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Abstract. This paper presents DR-DEVICE, a system for defeasible reasoning 
on the Web. Defeasible reasoning is a rule-based approach for efficient reason-
ing with incomplete and inconsistent information. Such reasoning is, among 
others, useful for ontology integration, where conflicting information arises 
naturally; and for the modeling of business rules and policies, where rules with 
exceptions are often used. In this paper we describe these scenarios in more de-
tail along with the implementation of the DR-DEVICE system, which is capa-
ble of reasoning about RDF data over multiple Web sources using defeasible 
logic rules. The system is implemented on top of CLIPS production rule system 
and builds upon R-DEVICE, an earlier deductive rule system over RDF data 
that also supports derived attribute and aggregate attribute rules. Rules can be 
expressed either in a native CLIPS-like language, or in an extension of the OO-
RuleML syntax. The operational semantics of defeasible logic are implemented 
through compilation into the generic rule language of R-DEVICE. The paper 
includes a use case of a semantic web broker that reasons defeasibly about rent-
ing apartments based on buyer's requirements (expressed RuleML defeasible 
logic rules) and seller's advertisements (expressed in RDF). 

1. Introduction 

The development of the Semantic Web [14] proceeds in layers, each layer being on 
top of other layers. At present, the highest layer that has reached sufficient maturity is 
the ontology layer in the form of the description logic based languages of 
DAML+OIL [18] and OWL [20].  

The next step in the development of the Semantic Web will be the logic and proof 
layers, and rule systems appear to lie in the mainstream of such activities. Moreover, 
rule systems can also be utilized in ontology languages. So, in general rule systems 
can play a twofold role in the Semantic Web initiative: (a) they can serve as exten-
sions of, or alternatives to, description logic based ontology languages; and (b) they 
can be used to develop declarative systems on top of (using) ontologies. Reasons why 
rule systems are expected to play a key role in the further development of the Seman-
tic Web include the following: 



1. Seen as subsets of predicate logic, monotonic rule systems (Horn logic) and de-
scription logics are orthogonal; thus they provide additional expressive power to 
ontology languages.  

2. Efficient reasoning support exists to support rule languages.  
3. Rules are well known in practice, and are reasonably well integrated in mainstream 

information technology.  
Possible interactions between description logics and monotonic rule systems were 

studied in [26]. Based on that work and on previous work on hybrid reasoning [28] it 
appears that the best one can do at present is to take the intersection of the expressive 
power of Horn logic and description logics; one way to view this intersection is the 
Horn-definable subset of OWL.  

This paper is devoted to a different problem, namely conflicts among rules. Here 
we just mention the main sources of such conflicts, which are further expanded in sec-
tion 2. At the ontology layer: (a) default inheritance within ontologies, (b) ontology 
merging; and at the logic and reasoning layers: (a) rules with exceptions as a natural 
representation of business rules, (b) reasoning with incomplete information. 

Defeasible reasoning is a simple rule-based approach to reasoning with incomplete 
and inconsistent information. It can represent facts, rules, and priorities among rules. 
This reasoning family comprises defeasible logics ([35], [6]) and Courteous Logic 
Programs [24]. The main advantage of this approach is the combination of two desir-
able features: enhanced representational capabilities allowing one to reason with in-
complete and contradictory information, coupled with low computational complexity 
compared to mainstream nonmonotonic reasoning.  

In this paper we report on the implementation of a defeasible reasoning system for 
reasoning on the Web, called DR-DEVICE. Its main characteristics are the following: 
• Its user interface is compatible with RuleML [15], the main standardization effort 

for rules on the Semantic Web.  
• It is based on a CLIPS-based implementation of deductive rules ([10], [11]). The 

core of the system consists of a translation of defeasible knowledge into a set of 
deductive rules, including derived and aggregate attributes. However, the imple-
mentation is declarative because it interprets the not operator using Well-Founded 
Semantics [21].  

2. Conflicting Rules on the Semantic Web 

In this section we describe in more detail certain scenarios that justify the need for de-
feasible reasoning on the Semantic Web. 
Reasoning with Incomplete Information. In [4] a scenario is described where business 
rules have to deal with incomplete information: in the absence of certain information 
some assumptions have to be made which lead to conclusions not supported by classi-
cal predicate logic. In many applications on the Web such assumptions must be made 
because other players may not be able (e.g. due to communication problems) or will-
ing (e.g. because of privacy or security concerns) to provide information. This is the 
classical case for the use of nonmonotonic knowledge representation and reasoning 
[33]. 



Rules with Exceptions. Rules with exceptions are a natural representation for policies 
and business rules [5]. And priority information is often implicitly or explicitly avail-
able to resolve conflicts among rules. Potential applications include security policies 
([9], [29]), business rules [2], personalization, brokering, bargaining, and automated 
agent negotiations [22]. 
Default Inheritance in Ontologies. Default inheritance is a well-known feature of cer-
tain knowledge representation formalisms. Thus it may play a role in ontology lan-
guages, which currently do not support this feature. In [23] some ideas are presented 
for possible uses of default inheritance in ontologies. A natural way of representing 
default inheritance is rules with exceptions, plus priority information. Thus, non-
monotonic rule systems can be utilized in ontology languages. 
Ontology Merging. When ontologies from different authors and/or sources are 
merged, contradictions arise naturally. Predicate logic based formalisms, including all 
current Semantic Web languages, cannot cope with inconsistencies. If rule-based on-
tology languages are used (e.g. DLP [26]) and if rules are interpreted as defeasible 
(that is, they may be prevented from being applied even if they can fire) then we ar-
rive at nonmonotonic rule systems. A skeptical approach, as adopted by defeasible 
reasoning, is sensible because it does not allow for contradictory conclusions to be 
drawn. Moreover, priorities may be used to resolve some conflicts among rules, based 
on knowledge about the reliability of sources or on user input). Thus, nonmonotonic 
rule systems can support ontology integration. 

3. An Introduction to Defeasible Logics 

The basic characteristics of defeasible logics are: 
• Defeasible logics are rule-based, without disjunction. 
• Classical negation is used in the heads and bodies of rules, but negation-as-failure 

is not used in the object language (it can easily be simulated, if necessary [6], [8]). 
• Rules may support conflicting conclusions. 
• The logics are skeptical in the sense that conflicting rules do not fire. Thus consis-

tency is preserved. 
• Priorities on rules may be used to resolve some conflicts among rules. 
• The logics take a pragmatic view and have low computational complexity. 

A defeasible theory D is a couple (R,>) where R a finite set of rules, and > a supe-
riority relation on R. In expressing the proof theory we consider only propositional 
rules. Rules containing free variables are interpreted as the set of their variable-free 
instances. 

There are three kinds of rules: Strict rules are denoted by A → p, and are inter-
preted in the classical sense: whenever the premises are indisputable then so is the 
conclusion. An example of a strict rule is “Professors are faculty members”. Written 
formally: professor(X) → faculty(X). Inference from strict rules only is called 
definite inference. Strict rules are intended to define relationships that are definitional 
in nature, for example ontological knowledge.  



Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence. 
An example of such a rule is professor(X) ⇒ tenured(X) which reads as fol-
lows: “Professors are typically tenured”. 

Defeaters are denoted as A ~> p and are used only to prevent some conclusions, 
not to actively support conclusions. An example of such a defeater is assistant-
Prof(X) ~> ¬tenured(X) which reads as follows: “Assistant professors may be 
not tenured”.  

A superiority relation on R is an acyclic relation > on R (that is, the transitive clo-
sure of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior 
to r1. This expresses that r1 may override r2. For example, given the defeasible rules 

r1: visiting-professor(X) => professor(X) 
r2: professor(X) => tenured(X) 
r3: visiting-professor(X) => ¬tenured(X) 

no conclusive decision can be made about whether a visiting professor is tenured, be-
cause rules r2 and r3 contradict each other. But if we introduce a superiority relation > 
with r3 > r2, then we can indeed conclude that a visiting professor is not tenured. 

A formal definition of the proof theory is found in [6]. A model theoretic semantics 
is found in [32].  

4. The DR-DEVICE System 

The DR-DEVICE system consists of two major components (Fig. 1): the RDF 
loader/translator and the rule loader/translator. The former accepts from the latter (or 
the user) requests for loading specific RDF documents. The RDF triple loader 
downloads the RDF document from the Internet and uses the ARP parser [34] to 
translate it to triples in the N-triple format. Both the RDF/XML and N-triple files are 
stored locally for future reference. Furthermore, the RDF document is recursively 
scanned for namespaces which are also parsed using the ARP parser. The rationale for 
translating namespaces is to obtain a complete RDF Schema in order to minimize the 
number of OO schema redefinitions. Fetching multiple RDF schema files will aggre-
gate multiple RDF-to-OO schema translations into a single OO schema redefinition. 
Namespace resolution is not guaranteed to yield an RDF schema document; therefore, 
if the namespace URI is not an RDF document, then the ARP parser will not produce 
triples and DR-DEVICE will make assumptions, based on the RDF semantics [27], 
about non-resolved properties, resources, classes, etc. 

All N-triples are loaded into memory, while the resources that have a 
URI#anchorID or URI/anchorID format are transformed into a ns:anchorID 
format if URI belongs to the initially collected namespaces, in order to save memory 
space. The transformed RDF triples are fed to the RDF triple translator which maps 
them into COOL objects, according to the mapping scheme in section 4.1. Notice that 
as RDF triples are mapped to objects they get deleted. 

The rule loader accepts from the user a URI (or a local file name) that contains a 
defeasible logic rule program in RuleML notation [15]. The RuleML document may 
also contain the URI of the input RDF document on which the rule program will run, 



which is forwarded to the RDF loader. The RuleML program is translated into the na-
tive DR-DEVICE rule notation using the Xalan XSLT processor [37] and an XSLT 
stylesheet. The DR-DEVICE rule program is then forwarded to the rule translator. 

The rule translator accepts from the rule loader (or directly from the user) a set of 
rules in DR-DEVICE notation and translates them into a set of CLIPS production 
rules. The translation of the defeasible logic rules is performed in two steps: first, the 
defeasible logic rules are translated into sets of deductive, derived attribute and ag-
gregate attribute rules of the basic R-DEVICE rule language (section 5.1), and then, 
all these rules are translated into CLIPS production rules ([10], [11]). When the trans-
lation ends, CLIPS runs the production rules and generates the objects that constitute 
the result of the initial rule program or query. Finally, the result-objects are exported 
to the user as an RDF/XML document through the RDF extractor.  
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Fig. 1. Architecture of the DR-DEVICE system. 

4.1 The R-DEVICE System 

In this subsection we give a brief overview of the R-DEVICE system which is the ba-
sis for building DR-DEVICE. R-DEVICE ([10], [11]) is a deductive object-oriented 
knowledge base system, which transforms RDF triples into objects and uses a deduc-
tive rule language for querying and reasoning about them.  



Triple-to-object mapping scheme 
R-DEVICE imports RDF data into the CLIPS production rule system [17] as COOL 
objects. The main difference between the RDF data model and our object model is 
that we treat properties both as first-class objects and as attributes of resource objects. 
In this way properties of resources are not scattered across several triples as in most 
other RDF storage and querying systems, resulting in increased query performance 
due to less joins. The main features of this mapping scheme are the following: 
• Resource classes are represented both as COOL classes and as direct or indirect in-

stances of the rdfs:Class class. This binary representation is due to the fact that 
COOL does not support meta-classes. Class names follow the ns:anchorID for-
mat, while their corresponding instances have an object identifier with the same 
name, surrounded by square brackets.  

• All resources are represented as COOL objects, direct or indirect instances of the 
rdfs:Resource class. The identifier of a resource object is the same as the URI 
address of the resource, except if their address can be abbreviated to a ns:label.  

• Finally, properties are direct or indirect instances of the class rdf:Property. 
Furthermore, properties are defined as slots (attributes) of their domain class(es). 
The values of properties are stored inside resource objects as slot values. Actually, 
RDF properties are multislots, i.e. they store lists of values, because a resource can 
have multiple times the same property attached to it. 
The descriptive semantics of RDF data may call for dynamic redefinitions of the 

OO schema, which are handled by R-DEVICE.  

The Rule Language of R-DEVICE 
R-DEVICE features a powerful deductive rule language which is able to express arbi-
trary queries both on the RDF schema and data, including recursion, stratified 
negation, ground and generalized path expressions over the objects, derived attributes 
and aggregate, grouping, and sorting functions, mainly due to the second-order syntax 
of the rule language which is efficiently translated into sets of first-order logic rules 
using metadata. R-DEVICE rules define views which are materialized and incremen-
tally maintained. Finally, users can use and define functions using the CLIPS host 
language. R-DEVICE belongs to a family of previous such deductive object-oriented 
rule languages ([12], [13]). Deductive rules are implemented as CLIPS production 
rules and their syntax is a variation of the CLIPS syntax. Examples of rules can be 
found in the next section, as well as in [36].  

5. The Defeasible Logic Language of DR-DEVICE 

There are three types of rules in DR-DEVICE, closely reflecting defeasible logic: 
strict rules, defeasible rules, and defeaters. Rule type is declared with keywords 
strictrule, defeasiblerule, and defeater, respectively. For example, the fol-
lowing rule construct represents the defeasible rule r4: bird(X) => flies(X).  

(defeasiblerule r4 
 (bird (name ?X)) 
 => 



 (flies (name ?X))) 

Predicates have named arguments, called slots, since they represent CLIPS objects. 
DR-DEVICE has also a RuleML-like syntax [15]. The same rule is represented in 
RuleML notation (version 0.85) as follows: 

<imp> 
 <_rlab> <ind type="defeasiblerule">r4</ind></_rlab> 
 <_head> 
  <atom>  <_opr><rel>bird</rel></_opr> 
      <_slot name="name"><var>X</var></_slot> 
  </atom> 
 </_head> 
 <_body> 
  <atom>  <_opr><rel href="flies"/></_opr> 
      <_slot name="name"><var>X</var></_slot> 
  </atom> 
 </_body> 
</imp> 

We have used the type attribute inside the ind element of the rule label (_rlab) 
to denote rule type. However, several features of defeasible logic and its DR-DEVICE 
implementation could not be captured by the latest RuleML DTDs, so we have devel-
oped a new DTD using the modularization scheme of RuleML, extending the Datalog 
with strong negation DTD. 

Superiority relations are represented as attributes of the superior rule. For example, 
the following rule r5 is superior to rule r4 that has been presented above. 

(defeasiblerule r5 
 (declare (superior r4)) 
 (penguin (name ?X)) 
 => 
 (not (flies (name ?X)))) 

In RuleML notation, there is a superiority attribute in the rule label.  

<imp> 
 <_rlab superior="r4"><ind type="defeasiblerule">r5</ind></_rlab> 
... 
</imp> 

Classes and objects (facts) can also be declared in DR-DEVICE; however, the fo-
cus in this paper is the use of RDF data as facts. The input RDF file(s) are declared in 
the rdf_import attribute of the rulebase (root) element of the RuleML document. 
There exist two more attributes in the rulebase element: the rdf_export attribute 
that declares the address of the RDF file with the results of the rule program to be ex-
ported, and the rdf_export_classes attribute that declares the derived classes 
whose instances will be exported in RDF/XML format. Further extensions to the 
RuleML syntax, include function calls that are used either as constraints in the rule 
body or as new value calculators at the rule head. Furthermore, multiple constraints in 
the rule body can be expressed through the logical operators: _not, _and, _or. Ex-
amples of all these can be found in the next section (Fig. 5, Fig. 6). 



5.1 Translating Defeasible Rules 

The translation of defeasible rules into R-DEVICE rules is based on the translation of 
defeasible theories into logic programs through a meta-program ([31]). We use the 
meta-program to guide defeasible rule compilation. Each defeasible rule in DR-
DEVICE is translated into a set of 5 R-DEVICE rules: 
• A deductive rule that generates the derived defeasible object when the condition of 

the defeasible rule is met.  
• An aggregate attribute “support” rule that stores the rule ids of the rules that can 

potentially prove positively or negatively the object.  
• A derived attribute “overruled” rule that stores the rule id of the rule that has over-

ruled the positive or the negative proof of the defeasible object, if the rule condi-
tion has been at least defeasibly proven, and if the rule has not been defeated by a 
superior rule.  

• A derived attribute “defeasibly” rule that defeasibly proves either positively or 
negatively an object, if the rule condition has been at least defeasibly proven, if the 
opposite conclusion has not been definitely proven and if the rule has not been 
overruled by another rule.  

• A derived attribute “defeated” rule that stores the rule id of the rule that has de-
feated overriding rules when the former is superior to the latter, if the rule condi-
tion has been at least defeasibly proven. A “defeated” rule is generated only for 
rules that have a superiority relation, i.e. they are superior to others.  
Strict rules are handled in the same way as defeasible rules, with an addition of a 

derived attribute rule (called definitely rule) that definitely proves either positively or 
negatively an object, if the condition of the strict rule has been definitely proven, and 
if the opposite conclusion has not been definitely proven.  

Defeaters are much weaker rules that can only overrule a conclusion. Therefore, 
for a defeater only the “overruled” rule is created, along with a deductive rule to allow 
the creation of derived objects, even if their proof status cannot be supported by de-
featers. 
Execution Order. The order of execution of all the above rule types is as follows: “de-
ductive”, “support”, “definitely”, “defeated”, “overruled”, “defeasibly”. Moreover, 
rule priority for stratified defeasible rule programs is determined by stratification. Fi-
nally, for non-stratified rule programs rule execution order is not determined. How-
ever, in order to ensure the correct result according to the defeasible logic theory for 
each derived attribute rule of the rule types “definitely”, “defeated”, “overruled” and 
“defeasibly” there is an opposite “truth maintenance” derived attribute rule that un-
does (retracts) the conclusion when the condition is no longer met. In this way, even if 
rules are not executed in the correct order, the correct result will be eventually de-
duced because conclusions of rules that should have not been executed can be later 
undone.  

DR-DEVICE has been extensively tested using a tool that generates scalable test 
defeasible logic theories that comes with Deimos, a query answering defeasible logic 
system [30]. 



6. Use Case of Defeasible Reasoning over RDF Data 

In this section we present a full example of using DR-DEVICE rules in a brokered 
trade application that takes place via an independent third party, the broker. The bro-
ker matches the buyer’s requirements and the sellers’ capabilities, and proposes a 
transaction when both parties can be satisfied by the trade. In our case, the concrete 
application (which has been adopted from [7]) is apartment renting and the landlord 
takes the role of the abstract seller.  

 
1. Apartment Requirements 

- Carlos is looking for an apartment of at least 45m2 with at least 2 bedrooms.  
- If it is on the 3rd floor or higher, the house must have an elevator.  
- Also, pet animals must be allowed. 

2. Price Requirements 
- Carlos is willing to pay $300 for a centrally located 45m2 apartment, and $250 for a 

similar flat in the suburbs.  
- In addition, he is willing to pay an extra $5 per m2 for a larger apartment, and $2 per 

m2 for a garden. 
- He is unable to pay more than $400 in total. 

3. Preferences 
- If given the choice, he would go for the cheapest option.  
- His 2nd priority is the presence of a garden. 
- Lowest priority is additional space. 

Fig. 2. Verbal description of Carlo’s (a potential renter) requirements. 

<!DOCTYPE rdf:RDF [ 
 ... 
 <!ENTITY carlo "http://.../dr-device/carlo/carlo.rdf#">  
]> 
<rdf:RDF  
 ...  
 xmlns:carlo="&carlo;"> 
 
 <carlo:apartment rdf:about="&carlo;a1"> 
   <carlo:bedrooms rdf:datatype="&xsd;integer">1</carlo:bedrooms> 
  <carlo:central>yes</carlo:central> 
  <carlo:floor rdf:datatype="&xsd;integer">1</carlo:floor> 
  <carlo:gardenSize rdf:datatype="&xsd;integer">0</carlo:gardenSize> 
  <carlo:lift>no</carlo:lift> 
  <carlo:name>a1</carlo:name> 
  <carlo:pets>yes</carlo:pets> 
  <carlo:price rdf:datatype="&xsd;integer">300</carlo:price> 
  <carlo:size rdf:datatype="&xsd;integer">50</carlo:size> 
 </carlo:apartment> 
 ... 
</rdf:RDF> 

Fig. 3. RDF document for available apartments 

Available apartments reside in an RDF document (Fig. 3). The requirements of a 
potential renter, called e.g. Carlo, are shown in Fig. 2. These requirements are ex-
pressed in DR-DEVICE’s defeasible logic rule language as shown in Fig. 4 (in native 
CLIPS-like syntax). Rules r1 and r2 cover some of the first set of requirements in 



Fig. 2, rules r7 and r9 represent requirements from the second set and rules r10, r11 
from the third. Finally, rules cheapest1 and cheapest2 calculate the cheapest of 
the acceptable apartments. The complexity of the rule cheapest2 is due to the lack 
of conflicting literals support in DR-DEVICE.  

 
(import-rdf "http://.../dr-device/carlo/carlo.rdf") 
(export-rdf "http://.../dr-device/carlo/export-carlo.rdf" acceptable rent) 
(defeasiblerule r1 
 (carlo:apartment (carlo:name ?x)) 
 =>  
 (acceptable (apartment ?x))) 
(defeasiblerule r2 
 (declare (superior r1))  
 (carlo:apartment (carlo:name ?x) (carlo:bedrooms  ?y&:(< ?y 2))) 
 =>  
 (not (acceptable (apartment ?x)))) 
... 
(defeasiblerule r7 
 (carlo:apartment (carlo:name ?x) (carlo:size ?y&:(>= ?y 45))  
        (carlo:gardenSize ?z) (carlo:central "yes")) 
 =>  
 (calc (bind ?a (+ 300 (* 2 ?z) (* 5 (- ?y 45)))))  
 (offer (apartment ?x) (amount ?a)))  
... 
(defeasiblerule r9 
 (declare (superior r1))  
 (offer (apartment ?x) (amount ?y)) 
 (carlo:apartment (carlo:name ?x) (carlo:price ?z&:(< ?y ?z))) 
 =>  
 (not (acceptable (apartment ?x))))  
(defeasiblerule cheapest1 
 (acceptable (apartment ?x)) 
 =>  
 (cheapest (apartment ?x))) 
(defeasiblerule cheapest2 
 (declare (superior cheapest1))  
 (acceptable (apartment ?x)) 
 (carlo:apartment (carlo:name ?x) (carlo:price ?z)) 
 (acceptable (apartment ?y&~?x)) 
 (carlo:apartment (carlo:name ?y) (carlo:price ?w&:(< ?w ?z))) 
 =>  
 (not (cheapest (apartment ?x)))) 
... 
(defeasiblerule r10 
 (cheapest (apartment ?x)) 
 =>  
 (rent (apartment ?x))) 
(defeasiblerule r11 
 (declare (superior r10))  
 (cheapest (apartment ?x)) 
 (not (largestGarden (apartment ?x))) 
 (cheapest (apartment ?y&~?x)) 
 (largestGarden (apartment ?y)) 
 =>  
 (not (rent (apartment ?x)))) 
... 

Fig. 4. Part of Carlo’s requirements in native (CLIPS-like) DR-DEVICE syntax 

Rules r2 and r7 are shown in Fig. 5 in the RuleML-like syntax of DR-DEVICE. 
Things to notice here is the expression of the superiority relation as an attribute of the 
rule label, the expression of complex constraints on the value of a slot based on func-
tions calls and logical operators, and the calculation of the values of the slots in the 



rule head, through again the use of function calls. Currently, function calls are ex-
pressed as unparsed strings, directly in CLIPS-like notation. One of our future goals is 
to express such function calls directly in RuleML notation, should the initiative sup-
port functions.  

 
<!DOCTYPE rulebase SYSTEM "http://.../dr-device/defeasible.dtd" [ 
 <!ENTITY carlo "http://.../dr-device/carlo/carlo.rdf#"> 
 <!ENTITY carlo_rb "http://.../dr-device/carlo/carlo-rbase.ruleml#"> 
]> 
<rulebase xmlns:carlo_rb="&carlo_rb;" xmlns:carlo="&carlo;"  
    rdf_import="&carlo;" rdf_export_classes="acceptable rent" 
    rdf_export="http://.../dr-device/carlo/export-carlo.rdf"> 
 <_rbaselab> 
  <ind type="defeasible" href="&carlo_rb;">carlo-rules</ind> 
 </_rbaselab> 
 ... 
 <imp> 
  <_rlab superior="r1"> 
   <ind type="defeasiblerule" href="&carlo_rb;r2">r2</ind> 
  </_rlab> 
  <_head> 
   <neg> 
    <atom> <_opr><rel>acceptable</rel></_opr> 
       <_slot name="apartment"><var>x</var></_slot> 
    </atom> 
   </neg> 
  </_head> 
  <_body> 
   <atom> <_opr><rel href="carlo:apartment"/></_opr> 
      <_slot name="carlo:name"><var>x</var></_slot> 
      <_slot name="carlo:bedrooms"> 
       <_and> 
        <var>y</var> 
        <function_call>(&lt; ?y 2)</function_call> 
       </_and> 
      </_slot> 
   </atom> 
  </_body> 
 </imp> 
 ... 
 <imp> 
  <_rlab><ind type="defeasiblerule" href="&carlo_rb;r7">r7</ind></_rlab> 
  <_head calculations="(bind ?a (+ 300 (* 2 ?z) (* 5 (- ?y 45))))"> 
   <atom> <_opr><rel>offer</rel></_opr> 
      <_slot name="apartment"><var>x</var></_slot> 
      <_slot name="amount"><var>a</var></_slot> 
   </atom> 
  </_head> 
  <_body> 
   <atom> 
    <_opr><rel href="carlo:apartment"/></_opr> 
    <_slot name="carlo:name"><var>x</var></_slot> 
    <_slot name="carlo:size"> 
     <_and><var>y</var><function_call>(>= ?y 45)</function_call></_and> 
    </_slot> 
    <_slot name="carlo:gardenSize"><var>z</var></_slot> 
    <_slot name="carlo:central"><ind>"yes"</ind></_slot> 
   </atom> 
  </_body> 
 </imp> 
 ... 
</rulebase> 

Fig. 5. Part of Carlo’s requirements in RuleML-like DR-DEVICE syntax 



After the rule document in Fig. 5 is loaded into DR-DEVICE, it is transformed into 
the native DR-DEVICE syntax (Fig. 4). DR-DEVICE rules are further translated into 
R-DEVICE rules, as presented in the previous section, which in turn are translated 
into CLIPS production rules. Then the RDF document(s) of Fig. 3 is loaded and trans-
formed into CLIPS (COOL) objects. Finally, the reasoning can begin, which ends up 
with 3 acceptable apartments and one suggested apartment for renting, according to 
Carlo’s requirements and the available apartments [7]. The results (i.e. objects of de-
rived classes) are exported in an RDF file according to the specifications posed in the 
RuleML document (Fig. 5). Fig. 6 shows an example of the result exported for class 
acceptable (acceptable or not apartments) and class rent (suggestions to rent a 
house or not). Notice that both the positively and negatively proven (defeasibly or 
definitely) objects are exported. Objects that cannot be at least defeasibly proven, ei-
ther negatively or positively, are not exported, although they exist inside DR-
DEVICE. Furthermore, the RDF schema of the derived classes is also exported. 

 
<!DOCTYPE rdf:RDF [  
 ... 
 <!ENTITY dr-device "http://.../dr-device/export/export-carlo.rdf#">  
]> 
<rdf:RDF  
 ...  
 xmlns:dr-device='&dr-device;'> 
 <rdfs:Class rdf:about='&dr-device;DefeasibleObject'/> 
 <rdfs:Class rdf:about='&dr-device;acceptable'> 
  <rdfs:subClassOf rdf:resource='&dr-device;DefeasibleObject'/> 
 </rdfs:Class> 
 <rdfs:Class rdf:about='&dr-device;rent'> 
  <rdfs:subClassOf rdf:resource='&dr-device;DefeasibleObject'/> 
 </rdfs:Class> 
 <rdf:Property rdf:about='&dr-device;truthStatus'> 
  <rdfs:domain rdf:resource='&dr-device;DefeasibleObject'/> 
  <rdfs:range  rdf:resource='rdfs:Literal'/> 
 </rdf:Property> 
 <rdf:Property rdf:about='&dr-device;apartment'> 
  <rdfs:domain rdf:resource='&dr-device;acceptable'/> 
  <rdfs:range  rdf:resource='rdfs:Literal'/> 
 </rdf:Property> 
 <rdf:Property rdf:about='&dr-device;apartment'> 
  <rdfs:domain rdf:resource='&dr-device;rent'/> 
  <rdfs:range  rdf:resource='rdfs:Literal'/> 
 </rdf:Property> 
... 
 <dr-device:acceptable rdf:about="&dr-device;acceptable2"> 
  <dr-device:apartment>a2</dr-device:apartment> 
  <dr-device:truthStatus>defeasibly-not-proven</dr-device:truthStatus> 
 </dr-device:acceptable> 
... 
 <dr-device:acceptable rdf:about="&dr-device;acceptable5"> 
  <dr-device:apartment>a5</dr-device:apartment> 
  <dr-device:truthStatus>defeasibly-proven</dr-device:truthStatus> 
 </dr-device:acceptable> 
... 
 <dr-device:rent rdf:about="&dr-device;rent1"> 
  <dr-device:apartment>a5</dr-device:apartment> 
  <dr-device:truthStatus>defeasibly-proven</dr-device:truthStatus> 
 </dr-device:rent> 
... 
</rdf:RDF> 

Fig. 6. Results of defeasible reasoning exported as an RDF document 



7. Related Work 

There exist several previous implementations of defeasible logics. In [19] the histori-
cally first implementation, D-Prolog, a Prolog-based implementation is given. It was 
not declarative in certain aspects (because it did not use a declarative semantic for the 
not operator), therefore it did not correspond fully to the abstract definition of the 
logic. Finally it did not provide any means of integration with Semantic Web layers 
and concepts. 

Deimos [30] is a flexible, query processing system based on Haskell. It does not in-
tegrate with Semantic Web (for example, there is no way to treat RDF data; nor does 
it use an XML-based or RDF-based syntax). Thus it is an isolated solution.  

Delores [30] is another implementation, which computes all conclusions from a de-
feasible theory (the only system of its kind known to us). It is very efficient, exhibit-
ing linear computational complexity. However, it does not integrate with other Se-
mantic Web languages and systems.  

Another Prolog-based implementation of defeasible logics is in [3], which places 
emphasis on completeness (covering full defeasible logic) and flexibility (covering all 
important variants). However, at present it lacks the ability of processing RDF data.  

SweetJess [25] is another implementation of a defeasible reasoning system (situ-
ated courteous logic programs) based on Jess. It integrates well with RuleML. How-
ever, SweetJess rules can only express reasoning over ontologies expressed in 
DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on arbitrary RDF 
data, like DR-DEVICE. Furthermore, SweetJess is restricted to simple terms (vari-
ables and atoms). This applies to DR-DEVICE to a large extent. However, the basic 
R-DEVICE language [10] can support a limited form of functions in the following 
sense: (a) path expressions are allowed in the rule condition, which can be seen as 
complex functions, where allowed function names are object referencing slots; (b) 
aggregate and sorting functions are allowed in the conclusion of aggregate rules. Fi-
nally, DR-DEVICE can also support conclusions in non-stratified rule programs due 
to the presence of truth-maintenance rules (section 5.1). 

8. Conclusions and Future Work 

In this paper we described reasons why conflicts among rules arise naturally on the 
Semantic Web. To address this problem, we proposed to use defeasible reasoning 
which is known from the area of knowledge representation. And we reported on the 
implementation of a system for defeasible reasoning on the Web. It is based on CLIPS 
production rules, and supports RuleML syntax.  

Planned future work includes: 
• Adding arithmetic capabilities to the rule language and using appropriate constraint 

solvers in conjunction with logic programs. 
• Implementing load/upload functionality in conjunction with an RDF repository, 

such as RDF Suite [1] and Sesame [16]. 



• Study in more detail integration of defeasible reasoning with description logic 
based ontologies. Starting point of this investigation will be the Horn definable part 
of OWL [26]. 

• Applications of defeasible reasoning and the developed implementation for broker-
ing, bargaining, automated agent negotiation, and personalization. 
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