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Abstract. Transfer learning refers to the process of reusing knowledge
from past tasks in order to speed up the learning procedure in new
tasks. In reinforcement learning, where agents often require a consider-
able amount of training, transfer learning comprises a suitable solution
for speeding up learning. Transfer learning methods have primarily been
applied in single-agent reinforcement learning algorithms, while no prior
work has addressed this issue in the case of multi-agent learning. This
work proposes a novel method for transfer learning in multi-agent rein-
forcement learning domains. We test the proposed approach in a multi-
agent domain under various setups. The results demonstrate that the
method helps to reduce the learning time and increase the asymptotic
performance.

1 Introduction

Under the Reinforcement Learning (RL) realm, where algorithms often require a
considerable amount of training time to solve complex problems, transfer learn-
ing can play a crucial role in reducing it. Recently, several methods have been
proposed for transfer learning among RL agents with reported success. To the
best of our knowledge transfer learning methods have been applied only to single-
agent RL algorithms so far.

In a multi-agent system the agent interacts with other agents and must take
into account their actions as well[14]. When the agents share a common goal,
for example, they must coordinate their actions in order to accomplish it. In
this paper we present and attempt to address the specific issues that arise in
the application of transfer learning in Multi-agent RL (MARL). We propose a
novel method, named BIas TransfER (BITER), suitable for transfer learning in
agents in MARL. Additionally, we propose an extension of the Q-value reuse
algorithm[12] in the multi-agent context.

The core idea behind this method is to use the joint policy that the agents
learned in the source task in order to bias the initial policy of the agents in
the target task towards it (Section 3). In this work we use the Joint Action
Learning[1] algorithm as our basic learning mechanism. The proposed approach
can be used regardless of the underlying multi-agent algorithm but we leave
such a scenario for future research. The proposed method is evaluated in the



predator-prey multi-agent domain under various setups (Section 4). The results
demonstrate that transfer learning can help to reduce substantially the training
time in the target task and improve asymptotic performance as well. (Section 5
and 6).

2 Transfer Learning in RL

The basic idea behind transfer learning is that knowledge already acquired in
a previous task can be used to leverage the learning process in a different (but
usually related) task. Several issues must be addressed in a transfer learning
method: a) how the tasks differ, b) if task mappings are required to relate the
source and the target tasks and c) what knowledge is transferred.

The tasks may have different state spaces, but fixed variables [7, 6] or even
different state variables [5]. More flexible methods allow the tasks to differ in
the state and action spaces (with different variables in both sets) and also in the
reward and transition functions [13, 12]. These methods use inter-task mappings
in order to relate the source and target tasks. More specifically, mappings are
usually defined by a pair of functions (χS , χA) where χS(s) : Starget → Ssource

and χA(α) : Atarget → Asource [12]. Towards a more autonomous setting, map-
pings can also be learned [8, 11]. A comprehensive survey on transfer learning in
single-agent RL can be found in [9].

The level of knowledge that can be transferred across tasks can be low, such
as tuples of the form 〈s, a, r, s′〉 [6, 10], value-functions [12] or policies [2]. Higher
level knowledge may include rules [7, 13], action subsets or shaping rewards [5].

As we already mentioned, so far, no prior work has addressed the issue of
transfer learning in the MARL setting. Most similar to our approach, from the
methods of single-agent transfer learning, is the one proposed by Madden and
Howley [7]. This method uses a symbolic learner to extract rules from the action
value functions that were learned in previous tasks. In the target task, the rules
are used to bias the action selection. We follow a much simpler approach and
avoid using rules. The proposed method provides initial values to the target task
learners before the learning process starts.

3 MARL Transfer

Although the difficulty of MARL tasks makes them an attractive target for
transfer methods, the presence of multiple agents and the added complexity
of MARL algorithms creates new problems specific to the multi-agent setting,
which means that the application of transfer learning in these tasks is not a
straightforward extension of single agent methods. In the following sections we
will present and try to address some of the issues that arise in a MARL context.

In order to focus on the multi-agent aspects that specifically affect transfer
learning, we had to set some restrictions. First, we only considered tasks with
homogeneous agents, which means that we expect a high degree of similarity
between their corresponding action sets. We also assume that the agents behave



cooperatively, although this is more of a convention; we do not expect other
types of behaviour to be significantly different from the viewpoint of transfer
learning, in general.

Agent homogeneity may seem too restrictive; however, tasks with heteroge-
neous agents can still be viewed as having multiple classes of mutually similar
agents; since transfer would generally still take place between these similar agent
classes across tasks, the transfer task in this case could be viewed as a series of
parallel homogeneous transfers.

3.1 Intertask Mappings across Multi-agent Tasks

Intertask mappings in single agent tasks map the most similar states and actions
between the source and target tasks. A significant difference in the multi-agent
case is that the learned knowledge for each task is usually distributed among
agents, which means that the mapping functions for the target task have to be
defined per-agent. We propose a form for such a function defined for agent i that
maps the joint actions of an n-agent task to those of an m-agent task below:

χi,Jn→Jm
(~α) : A1 × ...×An → A′

1 × ...×A′

m

where Jk = A1 × ... × Ak. Correspondingly a mapping function that maps
states between tasks can be defined per agent. Although states have the same
meaning in multi-agent tasks as in a single agent one, they can include parame-
ters that are associated with a specific agent (such as the agent’s coordinates).
Since it is helpful in a multi-agent setting to make this distinction, we denote
these parameters as ¯agentj and as s̄ the rest of the state variables in the two
tasks. The proposed form of such a mapping function for agent i becomes:

χi,Sn→Sm
(s) : Sn → Sm

where each state s ∈ Sn and s′ ∈ Sm of the target and source tasks corre-
spondingly has the form s : 〈s̄, ¯agent1, ..., ¯agentn〉 and s′ : 〈s̄′, ¯agent

′

1, ..., ¯agent
′

m〉.
Of course, the source and target tasks can still have different action and state

variables and they can be mapped using the same techniques one would use in
a single agent task (such as scaling a larger grid to a smaller one).

There are a few different ways to define these mappings, especially when
domain specific properties are taken into account. A significant factor is whether
the representation of an agent in a source task is considered equivalent to an
agent’s representation in the target. Intuitively this corresponds to the situation
where each agent is thought to retain its “identity” over the two tasks. But it is
also possible for a single agent to be mapped to the parameters and actions of
different agents. Accordingly, we propose two mapping approaches:

Static agent mapping implements a one-to-one mapping between agents
that remain constant. This approach effectively ignores the presence and actions
of the extra agents. This dictates that the chosen set of “ignored” agents remains



the same for all states and joint actions1. For example, shown below are functions
defined for Agent 1 that map a three agent task to a two agent one, effectively
ignoring Agent 3:

χ1,Sn→Sm
(〈s̄target, ¯agent1, ¯agent2, ¯agent3〉) = 〈s̄source, ¯agent1, ¯agent2〉

χ1,Jn→Jm
(〈α1,1, ..., α1,i, α2,1, ..., α2,j , α3,1, ..., α3,k〉) = 〈α1,1, ..., α1,i, α2,1, ..., α2,j〉

where αij is the j-th action of the i-th agent. It is important to note that
these functions are simplified for demonstrative purposes; they make the implicit
assumption that s̄target can be mapped directly to s̄source and that each agent has
the same associated state variables and actions across tasks. It is also important
to keep in mind that these functions are defined per-agent; the set of n − m

agents that are ignored in this mapping will be different from the perspective of
other agents.

When we transfer from a single agent system to a multi-agent one, there is
only one way to pick this “ignored” agent set. But in transfer from multi-agent to
multi-agent systems, there is a number of possible variations. Although it might
seem that picking between homogeneous agents should make no difference, this
is not the case as it will have a different result as to how the agents will perceive
each other.

In Figure 1 we present a case where transfer from a task with two agents leads
to a three agent one can have two distinct outcomes. Exactly what implications
this will have on the behaviour of the agents is not clear and it will depend on
the nature of each task 2; we will not cover this further.

1 3

2

13 2

Fig. 1. Agent perception variations in static mapping when transferring from a two to
a three agent task. An arrow from each agent denotes which other agent it is “aware”
of.

Dynamic or context agent mapping, on the other hand, lifts the re-
striction that the ignored agents should remain the same for all states and joint
actions. Intuitively this means that the agents do not retain an “identity” across
the two tasks. There are different ways to implement such a mapping, but typi-
cally one would utilise aspects of the domain-specific context. For example, in a

1 When the source task is single agent this seems the only sane way to transfer to a
multi-agent one, since there is no way to compensate for the lack of perception of
other agents.

2 In our experiments, the two setups produced near-identical results so it proved a
non-issue in our case. This may not hold for more complex tasks however.



gridworld we can map states and actions as to effectively ignore the most distant
agents relative to the current agent or the prey. From the viewpoint of agent 1,
such mapping functions for a three agent representation mapped to a two agent
one using distance as a criterion would be:

χ1,S3→S2
(〈 ¯agent1, ¯agent2, ¯agent3〉) =

{

〈 ¯agent1, ¯agent2〉, d(x1, x2) ≤ d(x1, x3)

〈 ¯agent1, ¯agent3〉, d(x1, x2) > d(x1, x3)

χ1,J3→J2
(s, 〈α1i, ..., α2j , ..., α3k〉) =

{

〈α1i, ..., α2j〉, d(x1, x2) ≤ d(x1, x3)

〈α1i, ..., α3k〉, d(x1, x2) > d(x1, x3)

where d(xp, xq) is the distance between agents xp and xq in the current
state. A subtle difference in this case is that the action mapping function is also
a function of the current state s being mapped, as in this case it depends on its
properties (i.e. the agents’ current coordinates). As before, these functions are
simplified for demonstration.

3.2 Level of Transferred Knowledge

An important feature of multi-agent systems is that the acquired knowledge is
typically distributed across agents instead of residing in a single source. This
can be a challenge for transfer methods, since there is no straightforward way
to deal with multiple sources in the general case.

We chose to transfer the learned joint policy in order to avoid this issue, since
we can use this unified source of knowledge to transfer to each agent. Choosing
this relatively higher level of transfer has also the advantage of not having to
deal with the internals of each MARL algorithm, since a joint policy contains
the effect of all parts of a MARL algorithm – such as the effect of the conflict
resolution mechanisms that these algorithms often employ. The trade-off to be
made here is that some knowledge that could benefit the target task is discarded,
such as the values of suboptimal actions.

3.3 Method of Transfer

Aside from the level of knowledge transferred, we must also decide how to incor-
porate this knowledge in the target task’s learning algorithm. Transfer methods
in single agent settings will often modify the learning algorithm in the target
task [12]. The usual criterion for convergence in single agent algorithms is to
provide a correct estimate of the state or action value function, that can be in
turn used to estimate the optimal policy.

We propose a method of transfer that incorporates the transferred knowledge
as bias in the initial action value function. Since proofs of convergence do not
rely on the specific initial values of this function, we are essentially treating the
underlying MARL algorithm as a kind of “black box”. We consider the proposed



algorithm as a generic transfer method that does not affect the convergence of
the underlying RL algorithm.

Previous research in biasing the initial Q values[7, 3] generally avoids to define
the specific intervals that the bias parameter should lie within. This is justified,
since an optimal bias parameter value relies on the specific properties of the Q

function that is being estimated in the first place. Intuitively, we seek a value high
enough such that it will not be overcome by smaller rewards before the goal state
is reached a few times, and low enough to not interfere with learning in the later
stages. Our experiments have shown that for most problems a relatively small
bias (e.g. b = 1 when Rmax = 1000) usually has better results and performance
will begin to drop as this value is increased. Using a bias value b, Algorithm 1
lists the pseudocode for the generic multi-agent transfer algorithm we propose.

Algorithm 1 BITER for agent i

1: for all states s in Starget do

2: for all joint action vectors ~αn in A1 × ...×An do

3: Qi,target(s, ~αn)← 0
4: if χi,A,n→m( ~αn) = πsource(χi,S,n→m(s)) then

5: Qi,target(s, ~αn)← b

6: end if

7: end for

8: end for

In this paper we also extended a single agent transfer algorithm, Q-value
reuse [12], to the multiagent setting. Q-value reuse adds the Q-values of the
source task directly to the Q-values of the target task. In this algorithm, the
new Q-values are defined as:

Qi,target(s, ~α)← Qi,target(s, ~α) + Qsource(χi,S,n→m(s), χi,A,n→m( ~αn))

However, unlike the previous method that is only invoked before learning, trans-
fer here takes place during the execution of the target task and becomes a part
of the learning algorithm. A significant difference in this case is that one would
have to choose which Qsource to use. This could be the Q function of an individ-
ual agent in the source task, or more elaborate sources such as an average from
all agents.

4 Experiments

4.1 Domain

In order to evaluate the proposed methodologies we used the predator-prey do-
main and more specifically the package developed by Kok and Vlassis [4]. The
domain is a discrete grid-world where there are two types of agents: the predators
and the preys. The goal of the predators is to capture the prey as fast as possible.
The grid is toroidal and fully observable, which means that the predators receive
accurate information about the state of the environment.



4.2 Experimental Setup

The learning environment in all cases was a 5× 5 grid, where the current state
is defined by the locations of the prey and the other predators. The agents can
choose their next move from the action set A={NORTH,SOUTH,EAST, WEST,NONE}
(where NONE means that they remain in their current location). States in this
environment include the x and y coordinates of the prey and the other preda-
tors, relative to the current predator, so a state from the viewpoint of preda-
tor A in a two agent world with another predator B would be of the form
s = 〈preyx, preyy, Bx, By〉.

In all cases (for both source and target tasks) the MARL algorithm used is
joint action learning (JAL), as described in [1]. The exploration method used
is Boltzmann exploration, where in each state the next action is chosen with a
probability of

Pr(ai) =
eQ̂(s,αi)/T

∑n
j=1 eQ̂(s,αj)/T

where the function Q̂ is the estimate of the maximum value of all possible joint

actions given an agent’s individual action. T = lg(Ns)
Ct

is the temperature param-
eter, where Ns is the number of times the state was visited before and Ct is the
difference between the two highest Q-Values for the current state. Boltzmann
exploration was fully used in the single and two agent version of the task, but in
the three agent version it was more practical to use in 10% of the steps, making
it the exploration part of an e-greedy method where ǫ = 0.1 3. For all experi-
ments we used a constant learning rate a = 0.1 and a discount factor γ = 0.9.
When BITER was used, the bias parameter was b = 1. The rewards given to each
individual agent were r = 1, 000 for capturing the prey, r = −100 when collision
with another agent occurs, and r = −10 in all other states. For each experiment,
10 independent trials were conducted. The results that we present are averaged
over these repetitions.

In all of our experiments the prey follows a random policy, picking an action in
each step with uniform probability. Since the prey’s policy is fixed and therefore
not in our focus, we will use the terms agent and predator interchangeably from
now on. The prey is captured when all of the predators move simultaneously
to a square adjacent to the prey, ending the current episode. Finally, when two
agents collide they are placed in random locations on the grid.

5 Results and Discussion

For each experiment, we also record the initial performance (or Jumpstart),
averaging capture times over the 1,000 first episodes, the final average capture
time (ACT) for the last 1,000 episodes, which indicates the final performance

of the agents and the Learning Curve Area Ratio (LCAR), defined as
Pn

i=1
ci

P

n
i=1

di

3 an exploration parameter of ǫ = 0.1 in a three agent environment means that there
is a (1− ǫ)3 = 0.72 probability that none of the agents is exploring in the next step



where ci, di the capture time for each compared execution in episode i. Finally,
the results do not include the learning time of the source task as it is typically
an order of magnitude less than the target task’s.

The first batch of transfer experiments involve three tasks of the team capture
game, with one, two and three predators respectively. Additionally, we use the
static-mapping method for all transfer procedures.

The first transfer case focuses on the two-predator team capture task, where
we applied our proposed transfer method using a single-predator capture task
as source. In this simple case, the learned policy of the source task is used to
bias the initial Q function of the target task. The learning time for the source
task is approximately 200 episodes, or about 800 cycles in total. Since the size of
the state and action space is relatively small, it can be assumed that the source
task’s learned policy is optimal. In this case each agent in the target task begins
with a policy that is biased towards the learned policy from the single-agent
task.

Figure 2 presents the results of BITER compared to the non-transfer case. The
x and y axis represent the episodes and capture times (in cycles) respectively.
Table 1 presents the recorded metrics for each algorithm.

We first notice that BITER reduces the average capture time. This is evident
from the first episodes, where the Jumpstart of the proposed method is substan-
tially better than the case without transfer. Paired t-tests at a confidence level
of 95% detected significant differences between the two competing algorithms,
for the whole range of learning episodes. Additionally, in Table 1 we notice that
BITER achieves better final performance (5.5) than the algorithm without trans-
fer (6.98).
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Fig. 2. Average capture times for 1→2 transfer learning.

In the second experiment, we use the single-predator and the two-predator
versions of the game as source tasks. The target task in both cases is the three-
predator game. Learning the two-agent task optimally is a harder task than



One to Two-Agent Team Capture Transfer

Method Jumpstart LCAR ACT (50k)

Non Transfer 32.23 1 6.98

BITER 6.17 0.66 5.50
Table 1. Jumpstart, LCAR and ACT for the two agent team capture task

the single agent one; we used the policy learned after 200,000 episodes which is
close to, but may not be the optimal one. A better policy could be achieved by
adjusting the learning parameters, but we preferred to use a suboptimal policy
as the source, since in practice one would have to settle for one.

Figure 3 illustrates the results of the two instances of BITER along with the
non-transfer case. Both instances of BITER reduce learning time to about a third
compared to direct learning (Table 2), while they exhibit similar performance.
Paired t-tests showed that 1→3 transfer is statistically significantly better than
2→3 after the first 320 episodes, at the 95% level. Both cases are also better than
direct learning at the 95% level for all episodes of the simulation. These results
verify that transfer improves significantly the performance in the target task.
Additionally, BITER improves both the Jumpstart and the ACT of the agents as
it is observed in Table 2. Another interesting observation is the fact that transfer
from the single-agent case leads to better performance in the target task. The
single-agent task is simpler to learn than the two-agent one, which means that
a better policy can be found in the source task.

One and Two to Three-Agent Team Capture Transfer

Method Jumpstart LCAR ACT(200k)

Non Transfer 249.07 1 21.11

2→3 BITER 21.37 0.35 10.72

1→3 BITER 20.36 0.29 8.70
Table 2. Jumpstart, LCAR and ACT for the three agent team capture target task

To investigate the performance of the dynamic (or context) agent mapping
approach (where the source agent representations are mapped to different agents
of the target depending on the context) we set an experiment using the two-
agent game as the source task and the three-agent game as the target game.
We explore two different dynamic approaches: a) map to the predator closest to
the current agent’s position and b) map to the predator closest to the prey. The
results are shown in Table 3 along with the performance of the static mapping
approach. Interestingly, dynamic mapping outperforms the static one in both
LCAR and ACT in the prey-distance case, while it performed worse when agent-
distance was used. A possible explanation for this behaviour could be this: most
collisions in team capture occur near the prey. Since prey-distance mapping
improves coordination in this region, it may help to reduce the costly collisions
and improve performance.
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Fig. 3. Average capture times for single and two agent to three agent transfer learning.
Results are averaged over 10 multiple runs.

Static and Dynamic mapping performance for 2→3 transfer

Method Jumpstart LCAR ACT (100k)

Static 21.18 1 11.43

Dynamic - agent distance 23.15 1.05 11.96

Dynamic - prey distance 20.58 0.90 10.26
Table 3. Comparison between static and dynamic mapping, using distance from the
current agent or distance from the prey.

In the next experiment we evaluate the MARL Q-value reuse algorithm.
Boltzmann exploration is unsuitable for this method, so we used a fixed-value
exploration parameter (ǫ−greedy, with ǫ = 0.03). We also run the BITER al-
gorithm with the same exploration parameter value. The results are shown in
Table 4. In both experiments, BITER has a clear advantage over MARL Q-value
reuse. The paired t-test at 95% confidence level detects significant differences in
favour of BITER. While the MARL Q-value reuse helps to reduce the learning
time in the target task, it shows that using directly the Q-values from the source
task is not the optimal way for transfer in MARL agents. The directly added
source Q-values could be more difficult to be overridden by the target agents.

Method Jumpstart LCAR ACT (100k)

Q-Value Reuse 1→3 20.59 1 19.63

BITER 1→3 19.68 0.57 11.12

Q-Value Reuse 2→3 18.67 1 18.42

BITER 2→3 21.91 0.78 14.35
Table 4. Comparison between Q-value Reuse and BITER for the 1→3 and 2→3 tasks.



In our final experiment we test the efficacy of BITER when we alter the basic
action set of the agents in the target task. That is, we allow, in the target task,
the agents to select diagonal moves. This increases the joint action space by a
factor of 4 for each agent. As source tasks we use the single-agent and two-agent
games without diagonal moves.

Mapping the larger joint action set to a smaller one is a problem similar to
its single agent version. We simply ignore the new actions, mapping them to a
“null” joint-action of zero value. This may not be the optimal choice, but finding
such a mapping is beyond our purpose.

The results are comparable to the non-diagonal version, as transferring from
either source task reduces the learning time to about a third. Paired t-tests
showed that 1→3 transfer is statistically significantly better than 2→3 after the
first 8979 episodes, at the 95% level. Both are also better than direct learning
at the 95% level for all episodes of the simulation.

One and Two to Three Agent Team Capture Transfer (w/diagonals)

Method Jumpstart(1k) LC Ratio Avg. Capture Time(200k)

Non Transfer 206.94 1 16.19

2→3 BITER 21.78 0.35 8.07

1→3 BITER 21.58 0.32 7.30

Table 5. Jumpstart, LCAR and ACT (after 200,000 episodes) for the three-agent team
capture task (with diagonal moves)

6 Conclusions and Future Work

This work addressed the problem of transfer learning in MARL. To the best
of our knowledge transfer learning method have been proposed only for single-
agent RL algorithms so far. In this work discussed several issues that pertain
the development of transfer learning algorithms in MARL. More specifically, we
proposed a novel scheme for inter-task mappings between multi-agent tasks and
introduced BITER, an algorithm for transfer in MARL. We evaluated BITER in
the predator-prey domain under various setups. The results demonstrated that
BITER can reduce significantly the learning time and also increase the asymptotic
performance.

Our exploration of multi-agent intertask mappings revealed a variety of pos-
sible mapping schemes, and more research on this subject could explain more
about its effect on transfer learning. It could also lead to the development of
automated mapping methods, especially in more complex cases, such as cross-
domain transfer. Also, while our work focused on discrete and deterministic
environments, we believe that transfer learning could be successfully applied in
continuous or partially observable environments, although the specific challenges
there would be the subject of future work. It would also be interesting to see
these methods being applied in an adversarial setting, such as simulated soccer.



Our results also indicated the difficulty of applying reinforcement learning
methods directly to multi-agent problems, where relatively simple tasks quickly
become intractable with the addition of more agents. Transfer learning seems to
be a promising method around this complexity, and we expect to see a wider
adoption of it in the multi-agent setting, either to extend current methods to
more complex problems, or even as an integrated part of new multi-agent algo-
rithms.
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