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Abstract. The prediction of the translation initiation site (TIS) in a genomic se-
quence is an important issue in biological research. Several methods have been 
proposed to deal with it. However, it is still an open problem. In this paper we 
follow an approach consisting of a number of steps in order to increase TIS 
prediction accuracy. First, all the sequences are scanned and the candidate TISs 
are detected. These sites are grouped according to the length of the sequence 
upstream and downstream them and a number of features is generated for each 
one. The features are evaluated among the instances of every group and a num-
ber of the top ranked ones are selected for building a classifier. A new instance 
is assigned to a group and is classified by the corresponding classifier. We ex-
periment with various feature sets and classification algorithms, compare with 
alternative methods and draw important conclusions. 

1   Introduction 

The rapid technological advances of the last years have assisted the conduct of large 
scale experiments and research projects in biology. The completion of these efforts 
has lead to a giant collection of biological data. The development and use of methods 
for the management and analysis of these data is necessary. As a consequence to this 
need, a new research area called bioinformatics has emerged. Bioinformatics is an 
interdisciplinary area positioned at the intersection of biology, computer science, and 
information technology. 

A large portion of biological data is represented by sequences. These sequences 
characterize a large molecule that is a succession of a number of smaller molecules. 
The study of the structure and function of such large molecules (macromolecules) is 
the mission of molecular biology. The scientists intend to discover useful biological 
knowledge by analyzing the various genomic sequences. The utilization of explora-
tory techniques in order to describe the vast amount of data is required. However, the 
use of traditional analysis techniques is not adequate and novel, high performance 
tools have to be developed. The field of data mining aims to provide efficient compu-
tational tools to overcome the obstacles and constraints posed by the traditional statis-
tical methods.  

Translation is one of the basic biological operations that attract biologist’s atten-
tion. Translation along with replication and transcription make possible the transmis-



sion and expression of an organism’s genetic information. The initiation of translation 
plays an important role in understanding which part of a sequence is translated and 
consequently what is the final product of the process. When the way that each of these 
operations takes place is explained, biologists will be one step closer to the unraveling 
of the mystery of life, which is the final objective of biology.  

A sequence contains a number of sites where the translation might initiate. How-
ever, only one of them is the true translation initiation site (TIS). The recognition of 
the true TIS among the candidate TISs is not a trivial task and requires the use of data 
mining tools. Classification methods have been extensively used in order to deal with 
this problem. The idea of multiple classifier systems is an attempt to construct more 
accurate classification models by combining a number of classifiers. Classifier com-
bination includes two main paradigms: classifier selection and classifier fusion. In the 
first case a new instance is classified by selecting the appropriate classifier, while in 
the second case a new instance is classified according to the decisions of all the classi-
fiers. 

In this paper we have followed an approach for classifier selection to tackle the 
problem of the prediction of TISs in DNA sequences. The traditional data mining 
methods are not directly applicable to sequence data. Thus, we had to transform the 
initial set of raw sequences to a new dataset consisting of a number of feature vectors 
that describe the initial data. In particular, all the sequences are scanned and the can-
didate TISs are detected. The candidate TISs are grouped according to the length of 
the sequence compartment upstream and downstream them and a number of features 
is generated for each one. The features are evaluated among the instances of every 
group according to their impact in the accuracy of classification. Then, a number of 
the top ranked features are selected for building a classifier. A new instance is as-
signed to one of the groups and is classified by the corresponding classifier. We ex-
periment with various feature sets and classification algorithms, we compare with 
alternative methods and draw important conclusions. 

This paper is outlined as follows: In the next section we briefly present the relative 
work in the area of TIS prediction. In section three we provide the necessary back-
ground knowledge. In section four our approach is presented in more detail. Section 
five contains the description of the dataset, the algorithms and the evaluation method 
we have used as well as the results of our experiments. Finally, in section six we pre-
sent our conclusions and some directions for future research.  

2   Related Work 

The prediction of TISs has been extensively studied using biological approaches, data 
mining techniques and statistical models. In 1978 Kozak and Shatkin [8] proposed the 
ribosome scanning model, which was later updated by Kozak [7]. According to this 
model, translation initiates at the first candidate TIS that has an appropriate context. 
Later, in 1987 Kozak developed the first weight matrix for the identification of TISs 
in cDNA sequences [6]. The following consensus pattern was derived from this ma-
trix: GCC[AG]CCatgG. Bold letters denote the highly conserved positions. Mean-
while, Stormo et al. [16] had used the perceptron algorithm to distinguish the TISs. 



Pedersen and Nielsen [13] used artificial neural networks (ANNs) to predict which 
AUG codons are TISs achieving an overall accuracy of 88% in Arabidopsis thaliana 
dataset and 85% in vertebrate dataset. Zien et al. [20] studied the same vertebrate 
dataset, employing support vector machines. Hatzigeorgiou [3] proposed “DIANA-
TIS”, an ANN system consisting of two modules: the consensus ANN, sensitive to the 
conserved motif and the coding ANN, sensitive to the coding or non-coding context 
around the initiation codon. The method was applied in human cDNA data and 94% 
of the TIS were correctly predicted. ATGpr, developed by Salamov et al. [15], is a 
program that uses a linear discriminant approach for the recognition of TISs. Nishi-
kawa et al. [12] presented an improvement of ATGpr, named ATGpr_sim, which em-
ploys a new prediction algorithm based on both statistical and similarity information 
and achieves better performance in terms of sensitivity and specificity. Li et al. in [9] 
utilized Gaussian Mixture Models for the prediction of TISs. 

In [11] and [19] the researchers have utilized feature generation and feature selec-
tion methods with various machine learning algorithms. In their studies, they used a 
large number of features concerning the frequency of nucleotide patterns. Using a 
ribosome scanning model along with the best selected features they achieved an over-
all accuracy of 94% on the vertebrate dataset of Pedersen and Nielsen. Later, in [10] 
the same approach was used, but instead of nucleotide patterns, amino acid patterns 
were generated. 

3   Background Knowledge 

The main structural and functional molecules of an organism’s cell are proteins. The 
information concerning the synthesis of each protein is encoded by the genetic mate-
rial of the organism. The genetic material of almost every living organism is deoxyri-
bonucleic acid (DNA). There are exceptions of some viruses that have ribonucleic 
acid (RNA) as genetic material. Moreover, RNA has many other functions and plays 
an important role in protein synthesis. DNA and RNA belong to a family of molecules 
called nucleic acids. Both proteins and nucleic acids are sequences of smaller mole-
cules, amino acids and nucleotides respectively. A sequence can be represented as a 
string of different symbols. There are twenty amino acids and five nucleotides. Every 
nucleotide is characterized by the nitrogenous base it contains: adenine (A), cytosine 
(C), guanine (G), thymine (T), or uracil (U). DNA may contain a combination of A, 
C, G, and T. In RNA U appears instead of T. DNA and RNA sequences have two 
ends called the 5′  and the 3′  end and are directed from the 5′  to the 3′  end ( 5 3′ ′→ ).  

Proteins are synthesized by the following process. DNA is transcribed into a mes-
senger RNA (mRNA) molecule (transcription). Then mRNA is used as template for 
the synthesis of a protein molecule (translation). In our setup, we focus on the process 
of translation, which is further explained below.  

Translation takes place by an organelle called ribosome. The mRNA sequence is 
scanned by the ribosome, which reads triplets, or codons, of nucleotides and “trans-
lates” them into amino acids. Thus, a protein consisting of n amino acids is encoded 
by a sequence of 3n nucleotides. Since there are 64 different triplets formed from an 
alphabet of four nucleotides and the total number of amino acids is 20, it is obvious 



that some amino acids are encoded by more than one codon. Moreover, the triplet 
AUG, that encodes amino acid methionine is also used as a translation initiation 
codon. Finally, there are three stop codons for the termination of translation (UAG, 
UAA and UGA).  

An mRNA sequence can be read in three different ways in a given direction. Each 
of these ways of reading is referred to as reading frame. The reading frame that is 
translated into a protein is named Open Reading Frame (ORF). 

Translation, usually, initiates at the AUG codon nearest to the 5′  end of the mRNA 
sequence. However this is not always the case, since there are some escape mecha-
nisms that allow the initiation of translation at following, but still near the 5′  end 
AUG codons. Due to these mechanisms the recognition of the TIS on a given se-
quence becomes more difficult.  

After the initiation of translation, the ribosome moves along the mRNA molecule, 
towards the 3′  end (the direction of translation is 5 3′ ′→ ) and reads the next codon. 
This process is repeated until the ribosome reaches a stop codon. For each codon read 
the proper amino acid is brought to the protein synthesis site by a transfer RNA 
(tRNA) molecule. The amino acid is joined to the protein chain, which by this way is 
elongated.  

A codon that is contained in the same reading frame with respect to another codon 
is referred to as in-frame codon. We name upstream the region of a nucleotide se-
quence from a reference point towards the 5′  end. Respectively, the region of a nu-
cleotide sequence from a reference point towards the 3′  end is referred to as down-
stream. In TIS prediction problems the reference point is an AUG codon. The above 
are illustrated in Fig. 1. 
 

 

 
Fig. 1. Translation initiation – The ribosome scans the mRNA sequence from the 5′ end to the 
3′ end until it reads an AUG codon. If the AUG codon has appropriate context, the translation 
initiates at that site and terminates when a stop codon (i.e. UGA) is read. An in-frame codon (in 
relation with AUG) is represented by three consecutive nucleotides that are grouped together 

4   Our Approach 

In this section we describe the approach we have followed in order to construct a mul-
tiple classifier system for the prediction of TISs in genomic sequences. Our approach 
consists of a number of steps. Each of these steps is described in detail in the follow-
ing lines. 
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− Step 1: All sequences are scanned and every candidate TIS is detected as shown in 
Fig. 2 (In the rest of the paper we use the DNA alphabet, since the original dataset 
we have used contains DNA sequences. See section 5.1). 

− Step 2: The candidate TISs found in step 1 are grouped according to the length of 
the sequence compartment upstream and downstream them. By this way the initial 
dataset of candidate TISs is divided into a number of smaller datasets (Fig. 3). In 
our setup we have divided the initial dataset in 4 smaller datasets. Table 1 lists the 
portion of the whole dataset that each of the four data subsets constitutes. We name 
Dm-n a dataset that contains candidate TISs, that their feature values are calculated 
by considering m upstream and n downstream nucleotides.  

− Step 3: For each of the candidate TISs the value of a number of features is calcu-
lated. More details about these features are listed in Table 2. Some of them (up-
down_x, up_pos_k_x, down_pos_k_x) have been proposed in our previous work 
[17] and have been found to present good performance in terms of classification 
accuracy. 

− Step 4: The features are evaluated among the instances of every group according to 
their impact in the accuracy of classification. In our setup we have used the infor-
mation gain measure.  

− Step 5: A number of the top ranked features is selected and a classifier is built for 
each of the data subsets. 

Finally, a new instance, namely a new candidate ATG, is assigned to one of the 
groups according to the length of its upstream and downstream regions’ length and is 
classified by the corresponding classifier. 

 

 
Fig. 2. A sequence is scanned and every candidate TIS (ATG codon) is detected. Then, its up-
stream and downstream length is calculated in order to decide in which group belongs 

 
Fig. 3. The initial dataset D is divided into a number of smaller datasets Di and finally a classi-
fier Ci is built separately for each Di  

AGCCATGGCATTCCGTATGTTCTGATGTTAA 

1, upstream length: 4, downstream length: 24 
2, upstream length: 16, downstream length: 12 
3, upstream length: 24, downstream length: 4 
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Table 1. The four data subsets used in our setup 

Dataset Portion of Initial Dataset 
D99-99 12.3 % 
D99-120 28.3 % 
D120-99 52.5 % 
D120-120 6.9 % 

Table 2. The features used in our approach 

Feature Description 

up_x Counts the number of occurrences of amino acid x in the upstream 
region 

down_x Counts the number of occurrences of amino acid x in the down-
stream region 

up-down_x 
Counts the difference between the number of occurrences of amino 
acid x in the upstream region and the number of occurrences of 
amino acid x in the downstream region 

up_pos_k_x Counts the number of occurrences of nucleotide x in the kth posi-
tion of the upstream in-frame codons (k ∈{1, 2, 3}) 

down_pos_k_x Counts the number of occurrences of nucleotide x in the kth posi-
tion of the downstream in-frame codons (k ∈{1, 2, 3}) 

up_-3_[AG] 
A Boolean feature that is true if there is an A or a G nucleotide 
three positions before the ATG codon, according to Kozak’s pat-
tern (GCC[AG]CCatgG) 

down_+1_G 
A Boolean feature that is true if there is a G nucleotide in the first 
position after the ATG codon, according to Kozak’s pattern 
(GCC[AG]CCatgG) 

up_ATG A Boolean feature that is true if there is an in-frame upstream ATG 
codon 

down_stop A Boolean feature that is true if there is an in-frame downstream 
stop codon (TAA, TAG, TGA) 

5   Experiments 

In this section we describe the dataset, the algorithms and the evaluation method we 
have used along with the results of our experiments. 



5.1   Dataset 

The original dataset we have used consists of 3312 genomic sequences collected from 
various vertebrate organisms. These sequences were extracted from GenBank, the US 
NIH genetic sequence database [2]. Only the sequences that contain an annotated TIS 
are included. The dataset is publicly available in [5]. The DNA sequences have been 
processed and the interlacing non-coding regions (introns) have been removed. Since 
they are DNA sequences, they contain only the letters A, C, G and T. Thus, a candi-
date TIS is referred to as ATG codon instead of AUG codon. Almost 25% of the 
ATGs in these sequences are true TISs. 

In order to compare our approach we have used two datasets -derived from the 
original- each of them containing the entire set of candidate TISs. The candidate TISs 
in the first dataset are described by feature values calculated for 99 positions upstream 
and 99 downstream (D99-99), while in the second dataset are described by feature val-
ues calculated for 120 positions upstream and 120 downstream (D120-120). Note that 
Dm-n here refers to a dataset containing the complete set of candidate TISs, that their 
feature values are calculated by considering m upstream and n downstream nucleo-
tides and is different from the corresponding Dm-n dataset of our approach, that con-
tains only a portion of candidate TISs (see step 2 in section 4). 

5.2   Algorithms 

For the conduction of our experiments we have utilized the Weka library of machine 
learning algorithms [18]. We have used the following three classification algorithms: 

− C4.5, that is a decision tree construction algorithm [14]. 
− Naïve Bayes classifier [4]. 
− PART, a rule learner [1]. 

5.3   Evaluation 

In order to evaluate the results of our experiments we have used stratified 10-fold 
cross-validation (CV). In particular, the performance of a classifier on a given dataset 
using 10-fold CV is evaluated as following. The dataset is divided into 10 non-
overlapping almost equal size parts (folds). In stratified CV each class is represented 
in each fold at the same percentage as in the entire dataset. After the dataset has been 
divided, a model is built using 9 of the folds as a training set and the remaining fold as 
a test set. This procedure is repeated 10 times with a different test set. The evaluation 
procedure of our approach is depicted in Fig. 4. 

In order to increase the reliability of the evaluation, we have repeated each experi-
ment 10 times and we finally took into account the average of the results. 
 



 
Fig. 4. The initial dataset D is divided into a number of smaller datasets Di. For each Di 10 
classifiers are built and evaluated according to the 10-fold CV procedure. At the end, each in-
stance of the initial dataset D will have been tested exactly once (in our setup n = 4) 

5.4   Results 

We have built classifiers by using various numbers of the top ranked, according to 
information gain measure, features. The results concerning the classification accuracy 
of each classifier are listed in Table 3. As shown in the table our approach performs 
better in almost every case. In particular, when C4.5 was used the difference between 
the best accuracy of our method and the best accuracy of anyone of the other ap-
proaches was 1.25%. When the Naïve Bayes classifier was used, this difference in-
creased to 2.35% and when PART was used the difference was 1.11%.  
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Table 3. Classification accuracy of our multiple classifier system (MCS) and the classifiers 
built on datasets D99-99 and D120-120 

Algorithm Top Features MCS D99-99 D120-120 
50 90.30 % 89.82 % 84.15 % 
30 90.70 % 90.10 % 89.77 % 
20 91.43 % 92.82 % 90.21 % 
15 91.97 % 92.95 % 90.43 % 
12 92.26 % 93.01 % 92.79 % 
9 92.98 % 92.63 % 92.65 % 
7 93.27 % 92.21 % 92.36 % 
5 94.26 % 91.44 % 91.98 % 

C4.5 

3 93.59 % 91.12 % 91.92 % 
50 91.69 % 88.93 % 83.13 % 
30 92.89 % 88.37 % 89.37 % 
20 92.35 % 90.54 % 89.27 % 
15 91.73 % 90.08 % 88.56 % 
12 88.55 % 89.04 % 88.22 % 
9 88.49 % 88.00 % 86.94 % 
7 87.91 % 87.44 % 85.92 % 
5 86.98 % 85.24 % 84.30 % 

Naïve Bayes

3 85.88 % 82.37 % 81.37 % 
50 90.56 % 89.60 % 83.60 % 
30 91.29 % 89.87 % 88.89 % 
20 92.31 % 92.86 % 89.14 % 
15 92.71 % 92.84 % 90.21 % 
12 92.56 % 93.08 % 92.86 % 
9 92.98 % 93.02 % 92.53 % 
7 93.32 % 92.22 % 92.06 % 
5 94.19 % 91.45 % 91.67 % 

PART 

3 93.84 % 91.18 % 91.46 % 
 
We have also conducted experiments for datasets D99-99 and D120-120, using the fea-

tures proposed in [10] (up_ATG, down_stop, up_-3_[AG], down_A, down_V, up_A, 
down_L, down_D, down_E, up_G). The results are presented in Table 4. 

Using the same reasoning as in the comparisons above we can say that the differ-
ences of the best cases for each algorithm range from 3.51% to 3.67%, concluding 
that our approach performs better. 



Table 4. Classification accuracy of classifiers built on datasets D99-99 and D120-120 using the 
features proposed in [10] 

Algorithm D99-99 D120-120 
C4.5 90.29 % 90.59 % 
Naïve Bayes 88.24 % 89.00 % 
PART 90.34 % 90.68 % 

6   Conclusions and Future Work 

Translation is one of the basic biological processes and the accurate prediction of the 
translation initiation site in a genomic sequence is crucial for biologists. However, 
this is not a trivial task. First of all, the knowledge about the process of translation is 
limited. It is known that translation initiates at the first AUG codon of mRNA in more 
than 90% of eukaryotic organisms, but some escape mechanisms prevent this. The 
exact way that each of these mechanisms works, has not been explained up till now. 
Moreover, the available sequences are not always complete and contain errors.  

In this paper, we considered the utilization of a large number of  features. We con-
structed a multiple classifier system and used classifier selection in order to classify a 
new instance. For this purpose we developed a method for separating the candidate 
TISs according to the length of the sequence compartment upstream and downstream 
them. Then, a classifier is built for each data subset. We applied our approach on a 
real-world dataset that contains processed DNA sequences from vertebrates. We used 
various classification algorithms and after extensive experimentation we discovered 
that the use of our method improves the accuracy of classification.  

The study of different ways of separation of the candidate TISs is involved in our 
future plans. Additionally, we aim to use more datasets and possibly from different 
kind of organisms. Finally, the experimentation with novel features is always under 
consideration. 
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