced are compared with the previously
trained based on their Validation MSE, finally keeping the best of them. We let
the agent learn for a total of 1000 episodes.

TiMRLA in the above standard setup, transfers models of the original tran-
sition and reward functions of a source task. Instead, when we want to transfer
an augmented reward function, that is, the reward function plus a potential-
based shaping, a different approach is followed.

Specifically, in the MC 2D task we use reward shaping for a standard Sarsa(λ)
agent by defining a potential function Φ(s) = V (s) and the resulting reward
shaping function F (s, s′) = Φ(s′) − Φ(s). Using this reward shaping method,
we achieved significantly improved performance in the standard MC 2D task,
which made it eligible for transferring through our proposed method.

A Cascade ANN (CNN) was then used to learn the augmented - shaped
reward function R′source. In this case the CNN for the reward function is trained
only after learning stops, so that a potential function defined as above, becomes
stationary. Then, every 40 episodes in a total of 500 episodes, a new model of
the reward function is trained according to the method described above.

In our context the CNN’s for the reward and transition functions of the
source task were trained with a learning rate of 0.07 resulting to two networks
both consisting of 10 single-neuron hidden layers, fully connected through short-
cut connections (typical topology for CNN, see sub-section 4.1 and [15, 16]).
The transition function CNN had three input nodes representing the two state
variables and the action, and two output nodes representing the new state (pre-
dicted after-state). The reward function CNN had the same input layer but
with a single-node output layer representing the predicted reward. For imple-
mentation, we used the neural network library Fast Artificial Neural Network
(FANN) [16].

Concerning the evaluation of these experiments, standard average reward
plots were used as also two other metrics presented in [23], Time to Threshold
and Area Under the Learning Curve.

Time to Threshold is an evaluation metric expressing the time needed for an
agent to reach a specific performance threshold. In our setting time is expressed
in agent’s steps and threshold in episodes (i.e. episodes needed for an agent to
reach the goal in some given steps - threshold, see Table 2). Area Under the
Learning curve is another metric expressing the ratio r of the areas defined
by two learning curves. This metric is based on the the fact that a learning
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algorithm accruing more reward than another (e.g. transfer vs. no-transfer)
has also a greater area under its curve (see Table 3).

In the SJS domain, an agent learned the model of an SJS task whith two
types of jobs. The two-job source task agent learned for 3000 episodes while
recording its experiences to form the CNN’s training set. Two CNN’s were
trained, one for the transition function and one for the reward function of the
task. The transition function CNN had nine input nodes representing the eight
state variables and the action, and eight output nodes representing the new
state (predicted after-state). The reward function CNN had the same input
layer but with a single-node output layer representing the predicted reward.

6.2. Transferring in Mountain Car 3D

First, as our methodology allows for different state and action variables be-
tween the source and the target task, inter-task mappings are set. For our
experimental domain this is successfully done in [22]. Manual mapping of the
different actions and states should not be seen as a limitation of the method, as
there exist methods that are able to automatically learn the appropriate map-
pings [23] [3]. Table 1 shows the inter-task mapping used in this experiments.

In the target task, for the model-based learning part of the algorithm, the
best results were obtained by setting the model-based policy improvement pe-
riod to 1, which means that policy improvement would take place in every
episode. The iterations n were set to 2000, and ε and the step-size parameter a,
were set to 0 (greedy) and 0.07, respectively (see Algorithm 1). This parameter
set is the one that gave us the best results. A discussion on the importance and
relation of these parameters to the final agent’s performance, can be found in
section 7.

In MC 3D the versions of the TiMRLA agent compared were:

• A standard TiMRLA agent which transfers and uses models of the original
MC 2D transition and reward functions

• A TiMRLA-Augmented Reward function agent, using a model of the orig-
inal MC 2D transition function and a model of its augmented, potential-
based, reward function.

• A TiMRLA-Augmented Reward function + Direct Learning Assist agent,
which also assists its direct learning process by implementing model-based
reward Shaping, based on the model of the augmented reward function.

• A No-Transfer case, for which a standard Sarsa(λ) agent is used with
CMAC function approximation and eligibility traces.

6.3. Transferring in Low-Power Mountain Car 3D

For Low Power MC 3D the same settings apply as in the previous section.
Here, a standard TiMRLA agent is compared to No-Transfer but for standard
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Actions State variables
3D action 2D action 3D variable 2D variable
Neutral Neutral x x
North Right vx vx

East Right y x
South Left vy vx

West Left

Table 1: The inter-task mapping used by TiMRLA in Mountain Car to generate target task
instances from the source task model.

TiMRLA we also experiment with another case, a standard TiMRLA agent with
a decaying learning rate for its simulated experiences.

As it is shown in the next section (see section 7) the Model-based learning
rate a of the MBPI algorithm (see line 25, Algorithm 1) strongly correlates with
the agent’s performance when we transfer models to less relevant tasks, such as
Low Power MC 3D. So, we initially set a to 0.07 (as before) but set its decaying
to 0.99 per episode. Summarizing, in Low Power MC 3D the versions of the
TiMRLA agent compared were:

• A standard TiMRLA agent set as in sub-section 6.2 with its model-based
learning rate set to 0.07.

• A standard TiMRLA agent but with a decaying model-based learning rate.

• A No-Transfer case, where a standard Sarsa(λ) agent is used with CMAC
function approximation and eligibility traces.

6.4. Transferring in Server Job Scheduling

In this experiment a standard TiMRLA agent transferred a model of the
two job SJS task to a four job SJS task. The TiMRLA agent is compared to a
standard Sarsa(λ) agent with a CMAC function approximator whithout transfer
learning. For TiMRLA, to enable transfer between the two SJS task we first set
the necessary intertask mapping and used the one descibed in [2] which maps
the state variables from job type 1 to job types 1 and 2 and job type 2 to job
types 3 and 4. The same applies for the action mappings.

For the parameters of the target task, after an experimentation, the follow-
ing values were selected. The model-based policy improvement period was set
to 1, the iterations n were set to 100, and ε and the step-size parameter a, were
set to 0 (greedy) and 0.01 (decaying by 0.999 per episode), respectively. To
allow a clear comparison between them and account for the effect of transfer
learning, the previous parameters were also chosen for the Sarsa agent. More-
over, TiMRLA’s direct learning part used the Sarsa learning update and the
same CMAC function approximator.
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Figure 3: (Average reward in a period of 1000 episodes in MC 3D. The curves are smoothed
with a window of 20 episodes with standard error bars every 100 episodes

7. Results and Discussion

7.1. Mountain Car 3D

For MC 3D, Figure 3 presents the average cumulative reward that is ob-
tained by each algorithm over the learning episodes. The graphs were produced
from 20 independent trials per method and with a smoothing-averaging win-
dow of 20 episodes, for clarity purposes. They show a clear performance gain
of the proposed algorithm TiMRLA over the standard model-free agent, which
is also statistically significant at p < 0.05 (one-tail t-test). Its performance
demonstrates the positive effect of transferring a model from a source task and
moreover that this model can still assist learning even after many episodes.

Next, TiMRLA using a potential-based reward model demonstrates even
better performance than transferring a model of the original reward function
of the source task. This confirms our initial hypotheses that a potential-based
reward shaping scheme which shows good results in a source task, can also
improve the performance in a relevant target task.

Concerning the simulated experiences, it is important to note that the best
results were obtained with policy improvement taking place in every episode.
This shows us that the models succeeded in producing real-like experiences that
were positively influencing the learning algorithm just like complementary steps.
Although that, the tuned value for the step-size parameter was 0.07 being less
than that used for the real experiences which was set to 0.2. This can be seen
as a reasonable consequence of using approximate models since they are error
prone and can produce at times, errors that could negatively alter the learning
procedure.

Another interesting finding is that the best results were obtained with the
simulated actions ε parameter set to zero (see Algorithm 1- line 18). We hy-
pothesize that the model-based learning part, favors greedy action selection
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Threshold (steps) time-to-threshold (episodes) Avg. Improvement
No-Transfer st.dev. TiMRLA st. dev.

4000 323 63.16 227 50.12 29.7%
2000 425 55.37 320 41.83 24.7%
1000 528 61.66 398 54.16 24.6%
400 684 65.73 592 59.34 13.4%

Table 2: Time-to-threshold evaluation metric for four different step thresholds in Mountain
Car 3D, comparison of standard TiMRLA to No-Transfer. The results average 20 independent
trials of each method.

Area under the curve Improvement (ratio)
No-Transfer 2788.68 -
TiMRLA 3257.72 16.8%
TiMRLA-Augm. Reward 3428.76 22.9%
TiMRLA-Augm. Reward+Direct Assist 3584.97 28.5%

Table 3: Average area under the learning curve ratios in MC 3D from 20 independent trials.
All versions of TiMRLA compared to No-Transfer.

because the agent explores anyway by just being placed at random start states.
This sub-optimal placing is the exploration mechanism for the agent’s mental
experiences, and he balances by implementing greedy action selection.

Table 2 shows the results of the time-to-threshold evaluation metric in MC
3D, comparing standard TiMRLA with the no -transfer case. Four different
performance thresholds were set concerning the steps needed from the agent
to reach the goal. The greatest improvement for the proposed approach can be
seen in the first threshold (4000 steps) which a TiMRLA agent is able to achieve
roughly after 227 episodes in contrast to the no-transfer case where the agent
needed about 323 learning episodes.

For the other thresholds the difference is still significant but degrading, show-
ing that the positive effect of transferring source task models is especially im-
portant in the first learning episodes where the agent had less interaction with
the environment.

Table 3 shows the results of the area under the curve evaluation metric in
MC 3D. Here, all the proposed TiMRLA methods were compared with the no-
transfer case by calculating and comparing the ratio of the areas under their
learning curves. TiMRLA using both augmented reward function model (pot.
function) and direct learning assist, demonstrated the best performance. Its
learning curve covers 28.5% more area than that of the no-transfer case showing
that the parallel use of such a reward model for simulated experience and for
reward shaping can show significant improvements.

It is important to note that TiMRLA in this fully deployed version, has
better performance than TiMRLA using just an augmented reward model but
without direct learning assist. A first conclusion is that direct learning assist
significantly improves the learning performance. One more insight for this can
be that both the simulated experiences rewards and the shaped rewards come
from the same rewards distribution where in the other case of TiMRLA, the
agent is directly experiencing the original task rewards but in its model-based
part the augmented ones, probably creating a form of incompatibility.
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Figure 4: Average reward in a period of 1000 episodes in low-power MC 3D. The curves are
smoothed with a window of 20 episodes with standard error bars every 100 episodes

7.2. Low-Power Mountain Car 3D

For Low-Power MC 3D, Figure 4 shows the average cumulative reward ob-
tained by each algorithm over the learning period. episodes. The proposed
method demonstrated a stable stat. significant (at p < 0.05) when using a de-
caying learning rate for the simulated experiences. This result shows the positive
effect of transferring a task model, even to less relevant target tasks.

An interesting finding here is that when a constant learning rate is used in
low-power MC 3D (standard TiMRLA), although we have an initial performance
boost, the agent finally converges to a sub-optimal policy (see Figure 3). One
possible explanation is based on the task differences. Low-power MC 3D has
different dynamics and transition function. Thus, it can be seen as a less relevant
task for the standard 2D MC models. Using these models initially improves
performance but in the long term, their constant learning rate (contribution) in
the agents value function, is harmful.

One solution given is by using a decaying learning rate for the simulated
experiences. This approach demonstrated the significant improvement over the
no-transfer case (see Figure 4). A limitation of this approach is that requires
some parameter tuning as to achieve a similar overall performance improvement.
One has to set both the initial learning rate for the simulated experiences, as
also its decaying factor.

The experiment results are also confirmed in Table 2 using the time-to-
threshold evaluation metric. TiMRLA and No Transfer can not achieve the
smaller thresholds whereas TiMRLA whith a decaying learning rate, is able to
achieve all threshold values in 1000 episodes.

Based on the above, we can conclude that when transferring models from
tasks with different reward and/or transition functions, the learning rate for
the simulated experiences plays a crucial role for the learning performance and
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Threshold (steps) time-to-threshold (episodes)
No Transfer st.dev. TiMRLA st. dev. Improv. TiMRLA decay st. dev. Improv.

4000 541 62.39 300 61.54 44.5% 368 53.67 31.9%
2000 696 60.48 804 62.96 -15.5% 506 49.76 27.3%
1000 796 57.36 - - - 615 50.27 22.7%
400 - - - - - 820 52.83 -

Table 4: Time-to-threshold evaluation metric for four different step thresholds in Low-Power
Mountain Car 3D, comparison of No-Transfer to TiMRLA with decaying learning rate and
standard TiMRLA. The hyphen (-) denotes thresholds that were not achieved in a duration
of 1000 episodes. The results average 20 independent trials of each method.
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Figure 5: Average reward in a period of 5000 episodes in SJS. The curves average 12 trials of
each algorithm and are smoothed with a window of 100 episodes.

should be better set to decay.
Finally, the mean predictive accuracy of the MC 2D Transition model was

also calculated. The mean euclidean distance of a real after-state s′ to the
predicted one was 0.018 for the state variables x and y.

7.3. Server Job-Shop Scheduling

Figure 5 depicts the average cumulative reward obtained by TiMRLA and
Sarsa(λ) over a learning period of 5000 episodes. The proposed approach signif-
icantly assisted the performance of the agent especially between episodes 1300
and 2250 where a statistically significant difference in performance was found.
Note that the SJS is a harder domain since the connection between the source
and the target tasks is not as straightforward as in mountain car. Moreover, the
SJS target task agent must handle two new-unseen job types. For this reason,
a decaying learning rate was chosen when learning from the simulated-mental
experiences generated from the CNN’s.

As both compared algorithms have the same direct learning part (Sarsa(λ)
we can observe that they converge to the same average reward levels in the last
2000 episodes. Transferring a task model with TiMRLA in this domain, helped
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on significantly speeding-up learning but not on finding a marginally better pol-
icy since both algorithms exploration, function approximation and learning rule
mechanisms are the same. Interestingly, the CNN’s demonstrated an ability to
learn good models of the SJS tasks and while the mental experiences generated
by them were more noisy compared to MC3D noise was counter balanced by
the CMAC function approximator.

8. Conclusions and Future Work

This work examined the viability and benefits of transferring the full model
of a task to a different but relevant task. The tasks are allowed to have differ-
ent actions and state variables by constructing and using the right inter-task
mappings. The use of cascade neural networks in an RL scheme showed promis-
ing results by providing us with accurate enough models of the transition and
reward functions of the the source task.

The source’s task model was successfully used from a novel algorithm capable
of exploiting it. The proposed algorithm is equipped with two learning mecha-
nisms (hybrid) one for model-free learning and one for model-based. Empirical
results demonstrate a significant performance improvement when compared to
the ”no-transfer” case. The model of a source task, generated using supervised
learning, can be efficiently used by a standard model-free learning algorithm
either through a model-based add-on module (TiMRLA model-based transfer),
or directly, with approaches such as that of model-based reward shaping. More-
over, concurrent learning of TD-Learning with TD-learning from simulated ex-
periences, can be compatible and efficient.

Proposals for future work include the evaluation of the method with the use
of different model-based algorithms and the further investigation of the impor-
tance of the simulated experiences learning rate (contribution) when transfer-
ring across tasks with different transition and/or reward function. One possible
approach other than a decaying learning rate, could be that of an agent who au-
tonomously adjusts its learning rate according to its performance, convergence
progress etc. Finally, the development of new hybrid-learning algorithms may
further demonstrate the advantages of these approaches.
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