
DR-DEVICE: A Defeasible Logic System for the
Semantic Web

Nick Bassiliades1, Grigoris Antoniou2, and Ioannis Vlahavas1

1Department of Informatics, Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

{nbassili, vlahavas}@csd.auth.gr
2Institute of Computer Science, FO.R.T.H.

P.O. Box 1385, GR-71110, Heraklion, Greece
antoniou@ics.forth.gr

Abstract. This paper presents DR-DEVICE, a system for defeasible reasoning
on the Web. Defeasible reasoning is a rule-based approach for efficient reason-
ing with incomplete and inconsistent information. Such reasoning is, among
others, useful for ontology integration, where conflicting information arises
naturally; and for the modeling of business rules and policies, where rules with
exceptions are often used. In this paper we describe these scenarios in more de-
tail along with the implementation of the DR-DEVICE system, which is capa-
ble of reasoning about RDF data over multiple Web sources using defeasible
logic rules. The system is implemented on top of CLIPS production rule system
and builds upon R-DEVICE, an earlier deductive rule system over RDF data
that also supports derived attribute and aggregate attribute rules. Rules can be
expressed either in a native CLIPS-like language, or in an extension of the OO-
RuleML syntax. The operational semantics of defeasible logic are implemented
through compilation into the generic rule language of R-DEVICE. The paper
includes a use case of a semantic web broker that reasons defeasibly about rent-
ing apartments based on buyer's requirements (expressed RuleML defeasible
logic rules) and seller's advertisements (expressed in RDF).

1. Introduction

The development of the Semantic Web [14] proceeds in layers, each layer being on
top of other layers. At present, the highest layer that has reached sufficient maturity is
the ontology layer in the form of the description logic based languages of
DAML+OIL [18] and OWL [20].

The next step in the development of the Semantic Web will be the logic and proof
layers, and rule systems appear to lie in the mainstream of such activities. Moreover,
rule systems can also be utilized in ontology languages. So, in general rule systems
can play a twofold role in the Semantic Web initiative: (a) they can serve as exten-
sions of, or alternatives to, description logic based ontology languages; and (b) they
can be used to develop declarative systems on top of (using) ontologies. Reasons why
rule systems are expected to play a key role in the further development of the Seman-
tic Web include the following:

1. Seen as subsets of predicate logic, monotonic rule systems (Horn logic) and de-
scription logics are orthogonal; thus they provide additional expressive power to
ontology languages.

2. Efficient reasoning support exists to support rule languages.
3. Rules are well known in practice, and are reasonably well integrated in mainstream

information technology.
Possible interactions between description logics and monotonic rule systems were

studied in [26]. Based on that work and on previous work on hybrid reasoning [28] it
appears that the best one can do at present is to take the intersection of the expressive
power of Horn logic and description logics; one way to view this intersection is the
Horn-definable subset of OWL.

This paper is devoted to a different problem, namely conflicts among rules. Here
we just mention the main sources of such conflicts, which are further expanded in sec-
tion 2. At the ontology layer: (a) default inheritance within ontologies, (b) ontology
merging; and at the logic and reasoning layers: (a) rules with exceptions as a natural
representation of business rules, (b) reasoning with incomplete information.

Defeasible reasoning is a simple rule-based approach to reasoning with incomplete
and inconsistent information. It can represent facts, rules, and priorities among rules.
This reasoning family comprises defeasible logics ([35], [6]) and Courteous Logic
Programs [24]. The main advantage of this approach is the combination of two desir-
able features: enhanced representational capabilities allowing one to reason with in-
complete and contradictory information, coupled with low computational complexity
compared to mainstream nonmonotonic reasoning.

In this paper we report on the implementation of a defeasible reasoning system for
reasoning on the Web, called DR-DEVICE. Its main characteristics are the following:
• Its user interface is compatible with RuleML [15], the main standardization effort

for rules on the Semantic Web.
• It is based on a CLIPS-based implementation of deductive rules ([10], [11]). The

core of the system consists of a translation of defeasible knowledge into a set of
deductive rules, including derived and aggregate attributes. However, the imple-
mentation is declarative because it interprets the not operator using Well-Founded
Semantics [21].

2. Conflicting Rules on the Semantic Web

In this section we describe in more detail certain scenarios that justify the need for de-
feasible reasoning on the Semantic Web.
Reasoning with Incomplete Information. In [4] a scenario is described where business
rules have to deal with incomplete information: in the absence of certain information
some assumptions have to be made which lead to conclusions not supported by classi-
cal predicate logic. In many applications on the Web such assumptions must be made
because other players may not be able (e.g. due to communication problems) or will-
ing (e.g. because of privacy or security concerns) to provide information. This is the
classical case for the use of nonmonotonic knowledge representation and reasoning
[33].

Rules with Exceptions. Rules with exceptions are a natural representation for policies
and business rules [5]. And priority information is often implicitly or explicitly avail-
able to resolve conflicts among rules. Potential applications include security policies
([9], [29]), business rules [2], personalization, brokering, bargaining, and automated
agent negotiations [22].
Default Inheritance in Ontologies. Default inheritance is a well-known feature of cer-
tain knowledge representation formalisms. Thus it may play a role in ontology lan-
guages, which currently do not support this feature. In [23] some ideas are presented
for possible uses of default inheritance in ontologies. A natural way of representing
default inheritance is rules with exceptions, plus priority information. Thus, non-
monotonic rule systems can be utilized in ontology languages.
Ontology Merging. When ontologies from different authors and/or sources are
merged, contradictions arise naturally. Predicate logic based formalisms, including all
current Semantic Web languages, cannot cope with inconsistencies. If rule-based on-
tology languages are used (e.g. DLP [26]) and if rules are interpreted as defeasible
(that is, they may be prevented from being applied even if they can fire) then we ar-
rive at nonmonotonic rule systems. A skeptical approach, as adopted by defeasible
reasoning, is sensible because it does not allow for contradictory conclusions to be
drawn. Moreover, priorities may be used to resolve some conflicts among rules, based
on knowledge about the reliability of sources or on user input). Thus, nonmonotonic
rule systems can support ontology integration.

3. An Introduction to Defeasible Logics

The basic characteristics of defeasible logics are:
• Defeasible logics are rule-based, without disjunction.
• Classical negation is used in the heads and bodies of rules, but negation-as-failure

is not used in the object language (it can easily be simulated, if necessary [6], [8]).
• Rules may support conflicting conclusions.
• The logics are skeptical in the sense that conflicting rules do not fire. Thus consis-

tency is preserved.
• Priorities on rules may be used to resolve some conflicts among rules.
• The logics take a pragmatic view and have low computational complexity.

A defeasible theory D is a couple (R,>) where R a finite set of rules, and > a supe-
riority relation on R. In expressing the proof theory we consider only propositional
rules. Rules containing free variables are interpreted as the set of their variable-free
instances.

There are three kinds of rules: Strict rules are denoted by A → p, and are inter-
preted in the classical sense: whenever the premises are indisputable then so is the
conclusion. An example of a strict rule is “Professors are faculty members”. Written
formally: professor(X) → faculty(X). Inference from strict rules only is called
definite inference. Strict rules are intended to define relationships that are definitional
in nature, for example ontological knowledge.

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence.
An example of such a rule is professor(X) ⇒ tenured(X) which reads as fol-
lows: “Professors are typically tenured”.

Defeaters are denoted as A ~> p and are used only to prevent some conclusions,
not to actively support conclusions. An example of such a defeater is assistant-
Prof(X) ~> ¬tenured(X) which reads as follows: “Assistant professors may be
not tenured”.

A superiority relation on R is an acyclic relation > on R (that is, the transitive clo-
sure of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior
to r1. This expresses that r1 may override r2. For example, given the defeasible rules

r1: visiting-professor(X) => professor(X)
r2: professor(X) => tenured(X)
r3: visiting-professor(X) => ¬tenured(X)

no conclusive decision can be made about whether a visiting professor is tenured, be-
cause rules r2 and r3 contradict each other. But if we introduce a superiority relation >
with r3 > r2, then we can indeed conclude that a visiting professor is not tenured.

A formal definition of the proof theory is found in [6]. A model theoretic semantics
is found in [32].

4. The DR-DEVICE System

The DR-DEVICE system consists of two major components (Fig. 1): the RDF
loader/translator and the rule loader/translator. The former accepts from the latter (or
the user) requests for loading specific RDF documents. The RDF triple loader
downloads the RDF document from the Internet and uses the ARP parser [34] to
translate it to triples in the N-triple format. Both the RDF/XML and N-triple files are
stored locally for future reference. Furthermore, the RDF document is recursively
scanned for namespaces which are also parsed using the ARP parser. The rationale for
translating namespaces is to obtain a complete RDF Schema in order to minimize the
number of OO schema redefinitions. Fetching multiple RDF schema files will aggre-
gate multiple RDF-to-OO schema translations into a single OO schema redefinition.
Namespace resolution is not guaranteed to yield an RDF schema document; therefore,
if the namespace URI is not an RDF document, then the ARP parser will not produce
triples and DR-DEVICE will make assumptions, based on the RDF semantics [27],
about non-resolved properties, resources, classes, etc.

All N-triples are loaded into memory, while the resources that have a
URI#anchorID or URI/anchorID format are transformed into a ns:anchorID
format if URI belongs to the initially collected namespaces, in order to save memory
space. The transformed RDF triples are fed to the RDF triple translator which maps
them into COOL objects, according to the mapping scheme in section 4.1. Notice that
as RDF triples are mapped to objects they get deleted.

The rule loader accepts from the user a URI (or a local file name) that contains a
defeasible logic rule program in RuleML notation [15]. The RuleML document may
also contain the URI of the input RDF document on which the rule program will run,

which is forwarded to the RDF loader. The RuleML program is translated into the na-
tive DR-DEVICE rule notation using the Xalan XSLT processor [37] and an XSLT
stylesheet. The DR-DEVICE rule program is then forwarded to the rule translator.

The rule translator accepts from the rule loader (or directly from the user) a set of
rules in DR-DEVICE notation and translates them into a set of CLIPS production
rules. The translation of the defeasible logic rules is performed in two steps: first, the
defeasible logic rules are translated into sets of deductive, derived attribute and ag-
gregate attribute rules of the basic R-DEVICE rule language (section 5.1), and then,
all these rules are translated into CLIPS production rules ([10], [11]). When the trans-
lation ends, CLIPS runs the production rules and generates the objects that constitute
the result of the initial rule program or query. Finally, the result-objects are exported
to the user as an RDF/XML document through the RDF extractor.

RDF triple
Loader

RDF triple
Translator

Local Disk

User

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document URI

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

Fig. 1. Architecture of the DR-DEVICE system.

4.1 The R-DEVICE System

In this subsection we give a brief overview of the R-DEVICE system which is the ba-
sis for building DR-DEVICE. R-DEVICE ([10], [11]) is a deductive object-oriented
knowledge base system, which transforms RDF triples into objects and uses a deduc-
tive rule language for querying and reasoning about them.

Triple-to-object mapping scheme
R-DEVICE imports RDF data into the CLIPS production rule system [17] as COOL
objects. The main difference between the RDF data model and our object model is
that we treat properties both as first-class objects and as attributes of resource objects.
In this way properties of resources are not scattered across several triples as in most
other RDF storage and querying systems, resulting in increased query performance
due to less joins. The main features of this mapping scheme are the following:
• Resource classes are represented both as COOL classes and as direct or indirect in-

stances of the rdfs:Class class. This binary representation is due to the fact that
COOL does not support meta-classes. Class names follow the ns:anchorID for-
mat, while their corresponding instances have an object identifier with the same
name, surrounded by square brackets.

• All resources are represented as COOL objects, direct or indirect instances of the
rdfs:Resource class. The identifier of a resource object is the same as the URI
address of the resource, except if their address can be abbreviated to a ns:label.

• Finally, properties are direct or indirect instances of the class rdf:Property.
Furthermore, properties are defined as slots (attributes) of their domain class(es).
The values of properties are stored inside resource objects as slot values. Actually,
RDF properties are multislots, i.e. they store lists of values, because a resource can
have multiple times the same property attached to it.
The descriptive semantics of RDF data may call for dynamic redefinitions of the

OO schema, which are handled by R-DEVICE.

The Rule Language of R-DEVICE
R-DEVICE features a powerful deductive rule language which is able to express arbi-
trary queries both on the RDF schema and data, including recursion, stratified
negation, ground and generalized path expressions over the objects, derived attributes
and aggregate, grouping, and sorting functions, mainly due to the second-order syntax
of the rule language which is efficiently translated into sets of first-order logic rules
using metadata. R-DEVICE rules define views which are materialized and incremen-
tally maintained. Finally, users can use and define functions using the CLIPS host
language. R-DEVICE belongs to a family of previous such deductive object-oriented
rule languages ([12], [13]). Deductive rules are implemented as CLIPS production
rules and their syntax is a variation of the CLIPS syntax. Examples of rules can be
found in the next section, as well as in [36].

5. The Defeasible Logic Language of DR-DEVICE

There are three types of rules in DR-DEVICE, closely reflecting defeasible logic:
strict rules, defeasible rules, and defeaters. Rule type is declared with keywords
strictrule, defeasiblerule, and defeater, respectively. For example, the fol-
lowing rule construct represents the defeasible rule r4: bird(X) => flies(X).

(defeasiblerule r4
 (bird (name ?X))
 =>

 (flies (name ?X)))

Predicates have named arguments, called slots, since they represent CLIPS objects.
DR-DEVICE has also a RuleML-like syntax [15]. The same rule is represented in
RuleML notation (version 0.85) as follows:

<imp>
 <_rlab> <ind type="defeasiblerule">r4</ind></_rlab>
 <_head>
 <atom> <_opr><rel>bird</rel></_opr>
 <_slot name="name"><var>X</var></_slot>
 </atom>
 </_head>
 <_body>
 <atom> <_opr><rel href="flies"/></_opr>
 <_slot name="name"><var>X</var></_slot>
 </atom>
 </_body>
</imp>

We have used the type attribute inside the ind element of the rule label (_rlab)
to denote rule type. However, several features of defeasible logic and its DR-DEVICE
implementation could not be captured by the latest RuleML DTDs, so we have devel-
oped a new DTD using the modularization scheme of RuleML, extending the Datalog
with strong negation DTD.

Superiority relations are represented as attributes of the superior rule. For example,
the following rule r5 is superior to rule r4 that has been presented above.

(defeasiblerule r5
 (declare (superior r4))
 (penguin (name ?X))
 =>
 (not (flies (name ?X))))

In RuleML notation, there is a superiority attribute in the rule label.

<imp>
 <_rlab superior="r4"><ind type="defeasiblerule">r5</ind></_rlab>
...
</imp>

Classes and objects (facts) can also be declared in DR-DEVICE; however, the fo-
cus in this paper is the use of RDF data as facts. The input RDF file(s) are declared in
the rdf_import attribute of the rulebase (root) element of the RuleML document.
There exist two more attributes in the rulebase element: the rdf_export attribute
that declares the address of the RDF file with the results of the rule program to be ex-
ported, and the rdf_export_classes attribute that declares the derived classes
whose instances will be exported in RDF/XML format. Further extensions to the
RuleML syntax, include function calls that are used either as constraints in the rule
body or as new value calculators at the rule head. Furthermore, multiple constraints in
the rule body can be expressed through the logical operators: _not, _and, _or. Ex-
amples of all these can be found in the next section (Fig. 5, Fig. 6).

5.1 Translating Defeasible Rules

The translation of defeasible rules into R-DEVICE rules is based on the translation of
defeasible theories into logic programs through a meta-program ([31]). We use the
meta-program to guide defeasible rule compilation. Each defeasible rule in DR-
DEVICE is translated into a set of 5 R-DEVICE rules:
• A deductive rule that generates the derived defeasible object when the condition of

the defeasible rule is met.
• An aggregate attribute “support” rule that stores the rule ids of the rules that can

potentially prove positively or negatively the object.
• A derived attribute “overruled” rule that stores the rule id of the rule that has over-

ruled the positive or the negative proof of the defeasible object, if the rule condi-
tion has been at least defeasibly proven, and if the rule has not been defeated by a
superior rule.

• A derived attribute “defeasibly” rule that defeasibly proves either positively or
negatively an object, if the rule condition has been at least defeasibly proven, if the
opposite conclusion has not been definitely proven and if the rule has not been
overruled by another rule.

• A derived attribute “defeated” rule that stores the rule id of the rule that has de-
feated overriding rules when the former is superior to the latter, if the rule condi-
tion has been at least defeasibly proven. A “defeated” rule is generated only for
rules that have a superiority relation, i.e. they are superior to others.
Strict rules are handled in the same way as defeasible rules, with an addition of a

derived attribute rule (called definitely rule) that definitely proves either positively or
negatively an object, if the condition of the strict rule has been definitely proven, and
if the opposite conclusion has not been definitely proven.

Defeaters are much weaker rules that can only overrule a conclusion. Therefore,
for a defeater only the “overruled” rule is created, along with a deductive rule to allow
the creation of derived objects, even if their proof status cannot be supported by de-
featers.
Execution Order. The order of execution of all the above rule types is as follows: “de-
ductive”, “support”, “definitely”, “defeated”, “overruled”, “defeasibly”. Moreover,
rule priority for stratified defeasible rule programs is determined by stratification. Fi-
nally, for non-stratified rule programs rule execution order is not determined. How-
ever, in order to ensure the correct result according to the defeasible logic theory for
each derived attribute rule of the rule types “definitely”, “defeated”, “overruled” and
“defeasibly” there is an opposite “truth maintenance” derived attribute rule that un-
does (retracts) the conclusion when the condition is no longer met. In this way, even if
rules are not executed in the correct order, the correct result will be eventually de-
duced because conclusions of rules that should have not been executed can be later
undone.

DR-DEVICE has been extensively tested using a tool that generates scalable test
defeasible logic theories that comes with Deimos, a query answering defeasible logic
system [30].

6. Use Case of Defeasible Reasoning over RDF Data

In this section we present a full example of using DR-DEVICE rules in a brokered
trade application that takes place via an independent third party, the broker. The bro-
ker matches the buyer’s requirements and the sellers’ capabilities, and proposes a
transaction when both parties can be satisfied by the trade. In our case, the concrete
application (which has been adopted from [7]) is apartment renting and the landlord
takes the role of the abstract seller.

1. Apartment Requirements

- Carlos is looking for an apartment of at least 45m2 with at least 2 bedrooms.
- If it is on the 3rd floor or higher, the house must have an elevator.
- Also, pet animals must be allowed.

2. Price Requirements
- Carlos is willing to pay $300 for a centrally located 45m2 apartment, and $250 for a

similar flat in the suburbs.
- In addition, he is willing to pay an extra $5 per m2 for a larger apartment, and $2 per

m2 for a garden.
- He is unable to pay more than $400 in total.

3. Preferences
- If given the choice, he would go for the cheapest option.
- His 2nd priority is the presence of a garden.
- Lowest priority is additional space.

Fig. 2. Verbal description of Carlo’s (a potential renter) requirements.

<!DOCTYPE rdf:RDF [
 ...
 <!ENTITY carlo "http://.../dr-device/carlo/carlo.rdf#">
]>
<rdf:RDF
 ...
 xmlns:carlo="&carlo;">

 <carlo:apartment rdf:about="&carlo;a1">
 <carlo:bedrooms rdf:datatype="&xsd;integer">1</carlo:bedrooms>
 <carlo:central>yes</carlo:central>
 <carlo:floor rdf:datatype="&xsd;integer">1</carlo:floor>
 <carlo:gardenSize rdf:datatype="&xsd;integer">0</carlo:gardenSize>
 <carlo:lift>no</carlo:lift>
 <carlo:name>a1</carlo:name>
 <carlo:pets>yes</carlo:pets>
 <carlo:price rdf:datatype="&xsd;integer">300</carlo:price>
 <carlo:size rdf:datatype="&xsd;integer">50</carlo:size>
 </carlo:apartment>
 ...
</rdf:RDF>

Fig. 3. RDF document for available apartments

Available apartments reside in an RDF document (Fig. 3). The requirements of a
potential renter, called e.g. Carlo, are shown in Fig. 2. These requirements are ex-
pressed in DR-DEVICE’s defeasible logic rule language as shown in Fig. 4 (in native
CLIPS-like syntax). Rules r1 and r2 cover some of the first set of requirements in

Fig. 2, rules r7 and r9 represent requirements from the second set and rules r10, r11
from the third. Finally, rules cheapest1 and cheapest2 calculate the cheapest of
the acceptable apartments. The complexity of the rule cheapest2 is due to the lack
of conflicting literals support in DR-DEVICE.

(import-rdf "http://.../dr-device/carlo/carlo.rdf")
(export-rdf "http://.../dr-device/carlo/export-carlo.rdf" acceptable rent)
(defeasiblerule r1
 (carlo:apartment (carlo:name ?x))
 =>
 (acceptable (apartment ?x)))
(defeasiblerule r2
 (declare (superior r1))
 (carlo:apartment (carlo:name ?x) (carlo:bedrooms ?y&:(< ?y 2)))
 =>
 (not (acceptable (apartment ?x))))
...
(defeasiblerule r7
 (carlo:apartment (carlo:name ?x) (carlo:size ?y&:(>= ?y 45))
 (carlo:gardenSize ?z) (carlo:central "yes"))
 =>
 (calc (bind ?a (+ 300 (* 2 ?z) (* 5 (- ?y 45)))))
 (offer (apartment ?x) (amount ?a)))
...
(defeasiblerule r9
 (declare (superior r1))
 (offer (apartment ?x) (amount ?y))
 (carlo:apartment (carlo:name ?x) (carlo:price ?z&:(< ?y ?z)))
 =>
 (not (acceptable (apartment ?x))))
(defeasiblerule cheapest1
 (acceptable (apartment ?x))
 =>
 (cheapest (apartment ?x)))
(defeasiblerule cheapest2
 (declare (superior cheapest1))
 (acceptable (apartment ?x))
 (carlo:apartment (carlo:name ?x) (carlo:price ?z))
 (acceptable (apartment ?y&~?x))
 (carlo:apartment (carlo:name ?y) (carlo:price ?w&:(< ?w ?z)))
 =>
 (not (cheapest (apartment ?x))))
...
(defeasiblerule r10
 (cheapest (apartment ?x))
 =>
 (rent (apartment ?x)))
(defeasiblerule r11
 (declare (superior r10))
 (cheapest (apartment ?x))
 (not (largestGarden (apartment ?x)))
 (cheapest (apartment ?y&~?x))
 (largestGarden (apartment ?y))
 =>
 (not (rent (apartment ?x))))
...

Fig. 4. Part of Carlo’s requirements in native (CLIPS-like) DR-DEVICE syntax

Rules r2 and r7 are shown in Fig. 5 in the RuleML-like syntax of DR-DEVICE.
Things to notice here is the expression of the superiority relation as an attribute of the
rule label, the expression of complex constraints on the value of a slot based on func-
tions calls and logical operators, and the calculation of the values of the slots in the

rule head, through again the use of function calls. Currently, function calls are ex-
pressed as unparsed strings, directly in CLIPS-like notation. One of our future goals is
to express such function calls directly in RuleML notation, should the initiative sup-
port functions.

<!DOCTYPE rulebase SYSTEM "http://.../dr-device/defeasible.dtd" [
 <!ENTITY carlo "http://.../dr-device/carlo/carlo.rdf#">
 <!ENTITY carlo_rb "http://.../dr-device/carlo/carlo-rbase.ruleml#">
]>
<rulebase xmlns:carlo_rb="&carlo_rb;" xmlns:carlo="&carlo;"
 rdf_import="&carlo;" rdf_export_classes="acceptable rent"
 rdf_export="http://.../dr-device/carlo/export-carlo.rdf">
 <_rbaselab>
 <ind type="defeasible" href="&carlo_rb;">carlo-rules</ind>
 </_rbaselab>
 ...
 <imp>
 <_rlab superior="r1">
 <ind type="defeasiblerule" href="&carlo_rb;r2">r2</ind>
 </_rlab>
 <_head>
 <neg>
 <atom> <_opr><rel>acceptable</rel></_opr>
 <_slot name="apartment"><var>x</var></_slot>
 </atom>
 </neg>
 </_head>
 <_body>
 <atom> <_opr><rel href="carlo:apartment"/></_opr>
 <_slot name="carlo:name"><var>x</var></_slot>
 <_slot name="carlo:bedrooms">
 <_and>
 <var>y</var>
 <function_call>(< ?y 2)</function_call>
 </_and>
 </_slot>
 </atom>
 </_body>
 </imp>
 ...
 <imp>
 <_rlab><ind type="defeasiblerule" href="&carlo_rb;r7">r7</ind></_rlab>
 <_head calculations="(bind ?a (+ 300 (* 2 ?z) (* 5 (- ?y 45))))">
 <atom> <_opr><rel>offer</rel></_opr>
 <_slot name="apartment"><var>x</var></_slot>
 <_slot name="amount"><var>a</var></_slot>
 </atom>
 </_head>
 <_body>
 <atom>
 <_opr><rel href="carlo:apartment"/></_opr>
 <_slot name="carlo:name"><var>x</var></_slot>
 <_slot name="carlo:size">
 <_and><var>y</var><function_call>(>= ?y 45)</function_call></_and>
 </_slot>
 <_slot name="carlo:gardenSize"><var>z</var></_slot>
 <_slot name="carlo:central"><ind>"yes"</ind></_slot>
 </atom>
 </_body>
 </imp>
 ...
</rulebase>

Fig. 5. Part of Carlo’s requirements in RuleML-like DR-DEVICE syntax

After the rule document in Fig. 5 is loaded into DR-DEVICE, it is transformed into
the native DR-DEVICE syntax (Fig. 4). DR-DEVICE rules are further translated into
R-DEVICE rules, as presented in the previous section, which in turn are translated
into CLIPS production rules. Then the RDF document(s) of Fig. 3 is loaded and trans-
formed into CLIPS (COOL) objects. Finally, the reasoning can begin, which ends up
with 3 acceptable apartments and one suggested apartment for renting, according to
Carlo’s requirements and the available apartments [7]. The results (i.e. objects of de-
rived classes) are exported in an RDF file according to the specifications posed in the
RuleML document (Fig. 5). Fig. 6 shows an example of the result exported for class
acceptable (acceptable or not apartments) and class rent (suggestions to rent a
house or not). Notice that both the positively and negatively proven (defeasibly or
definitely) objects are exported. Objects that cannot be at least defeasibly proven, ei-
ther negatively or positively, are not exported, although they exist inside DR-
DEVICE. Furthermore, the RDF schema of the derived classes is also exported.

<!DOCTYPE rdf:RDF [
 ...
 <!ENTITY dr-device "http://.../dr-device/export/export-carlo.rdf#">
]>
<rdf:RDF
 ...
 xmlns:dr-device='&dr-device;'>
 <rdfs:Class rdf:about='&dr-device;DefeasibleObject'/>
 <rdfs:Class rdf:about='&dr-device;acceptable'>
 <rdfs:subClassOf rdf:resource='&dr-device;DefeasibleObject'/>
 </rdfs:Class>
 <rdfs:Class rdf:about='&dr-device;rent'>
 <rdfs:subClassOf rdf:resource='&dr-device;DefeasibleObject'/>
 </rdfs:Class>
 <rdf:Property rdf:about='&dr-device;truthStatus'>
 <rdfs:domain rdf:resource='&dr-device;DefeasibleObject'/>
 <rdfs:range rdf:resource='rdfs:Literal'/>
 </rdf:Property>
 <rdf:Property rdf:about='&dr-device;apartment'>
 <rdfs:domain rdf:resource='&dr-device;acceptable'/>
 <rdfs:range rdf:resource='rdfs:Literal'/>
 </rdf:Property>
 <rdf:Property rdf:about='&dr-device;apartment'>
 <rdfs:domain rdf:resource='&dr-device;rent'/>
 <rdfs:range rdf:resource='rdfs:Literal'/>
 </rdf:Property>
...
 <dr-device:acceptable rdf:about="&dr-device;acceptable2">
 <dr-device:apartment>a2</dr-device:apartment>
 <dr-device:truthStatus>defeasibly-not-proven</dr-device:truthStatus>
 </dr-device:acceptable>
...
 <dr-device:acceptable rdf:about="&dr-device;acceptable5">
 <dr-device:apartment>a5</dr-device:apartment>
 <dr-device:truthStatus>defeasibly-proven</dr-device:truthStatus>
 </dr-device:acceptable>
...
 <dr-device:rent rdf:about="&dr-device;rent1">
 <dr-device:apartment>a5</dr-device:apartment>
 <dr-device:truthStatus>defeasibly-proven</dr-device:truthStatus>
 </dr-device:rent>
...
</rdf:RDF>

Fig. 6. Results of defeasible reasoning exported as an RDF document

7. Related Work

There exist several previous implementations of defeasible logics. In [19] the histori-
cally first implementation, D-Prolog, a Prolog-based implementation is given. It was
not declarative in certain aspects (because it did not use a declarative semantic for the
not operator), therefore it did not correspond fully to the abstract definition of the
logic. Finally it did not provide any means of integration with Semantic Web layers
and concepts.

Deimos [30] is a flexible, query processing system based on Haskell. It does not in-
tegrate with Semantic Web (for example, there is no way to treat RDF data; nor does
it use an XML-based or RDF-based syntax). Thus it is an isolated solution.

Delores [30] is another implementation, which computes all conclusions from a de-
feasible theory (the only system of its kind known to us). It is very efficient, exhibit-
ing linear computational complexity. However, it does not integrate with other Se-
mantic Web languages and systems.

Another Prolog-based implementation of defeasible logics is in [3], which places
emphasis on completeness (covering full defeasible logic) and flexibility (covering all
important variants). However, at present it lacks the ability of processing RDF data.

SweetJess [25] is another implementation of a defeasible reasoning system (situ-
ated courteous logic programs) based on Jess. It integrates well with RuleML. How-
ever, SweetJess rules can only express reasoning over ontologies expressed in
DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on arbitrary RDF
data, like DR-DEVICE. Furthermore, SweetJess is restricted to simple terms (vari-
ables and atoms). This applies to DR-DEVICE to a large extent. However, the basic
R-DEVICE language [10] can support a limited form of functions in the following
sense: (a) path expressions are allowed in the rule condition, which can be seen as
complex functions, where allowed function names are object referencing slots; (b)
aggregate and sorting functions are allowed in the conclusion of aggregate rules. Fi-
nally, DR-DEVICE can also support conclusions in non-stratified rule programs due
to the presence of truth-maintenance rules (section 5.1).

8. Conclusions and Future Work

In this paper we described reasons why conflicts among rules arise naturally on the
Semantic Web. To address this problem, we proposed to use defeasible reasoning
which is known from the area of knowledge representation. And we reported on the
implementation of a system for defeasible reasoning on the Web. It is based on CLIPS
production rules, and supports RuleML syntax.

Planned future work includes:
• Adding arithmetic capabilities to the rule language and using appropriate constraint

solvers in conjunction with logic programs.
• Implementing load/upload functionality in conjunction with an RDF repository,

such as RDF Suite [1] and Sesame [16].

• Study in more detail integration of defeasible reasoning with description logic
based ontologies. Starting point of this investigation will be the Horn definable part
of OWL [26].

• Applications of defeasible reasoning and the developed implementation for broker-
ing, bargaining, automated agent negotiation, and personalization.

9. References

[1] Alexaki S., Christophides V., Karvounarakis G., Plexousakis D. and Tolle K., “The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases”, Proc. 2nd Int. Work-
shop on the Semantic Web, Hong-Kong, 2001.

[2] Antoniou G. and Arief M., “Executable Declarative Business rules and their use in Elec-
tronic Commerce”, Proc. ACM Symposium on Applied Computing, 2002.

[3] Antoniou G., Bikakis A., “A System for Nonmonotonic Rules on the Web”, Submitted,
2004.

[4] Antoniou G., “Nonmonotonic Rule Systems on Top of Ontology Layers”, Proc. 1st Int.
Semantic Web Conference, Springer, LNCS 2342, pp. 394-398, 2002.

[5] Antoniou G., Billington D. and Maher M.J., “On the analysis of regulations using defeasi-
ble rules”, Proc. 32nd Hawaii International Conference on Systems Science, 1999.

[6] Antoniou G., Billington D., Governatori G. and Maher M.J., “Representation results for
defeasible logic”, ACM Trans. on Computational Logic, 2(2), 2001, pp. 255-287.

[7] Antoniou G., Harmelen F. van, A Semantic Web Primer, MIT Press, 2004 (to appear).
[8] Antoniou G., Maher M. J., Billington D., “Defeasible Logic versus Logic Programming

without Negation as Failure”, Journal of Logic Programming, 41(1), 2000, pp. 45-57.
[9] Ashri R., Payne T., Marvin D., Surridge M. and Taylor S., “Towards a Semantic Web Se-

curity Infrastructure”, Proc. of Semantic Web Services, 2004 Spring Symposium Series,
Stanford University, California, 2004.

[10] Bassiliades N., Vlahavas I., “Capturing RDF Descriptive Semantics in an Object Oriented
Knowledge Base System”, Proc. 12th Int. WWW Conf. (WWW2003), Budapest, 2003.

[11] Bassiliades N., Vlahavas I., “R-DEVICE: An Object-Oriented Knowledge Base System
for RDF Metadata”, Technical Report TR-LPIS-141-03, LPIS Group, Dept. of Informatics,
Aristotle University of Thessaloniki, Greece, 2003.

[12] Bassiliades N., Vlahavas I., Elmagarmid A.K., "E-DEVICE: An extensible active knowl-
edge base system with multiple rule type support", IEEE TKDE, 12(5), pp. 824-844, 2000.

[13] Bassiliades N., Vlahavas I., and Sampson D., "Using Logic for Querying XML Data",
Web-Powered Databases, Ch. 1, pp. 1-35, Idea-Group Publishing, 2003.

[14] Berners-Lee T., Hendler J., and Lassila O., “The Semantic Web”, Scientific American,
284(5), 2001, pp. 34-43.

[15] Boley H., Tabet S., The Rule Markup Initiative, www.ruleml.org/
[16] Broekstra J., Kampman A. and Harmelen F. van, “Sesame: An Architecture for Storing

and Querying RDF Data and Schema Information”, Spinning the Semantic Web, Fensel
D., Hendler J. A., Lieberman H. and Wahlster W., (Eds.), MIT Press, pp. 197-222, 2003.

[17] CLIPS Basic Programming Guide (v. 6.21), www.ghg.net/clips/CLIPS.html
[18] Connolly D., Harmelen F. van, Horrocks I., McGuinness D.L., Patel-Schneider P.F., Stein

L.A., DAML+OIL Reference Description, 2001, www.w3.org/TR/daml+oil-
reference

[19] Covington M.A., Nute D., Vellino A., Prolog Programming in Depth, 2nd ed., Prentice-
Hall, 1997.

[20] Dean M. and Schreiber G., (Eds.), OWL Web Ontology Language Reference, 2004,
www.w3.org/TR/2004/REC-owl-ref-20040210/

[21] Gelder A. van, Ross K. and Schlipf J., “The well-founded semantics for general logic pro-
grams”, Journal of the ACM, Vol. 38, 1991, pp. 620-650.

[22] Governatori G., Dumas M., Hofstede A. ter and Oaks P., “A formal approach to legal ne-
gotiation”, Proc. ICAIL 2001, pp. 168-177, 2001.

[23] Grosof B. N. and Poon T. C., “SweetDeal: representing agent contracts with exceptions
using XML rules, ontologies, and process descriptions”, Proc. 12th Int. Conf. on World
Wide Web., ACM Press, pp. 340-349, 2003.

[24] Grosof B. N., “Prioritized conflict handing for logic programs”, Proc. of the 1997 Int.
Symposium on Logic Programming, pp. 197-211, 1997.

[25] Grosof B.N., Gandhe M.D., Finin T.W., “SweetJess: Translating DAMLRuleML to
JESS”, Proc. Int. Workshop on Rule Markup Languages for Business Rules on the Seman-
tic Web (RuleML 2002).

[26] Grosof B. N., Horrocks I., Volz R. and Decker S., “Description Logic Programs: Combin-
ing Logic Programs with Description Logic”, Proc. 12th Intl. Conf. on the World Wide
Web (WWW-2003), ACM Press, 2003, pp. 48-57.

[27] Hayes P., “RDF Semantics”, W3C Recommendation, Feb. 2004, www.w3.org/TR/rdf-
mt/

[28] Levy A. and Rousset M.-C., “Combining Horn rules and description logics in CARIN”,
Artificial Intelligence, Vol. 104, No. 1-2, 1998, pp. 165-209.

[29] Li N., Grosof B. N. and Feigenbaum J.,“Delegation Logic: A Logic-based Approach to
Distributed Authorization”, ACM Trans. on Information Systems Security, 6(1), 2003.

[30] Maher M.J., Rock A., Antoniou G., Billington D., Miller T., “Efficient Defeasible Reason-
ing Systems”, Int. Journal of Tools with Artificial Intelligence, 10(4), 2001, pp. 483-501.

[31] Maher M.J, Governatori G., “A Semantic Decomposition of Defeasible Logics”, Proc.
AAAI-99, Orlando, USA, AAAI/MIT Press, 1999, pp. 299-305.

[32] Maher M.J., “A Model-Theoretic Semantics for Defeasible Logic”, Proc. Workshop on
Paraconsistent Computational Logic, pp. 67-80, 2002.

[33] Marek V.W., Truszczynski M., Nonmonotonic Logics; Context Dependent Reasoning,
Springer-Verlag, 1993.

[34] McBride B., “Jena: Implementing the RDF Model and Syntax Specification”, Proc. 2nd
Int. Workshop on the Semantic Web, 2001.

[35] Nute D., “Defeasible logic”, Handbook of logic in artificial intelligence and logic pro-
gramming (vol. 3): nonmonotonic reasoning and uncertain reasoning, Oxford University
Press, 1994.

[36] Seaborne A., and Reggiori A., "RDF Query and Rule languages Use Cases and Examples
survey", rdfstore.sourceforge.net/2002/06/24/rdf-query/

[37] Xalan-Java XSLT processor, xml.apache.org/xalan-j/

