
G. Antoniou et al. (Eds.): SETN 2006, LNAI 3955, pp. 529 – 533, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Graphical Representation of Defeasible Logic Rules
Using Digraphs

Efstratios Kontopoulos and Nick Bassiliades

Department of Informatics, Aristotle University of Thessaloniki,
GR-54124 Thessaloniki, Greece

{skontopo, nbassili}@csd.auth.gr

Abstract. Defeasible reasoning is a rule-based approach for efficient reasoning
with incomplete and conflicting information. Nevertheless, it is based on solid
mathematical formulations and is not fully comprehensible by end users, who
often need graphical trace and explanation mechanisms for the derived conclu-
sions. Directed graphs (or digraphs) can assist in this affair, but their applicabil-
ity is balanced by the fact that it is difficult to associate data of a variety of
types with the nodes and the connections in the graph. In this paper we try to
utilize digraphs in the graphical representation of defeasible rules, by exploiting
their expressiveness, but also trying to counter their major disadvantage, by de-
fining multiple node and connection types.

1 Introduction

Defeasible reasoning [2] constitutes a simple rule-based approach to reasoning with
incomplete and conflicting information. It can represent facts, rules, as well as priori-
ties and conflicts among rules. Such conflicts arise, among others, from rules with ex-
ceptions (e.g. policies and business rules) and priority information is often available
to resolve conflicts among rules. However, although defeasible reasoning features a
significant degree of expressiveness and intuitiveness, it is still based on solid mathe-
matical formulations, which, in many cases, may seem too complicated. So, end users
might often consider the conclusion of a defeasible logic theory incomprehensible. A
graphical trace and an explanation mechanism would certainly be very beneficial.

Directed graphs (or digraphs) are a special case of graphs that constitute a powerful
and convenient way of representing relationships between entities [4]. In a digraph,
entities are represented as nodes and relationships as directed lines or arrows that
connect the nodes. The orientation of the arrows follows the flow of information in
the digraph [5]. Digraphs offer a number of advantages to information visualization,
with the most important of them being: (a) comprehensibility - the information that a
digraph contains can be easily and accurately understood by humans [8] and (b) ex-
pressiveness - digraph topology bears non-trivial information [4]. Furthermore, in the
case of graphical representation of logic rules, digraphs seem to be extremely appro-
priate. They can offer explanation of derived conclusions, since the series of inference
steps in the graph can be easily detected and retraced [1]. Also, by going backwards
from the conclusion to the triggering conditions, one can validate the truth of the
inference result, gaining a means of proof visualization and validation. Finally,

530 E. Kontopoulos and N. Bassiliades

especially in the case of defeasible logic rules, the notion of direction can also assist
in graphical representations of rule attacks, superiorities etc.

There is, however, one major disadvantage, not only of digraphs but of graphs in
general. More specifically, it is difficult to associate data of a variety of types with the
nodes and with the connections between the nodes in the graph [4].

In this paper we attempt to exploit the expressiveness and comprehensibility of di-
rected graphs, as well as their suitability for rule representation, but also try to lever-
age their disadvantages, by adopting an “enhanced” digraph approach.

There exist systems that implement rule representation/visualization with graphs,
such as Graphviz [6], although we haven’t come across a system that represents de-
feasible logic rules yet. Certain knowledge-based system development tools also fea-
ture rule and execution graph-drawing. Finally, there have been attempts of creating
rule graphs for certain rule types, like association rules [3] or production rules [7], but
they remained at an elementary stage of development.

2 Representing Rules with Digraphs

In an attempt to leverage the inability of directed graphs to use a variety of distinct
entity types, the digraphs in our approach will contain two kinds of nodes, similarly to
the methodology followed by [7]. The two node types will be:

• literals, represented by rectangles, which we call “literal boxes”
• rules, represented by circles

Thus, according to this principle, the following rule base:
p: if A then B q: if B then ¬C

can be represented by the directed graph:

 p
A B

q
C

¬ ¬¬

Each literal box consists of two adjacent “atomic formula boxes”, with the upper
one of them representing a positive atomic formula and the lower one representing a
negated atomic formula. This way, the atomic formulas are depicted together clearly
and separately, maintaining their independence.

r: if ¬A and B then C

r

A

C
B

¬

¬

¬

Fig. 1. Digraph featuring a conjunction

If the rule body consists of a conjunction of literals the representation is not pro-
foundly affected, as illustrated in Fig. 1. As can be observed, digraphs, “enhanced”
with the addition of distinct node types, offer a significant level of expressiveness in

 Graphical Representation of Defeasible Logic Rules Using Digraphs 531

representing rules. The next step is to use directed graphs in the representation of de-
feasible logic rules, which are more demanding in representational capabilities.

3 Defeasible Logics and Digraphs

A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) con-
sists of three basic ingredients: a set of facts (F), a set of rules (R) and a superiority re-
lationship (>). Therefore, D can be represented by the triple (F, R, >).

In defeasible logic, there are three distinct types of rules: strict rules, defeasible
rules and defeaters. In our approach, each one of the three rule types will be mapped
to one of three distinct connection types (i.e. arrows), so that rules of different types
can be represented clearly and distinctively.

The first rule type in defeasible reasoning is strict rules, which are denoted by
A → p and are interpreted in the typical sense: whenever the premises are indisput-
able, then so is the conclusion. An example is: “Penguins are birds”, which would
become: r1: penguin(X) → bird(X), and is represented by digraphs, as follows:

 r1
penguin bird

¬ ¬

Notice that in the rule graph we only represent the predicate and not the literal (i.e.
predicate plus all the arguments) because we are mainly interested in emphasizing the
interrelationships between the concepts (through the rules) and not the complete de-
tails of the defeasible theory.

Contrary to strict rules, defeasible rules can be defeated by contrary evidence and are
denoted by A ⇒ p. Examples of defeasible rules are r2: bird(X) ⇒ flies(X),
which reads as: “Birds typically fly” and r3: penguin(X) ⇒ ¬flies(X), namely:
“Penguins typically do not fly”. Rules r2 and r3 would be mapped to the following di-
rected graphs, respectively:

r3

r2
flies

¬

¬

penguin
¬

bird

Defeaters, denoted by A ~> p, are rules that do not actively support conclusions,
but can only prevent them, namely they can defeat some defeasible conclusions by
producing evidence to the contrary. An example is: r4: heavy(X) ~> ¬flies(X),
which reads as: “Heavy things cannot fly”. This defeater can defeat the (defeasible)
rule r2 mentioned above and it can be represented as:

r4
heavy

¬

flies

¬

532 E. Kontopoulos and N. Bassiliades

Finally, the superiority relationship is an acyclic relation > that is used to resolve
conflicts among rules. For example, given the defeasible rules r2 and r3, no conclu-
sive decision can be made about whether a penguin can fly or not, because rules r2
and r3 contradict each other. But if the superiority relationship r3 > r2 is introduced,
then r3 overrides r2 and we can indeed conclude that the penguin cannot fly. Rule r3

is called superior to r2. Thus, a fourth connection type is introduced and the afore-
mentioned superiority relationship is represented as follows:

 r3 r2>>>>>>>>>>>>>>>

The set of rules (r1 - r4) mentioned in this section form a bigger, compact directed
rule graph that can indeed raise the level of comprehensibility on behalf of the user.

¬

penguin
r1

¬

bird

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>r3 r2

¬

flies

r4
heavy

¬

4 Conclusions and Future Work

In this paper we argued that graphs can be a powerful tool in the field of information
visualization. Especially in the case of rules, directed graphs can be particularly use-
ful, since by definition they embrace the idea of information flow, a notion that is also
encountered in rules and inference. Directed graphs present, however, a major disad-
vantage, which is their inability to associate data of a variety of types with the nodes
and with the connections between the nodes. In this paper we propose an approach
that aims at leveraging this disadvantage, by allowing different node and connection
types. Digraphs, “enhanced” with these extra features, can greatly assist in represent-
ing defeasible logic rules.

In the future we plan to delve deeper into the proof layer of the Semantic Web ar-
chitecture, by enhancing further the rule representation with rule execution tracing,
explanation, proof exchange in an XML/RDF format, proof visualization and valida-
tion, etc. These facilities would be useful for increasing the user trust for the Semantic
Web and for automating proof exchange and trust among agents in the Semantic Web.

References

[1] Antoniou G., Harmelen F. van, A Semantic Web Primer, MIT Press, 2004.
[2] Antoniou G., Nonmonotonic Reasoning, MIT Press, 1997.
[3] Chakravarthy S., Zhang H., “Visualization of association rules over relational DBMSs”,

Proc. 2003 ACM Symp. on Applied Computing, ACM Press, pp. 922-926, 2003.

 Graphical Representation of Defeasible Logic Rules Using Digraphs 533

[4] Clarke D., “An Augmented Directed Graph Base for Application Development”, Proc. 20th
annual Southeast regional Conf., ACM Press, pp. 155-159, 1982.

[5] Diestel R., Graph Theory (Graduate Texts in Mathematics), 2nd ed., Springer, 2000.
[6] Graphviz - Graph Visualization Software, http://www.graphviz.org.
[7] Jantzen J., “Inference Planning Using Digraphs and Boolean Arrays”, Proc. Int. Conf. on

APL, ACM Press, pp. 200-204, New York, USA, 1989.
[8] Nascimento H.A.D. do, “A Framework for Human-Computer Interaction in Directed Graph

Drawing”, Proc. Australian Symp. on Information Visualization, pp. 63-69, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

