
Transfer Learning via Multiple Inter-Task

Mappings

Anestis Fachantidis1, Ioannis Partalas1, Matthew E. Taylor2, and Ioannis
Vlahavas1

1 Department of Informatics, Aristotle University of Thessaloniki
{afa,partalas,vlahavas}@csd.auth.gr

2 Department of Computer Science, Lafayette College
taylorm@cs.lafayette.edu

Abstract. In this paper we investigate using multiple mappings for
transfer learning in reinforcement learning tasks. We propose two dif-
ferent transfer learning algorithms that are able to manipulate multiple
inter-task mappings for both model-learning and model-free reinforce-
ment learning algorithms. Both algorithms incorporate mechanisms to
select the appropriate mappings, helping to avoid the phenomenon of
negative transfer. The proposed algorithms are evaluated in the Moun-
tain Car and Keepaway domains. Experimental results show that the use
of multiple inter-task mappings can significantly boost the performance
of transfer learning methodologies, relative to using a single mapping or
learning without transfer.

1 Introduction

In recent years, a wealth of transfer learning (TL) methods have been developed
in the context of reinforcement learning (RL) tasks. Typically, when an RL agent
leverages TL, it uses knowledge acquired in one or more (source) tasks to speed
up its learning in a more complex (target) task.

Although the majority of the work in this field presumes that the source task
is connected in an obvious or natural way with the target task, this may not
the case in many real life applications where RL transfer could be used. These
tasks may have different state and action spaces, or even different reward and
transition functions. One way to tackle this problem is to use functions that map
the state and action variables of the source task to state and action variables of
the target task. These functions are called inter-task mappings [12].

While inter-task mappings have indeed been used with successfully in several
settings, we identify several shortcomings. First, an agent typically uses a hand-
coded mapping, requiring the knowledge of a domain expert. If human intuition
cannot be applied to the problem, selecting an inter-task mapping may be done
randomly, requiring extensive experimentation and time not typically available
in complex domains or in real applications. On the other hand, even if a correct
mapping is used, it is fixed and applied to the entire state-action space, ignoring

the important possibility that different mappings may be better for different
regions of the target task.

This paper examines the potential impact of using multiple mappings in
TL. More specifically, we propose two different transfer learning algorithms that
are able to manipulate multiple inter-task mappings for both model-learning
and model-free reinforcement learning algorithms. Both algorithms incorporate
mechanisms for the selection of the appropriate mappings in order to avoid
the negative transfer phenomenon, in which TL can actually decrease learning
performance. The proposed algorithms are evaluated in the domains of Mountain
Car and Keepaway and experimental results show that using multiple inter-task
mappings can improve the performance of transfer learning.

2 Transfer via Multiple Inter-Task Mappings

In order to enable a transfer learning procedure across tasks that have different
state variables and action sets, one must define how these tasks are related to
each other. One way to represent this relation is to use a pair (XS , XA) of inter-
task mappings [12, 8], where the function XS maps a target state variable to a
source state variable and XA maps an action in the target task to an action in
the source task.

Inter-task mappings have been used for transferring knowledge in several
settings like TD-learning [12], policy search and model-based algorithms [13, 9].
All these approaches use only one pair of inter-task mappings which is usually
dictated by a human expert.

Defining multiple mappings of the target task to the source task is a domain-
dependent process and requires the involvement of a domain expert. Methods
that automatically construct the mapping functions have been recently proposed
[10], but are currently very computationally expensive and outside the scope of
this paper. Additionally, one could generate all feasible mappings and use them.
A problem of this approach is that in domains with many features, generating
the mappings becomes prohibitive in terms of both computational and memory
requirements.

2.1 Transferring with Multiple Inter-Task Mappings in Model

Based Learners

Model-based Reinforcement Learning algorithms, such as Fitted R-max [1] and
PEGASUS [3], use their experiences to learn a model of the transition and
reward functions of a task. These models are used to either produce new mental
experiences for direct learning (e.g., Q-Learning) or with dynamic programming
methods and planning in order to construct a policy. Contrary to direct learning
agents, model based RL agents have some added options for transfer learning
as they can also transfer the transition and/or reward function of a source task.
Models of these functions can have many representations, such as a batch of

observed instances or a neural network that approximates its transition and/or
reward function.

Transferring instances in model-based RL has been proposed in the TIM-
BREL algorithm [9], in which a single-mapping TL algorithm showed significant
improvement over the no-transfer case. Our proposed method builds upon the
TIMBREL algorithm, but can autonomously use multiple inter-task mappings.

In addition to empirically demonstrating the effectiveness of using an instance-
based RL algorithm with multiple mappings, we will also argue the existence of
a theoretical connection between the described setting and another setting more
extensively studied: multi-task, single-mapping transfer. In a multi-task transfer
learning problem, an agent is transferring knowledge from more than one source
task into a target task that is more complex, but still related to the source tasks.
In order to avoid negative transfer, the agent must decide what information to
transfer from which source task, and when to transfer this information [2].

In this case, recently proposed methods can assist the agent when selecting
the appropriate source task, as well as when and what knowledge to transfer.
Lazaric et al. [2] defines two probabilistic measures, compliance and relevance.
These measures can assist an agent to determine the most similar source tasks to
the target task (compliance) and also to select which instances to transfer from
that source task (relevance). Results showed that this is a feasible and efficient
method for multi-task trasfer—we will extend this method to use multiple inter-
task mappings, rather than multiple source tasks.

We consider each inter-task mapping function as a hypothesis, proposed to
match the geometry and dynamics between the source and target task. By con-
sidering a source task through this hypotheses, we directly differentiate the
source task’s outcomes for a fixed input. Mapping states and actions from a
target task to a source task not only transforms the way we view and use the
source task, but also the way it behaves and responds to a fixed target task’s
state-action query (before these are mapped). Thus, every mapping Xi can be
considered as a constructor of a new virtual source task SXi

. This naturally
re-formulates the problem of finding the best mapping as a problem

of finding the most compliant virtual source task. Additionally, this re-
formulation transforms the problem of finding out when to sample from a certain
mapping to a problem of sample relevance.

Based on previously defined notation [2], we define the compliance of a target
task transition τi and a mapping Xi as:3

λXi
=

1

ZP ZR
(

m
∑

j=1

λP
ij)(

m
∑

j=1

λR
ij)

3 P and R refer respectively to the transition and reward functions of the target task.
ZP and ZR are normalization constants detailed elsewhere [2].

The compliance between the target task (not only one instance of it) and the
virtual source task SXi

generated by the mapping Xi is defined as:

Λ =
1

t

t
∑

i=1

λiP (s)

To implement this new definition of compliance we design a novel multiple-
mappings TL algorithm, COmpliance aware transfer for Model Based REinforce-

ment Learning (COMBREL), which is able to select mappings based on their
compliance as defined above. The equally important notion of relevance is left
for future work.

First, COMBREL implements a simple and straightforward segmentation of
the state-action space, which we call mapping regions. These regions allow for
different compliance values—and thus different best mappings—for different re-
gions of the state-action space. This adds the flexibility that each state-action
region has its own best mapping instead of computing one best mapping for
the whole target task. Additionally, every mapping region can be considered as
a different target task (just like each mapping may be considered a different
source task). A compliance value is calculated for each mapping region, averag-
ing the compliance of every state-action instance in the region. It is important
to note that mapping regions are created based on a fixed resolution. In this
paper, a low resolution of four mapping regions, per state variable, was selected
assisting on the efficiency of the method and on its actual usefulness since, as
(intuitively) the higher the resolution, the less the information we can obtain for
each new (thinner) segment of the state space. Its important to note that setting
the resolution of the mapping region’s segmentation is, for the time being, an
experimental choice and not an informed decision.

For COMBREL’s underlying model-based algorithm we use Fitted R-Max,
building upon the single-mapping transfer algorithm TIMBREL [9]. TIMBREL
cooperates with a model-based RL algorithm like Fitted R-Max by assisting
its model approximation, by transferring source task instances near the points
that need to be approximated. In the absence of such source task instances, no
transfer takes place. However, the specific use of Fitted R-Max should not be
considered as a limitation of the method as COMBREL is easily adaptable to
other instance-based RL algorithms.

The flow of our proposed method and algorithm, COMBREL (see Algorithm
1), is as follows. On lines 1-5, the algorithm records source task transitions and
then starts training in the target task. A set of regions is defined, segmenting the
state-action space so each can have a different best mapping. Lines 5-8 compute
the compliance of the last target task transition with each of the mappings, Xi.
This value is then added to the regional compliance estimate. On lines 9 and 10,
if the agent’s model-based algorithm is unable to approximate a state with its
current data, it starts transferring source task data. To select the best mapping
for the current agent’s state, on lines 11 to 15 the agent decides on the average
compliance of the current region for each mapping (i.e., virtual source task).

Algorithm 1 COMBREL - Multiple Mappings in Model Based Learners

1: Learn in the source task, recording m (s, a, r, s′) transitions.
2: while training in the target task do

3: for (e epidodes) do

4: Define Di regions of the state-action space in the target task
5: Record Target Task transitions 〈xT , aT 〉
6: Find Region membership D for each 〈xT , aT 〉
7: For each Mapping Xi define a virtual source task Si

8: Update region’s compliance estimate, adding compliance λi of 〈xT , aT 〉 with
each virtual source task Si

9: if the model-based RL algorithm is unable to accurately estimate TT (xT , aT)
or RT (xT , aT) then

10: while TT (xT , aT) or RT (xT , aT) does not have sufficient data do ⊲ Use
the most compliant mapping to save instances near 〈xT , aT 〉

11: Find |X| pairs (XS , XA) of inter-task mappings
12: Find Region membership of 〈xT , aT 〉
13: for (|X| iterations) do

14: Find Xbest based on current region’s compl. estimate ΛDi
with Xi

15: Xbest ← Xmax (ΛDi
) ⊲ The most compliant

16: Translate samples from Sbest and put them in T̂
17: Locate 1 or more instances in T̂ near the 〈xT , aT 〉 to be estimated.

When found, it translates samples from it and combines them with target task
samples to create a model. Then, the algorithm iterates and continues learning.

2.2 Multiple Inter-Task Mappings in TD Learners

Having discussed using multiple inter-task mappings in model-based RL meth-
ods, we now turn our attention to model-free, temporal difference agents.

We assume that an RL agent has been trained in the source task and that
it has access to a function Qsource(s, a

′), which returns an estimation of the
Q value for a state s′ and action a′ of the source task. The agent is currently
being trained in the target task, learning a function Qtarget(s, a) and senses the
state s. In order to transfer the knowledge from the source task, we find the
best mapping and we add the corresponding values from the source task via
the selected mapping. Algorithm 2 shows the pseudocode of the transferring
procedure.

On lines 3–10, the algorithm finds the best mapping from instances that are
recognized in the target task. More specifically, we define the best mapping as
the one with the maximum mean sum of the values for each action in the source
task (lines 6–8). There are alternate ways to select the best mapping, such as
finding the maximum action value, but we leave such explorations to future work.

After the best mapping is found, the algorithm adds to the Q-values from the
source task to the Q-values from the target task (lines 11-12). We use a mapping
function, gA, which is an inverse function of fA and maps a source action to its

Algorithm 2 Value-Addition procedure: Multiple Mappings in TD Learners

1: procedure Value-Addition(s,MS , MA, Qtarget, Qsource)
2: bestMeanQV alue← 0; bestMapping← 0
3: for i← 1 . . . N do

4: s′ ←M i
S(s); meanQV alue← 0

5: for all a′ ∈ Asource(s
′) do

6: meanQV alue← meanQV alue + Qsource(s
′, a′)

7: meanQV alue← meanQV alue/|Asource(s
′)|

8: if meanQV alue > bestMeanQV alue then

9: bestMeanQV alue← meanQV alue; bestMapping ← i

10: s′ ←MbestMapping
S (s)

11: for a′ ∈ Asource(s
′) do

12: Qtarget(s, g
bestMapping
A (a′))← Qtarget(s, g

bestMapping
A (a′)) + Qsource(s

′, a′)

equivalent target action. Note that if a target action is not mapped to a source
action, the algorithm does not add an extra value. Depending on the impact of
the source task’s Q-values, the agent will now be biased to select actions from the
set Aa = {gbestMapping

A (a′)|a′ ∈ As′

source}. The impact of the source task depends
strongly on how much time was spent learning it. Specifically, if the source
task was trained for a small number of episodes then the Q-values will be also
small and afterwards the agent will probably select actions from Aa for a small
period (assuming pessimistic initialization). As learning proceeds, the values of
the target Q-function will increase and the initial bias will be overridden.

3 Domains

3.1 Mountain Car

For the mountain car domain we use the version proposed by [4]. In the standard
2D task an underpowered car must be driven up to a hill. The state of the
environment is described by two continuous variables, the horizontal position
x ∈ [−1.2, 0.6], and velocity vx ∈ [−0.007, 0.007]. The actions are {Neutral,
Left and Right} move the car to the goal state, as quickly as possible. The 4D
mountain car extends the 2D task by adding an extra spatial dimension [9]. The
state is composed by four continuous variables (4D), the coordinates in space
x, and y ∈ [−1.2, 0.6], as well as the velocities vx and vy ∈ [−0.07.0.07]. The
available actions are {Neutral, West, East, South, North}.

3.2 Keepaway

Keepaway [6], is a subset of the RoboCup robot soccer domain, where K keepers
try to hold the ball for as long as possible, while T takers (usually T = K−1) try
to intercept the ball. The agents are placed within a fixed region at the start of

each episode, which ends when the ball leaves this region or the takers intercept
it.4

The task becomes harder as extra keepers and takers are added to the fixed-
sized field, due to the increased number of state variables on one hand, and the
increased probability of ball interception in an increasingly crowded region on
the other.

4 Experiments and Results

4.1 Transferring with COMBREL in Mountain Car 4D

To test the efficiency of the model-based proposed approach we conducted a se-
ries of experiments in the Mountain Car 4D domain. First, a standard Q-learning
agent learned Mountain Car 2D while recording instances from its experiences.
These instances, in the form of tuples 〈s, a, r, s′〉, formed a dataset of 100,000
instances, covering the state-space. The number of experiences gathered from
Mountain Car 2D allowed us to create multiple datasets of varying size. These
datasets will be used as the source task knowledge.

The first experiment was conducted using a fixed sample size (2,000 in-
stances). We tested COMBREL and TIMBREL with Multiple Mappings (TIM-
BERL+MM) (no selection mechanism) against eight versions of single-mapping
TIMBREL. Each of these versions used a different state-action mapping. This
experiment revealed the importance of using multiple mappings when we have
limited experimentation time and no knowledge or intuition of the best mappings
that should be used. COMBREL outperformed single mapping TIMBREL for
any of its versions, in their first run.

TIMBREL with its best mapping, identified in the previous experiment, is
tested against the multiple mappings versions in three more experiments, using
1,000, 5,000, and 10,000 source task instances . This experiment compares the
performance of COMBREL against TIMBREL and TIMBREL+MM, indepen-
dently of the sample size. Furthermore this experiment allows us to analyse the
sample efficiency of the three algorithms while varying the source task sample
size.

About the set of parameters used for Fitted R -Max and TIMBREL, these
were the same as [9]. In our experiments COMBREL, TIMBREL+MM and
TIMBREL used a model breadth parameter b = 0.4 and a minimum fraction
parameter of 10%

We ran 20 trials for each of the compared methods and for each of the source
task sample sizes. Figure 1(a) shows the performance of the compared algorithms
when transferring 1,000 source task instances. There is a clear performance in-
crease with the use of COMBREL, when compared to TIMBREL+MM and
the No-Transfer case (the difference was statistically significant at a 95% level).
When compared to TIMBREL the gain is still statistically significant, but only
for episodes 80 and above. Figure 1(b) shows results from a similar experiment,

4 For more information please refer to the original paper [6].

but with a 2,000 instances from the source task. COMBREL demonstrated an
even greater performance increase, but it was more unstable, showing the sensi-
tivity of the multiple mappings methods with the transferred sample size. Exper-
iments with 5,000 and 10,000 source task instances showed a similar and more
stable performance gain (but are omitted for space constraints). It is impor-
tant to note the poor performance of TIMBREL+MM compared to the other
algorithms. This shows that using a set of mappings simultaneously, without
previous domain knowledge and any selection mechanism, can result to negative
transfer. Table 1 shows the four state mappings used by COMBREL in our ex-

-500

-480

-460

-440

-420

-400

-380

-360

-340

-320

-300

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 r
ew

ar
d

Episodes

COMPERL
TIMBERL

TIMBERL+MM
non-transfer

(a) 1000 samples

-500

-450

-400

-350

-300

-250

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 r
ew

ar
d

Episodes

COMPERL
TIMBERL

TIMBERL+MM
non-transfer

(b) 2000 samples

Fig. 1. Average reward in a period of 200 episodes. The curves are smoothed with a
window of 10 episodes

periments, as well as the number of times they were selected. We can observe
that the more “intuitively correct” mappings were found and selected most of-
ten. Mappings which seem irrelevant were also used some times, but likely in
state space regions where they were useful.

4D state var. Mapping 1 Mapping 2 Mapping 3 Mapping 4

x x x vx x

y x vx vx x

vx vx x x vx

vy vx vx x vx

Times used 269.992 52.075 29.966 322.411
Table 1. Four state space mappings in Mountain Car 4D and the number of times
they were selected by COMBREL, in an indicative episode.

4.2 Transferring with Value-Addition in Keepaway

This section evaluates the proposed approach in Keepaway. The dimensions of
the keepaway region is set to 25m × 25m and remains fixed for all source and tar-
get tasks. The algorithm that is used to train the keepers is the SMDP variation
of Sarsa(λ) [7]. Additionally, we use linear tile-coding for function approximation
with settings shown to work well in the Keepaway domain [5].5

To evaluate the performance of the proposed approach we use the time-to-

threshold metric [12], which measures the time required to achieve a predefined
performance threshold in the target task. Typically, the threshold is set em-
pirically, after preliminary experimentation in the target task. In our case this
threshold corresponds to a number of seconds that keepers maintain ball pos-
session. In order to conclude that the keepers have learned the task successfully,
the average performance of 1,000 consecutive episodes must be greater than the
threshold. We compare (1) the time-to-threshold without transfer learning with
(2) the time-to-threshold with transfer learning plus the training time in the
source task.

Finally, an important aspect of the experiments concerns the way that the
mapping will be produced. For the Keepaway domain, the production of the
mappings can semi-automatic. More specifically, any Kt vs. T t task can be
mapped to a Ks vs. T s task, where Ks < Kt and T s < T t, simply by deleting
Kt − Ks teammates and T t − T s opponents of the keeper with ball possession.
The actual number of different mappings is:

(

Kt − 1

Ks − 1

)(

T t

T s

)

=
(Kt − 1)!T t!

(Ks − 1)!(Kt − Ks)!T s!(T t − T s)!

Transfer into 4 vs. 3 from 3 vs. 2 This subsection evaluates the performance
of the proposed approach on the 4 vs. 3 target task using a threshold of 9
simulated seconds. We use the 3 vs. 2 task as the source and experiment with
different number of training episodes, ranging from 0 (no transfer) to 3,200.

Table 2 shows the training time and average performance (in seconds) in the
source task, as well as time-to-threshold and total time in the target task for
different amount of training episodes in the source task. The results are averaged
over 10 independent runs and the last column displays the standard deviation.
The time-to-threshold without transfer learning is about 13.38 simulated hours.

We first notice that the proposed approach leads to lower time-to-threshold
in the target task compared to the standard algorithm that does not use transfer
learning. This is due to the fact that the more the training episodes in the source
task the better the Q-function that is learned. Note that for 800 episodes of the 3
vs. 2 task, the keepers are able to hold the ball for an average of 8.5 seconds, while
for 1600 episodes their performance increases to 12.2 seconds. As the number

5 We use 32 tilings are used for each variable. The width of each tile is set to 3 meters
for the distance variables and 10 degrees for the angle variables. We set the learning
rate, α, to 0.125, ǫ to 0.01 and λ to 0. These values remain fixed for all experiments.

3 vs. 2 4 vs. 3
#episodes train time performance time-to-thr. total time st. dev.

0 0 - 13.38 13.38 2.02
100 0.11 4.38 13.19 13.30 1.77
200 0.23 4.67 12.59 12.82 2.10
400 0.72 6.71 12.08 12.80 1.70
800 1.73 8.52 10.28 12.01 0.97
1600 4.73 12.20 3.48 8.21 1.16
2500 8.42 16.02 4.16 12.44 0.60
3200 12.17 16.84 2.76 14.95 0.28

Table 2. Training time and average performance in the source task, as well as time-
to-threshold and total time in the target task. The best time-to-threshold and total
time are in bold.

of the training episodes in the source task increase the time that is required to
reach the threshold decreases, showing that our method successfully improves
performance in the target task.

The total time of the proposed approach in the target task is also less than the
time-to-threshold without transfer learning in many cases. The best performance
is 8.21 hours, which corresponds to a reduction of 38.6% of the time-to-threshold
without transfer learning. This performance is achieved when training the agents
for 1600 training episodes in the source task. This result shows that rather than
directly learning on the target task, it is actually faster to learn on the source
task, use our transfer method, and only then learn on the target task.

In order to detect significant difference among the performances of the algo-
rithms we use the paired t-test with 95% confidence. We perform seven paired
t-tests, one for each pair of the algorithm without transfer learning and the cases
with transfer learning. The test shows that the proposed approach is significantly
better when it is trained with 800 and 1600 episodes.

Scaling up to 5 vs. 4 We also test the performance of the proposed in the 5
vs. 4 target task. The 5 vs. 4 threshold is set to 8.5 seconds. The 3 vs. 2 task
with 1,600, 2,500 and 3,200 training episodes and the 4 vs. 3 task with 4,000
and 6,000 training episodes are used as source tasks. Table 3 shows the training
times, time-to-threshold and their sum for the different source tasks and number
of episodes averaged over 10 independent runs along with the standard deviation.

Firstly, we note that in all cases the proposed approach outperforms learning
without transfer learning. It is interesting to note that the best time-to-threshold
is achieved when using 3 vs. 2 as a source task is achieved with fewer episodes
than when using 4 vs. 3 as a source task. This means that a relatively simple
source task may provide more benefit than a more complex source task. In
addition, the 3 vs. 2 task requires less training time, as it is easier than the 4 vs.
3 task. We perform 5 paired t-tests, one for each case of the proposed approach
against learning without transfer. The proposed method achieves statistically
significantly higher performance (at the 95% confidence level) in all cases.

source 5 vs. 4
task #episodes tr. time time-to-thr. total time st. dev.

- 0 0 26.30 26.30 2.85
3 vs. 2 1600 4.73 15.54 20.27 3.24
3 vs. 2 2500 8.42 8.88 17.31 3.23
3 vs. 2 3200 12.17 3.43 15.60 1.24
4 vs. 3 4000 7.52 10.07 17.59 1.49
4 vs. 3 6000 12.32 9.26 21.58 1.92

Table 3. Average training times (in hours) for 5 vs. 4. The results are averaged over
10 independent trials. The best time-to-threshold and total time are in bold.

5 Related Work

[9] proposes an algorithm that implements Transfer Learning for Model - Based
RL agents. It is based on transferring instances from a source task to a target
task and using them with the model-based RL algorithm Fitted R-Max to assist
it in the construction of a model of the target task. Although it demonstrates
promising results and a significant performance gain it uses only one hand-coded
mapping between the source and the target task. Our proposed model-based
multiple mappings method is based on TIMBREL but extends it with the use
of a multiple mappings mechanism able to autonomously select mappings while
learning.

[12] constructs an autonomous mapping selection method (MASTER) which
is able to select a mapping based on the similarity between transitions in the
source and target task . MASTER learns a model of the action effects in the
source task. In the target task, it first selects actions randomly, sampling target
task transitions. It then compares this transitions with queries on the source
task model to calculates the error (difference). It selects the best mapping to
minimize this error. Our model-based method is also based on the similarity of
the effects between the two tasks but it makes an off-line calculation of the error
thus, not spending agent time with random environment interaction. Also as our
method is built up upon TIMBREL, it requires no explicit model learning in the
source task as it transfer only instance from it.

In [8], each possible inter-state mapping is considered as an expert and with
the use of a multi-armed bandit algorithm the agent decides which mapping to
use. This method shows significant improvement but its performance is surpassed
in the long run as it continues to explore always taking “advice” from low return
experts.

For space limitations reasons, the reader is directed to read more about the
various transfer learning methodologies in more comprehensive treatments [11].

6 Conclusions and Future Work

In this paper, we examined the benefit of using multiple-mappings in the transfer
learning setting. To avoid negative transfer a multiple-mappings method must

be supported by a mechanism able to select the most compliant and relevant
mappings.

Results on our proposed methods showed a statistically significant benefit
over the single mapping transfer algorithm as also from the multiple mapping
method that uses all the mappings simultaneously. Future work includes discov-
ering more sophisticated ways to discretize the state space in COMBREL, avoid-
ing discontinuities in the mapping selection function between nearby states in
the state space. Furthermore, whereas COMBREL implements the novel notion
of a mappings compliance, this scheme can be extended to another important
probabilistic measure, that of relevance [2], where we would not only care about
the best mapping but also on when to sample from it and how much.

References

1. N. Jong and P. Stone. Model-based exploration in continuous state spaces. Ab-
straction, Reformulation, and Approximation, pages 258–272, 2007.

2. Alessandro Lazaric. Knowledge Transfer in Reinforcement Learning. PhD thesis,
Politecnico di Milano, 2008.

3. A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang. Autonomous inverted helicopter flight via reinforcement learning. Ex-
perimental Robotics IX, pages 363–372, 2006.

4. Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22(1-3):123–158, 1996.

5. Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and Yaxin Liu. Keepaway
soccer: From machine learning testbed to benchmark. In RoboCup-2005: Robot
Soccer World Cup IX, pages 93–105, 2006.

6. Peter Stone and Richard Sutton. Keepaway soccer: A machine learning test bed. In
RoboCup 2001: Robot Soccer World Cup V, pages 207–237. Springer-Verlag, 2002.

7. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, An Introduction.
MIT Press, 1998.

8. Erik Talvitie and Satinder Singh. An experts algorithm for transfer learning. In
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07),
pages 1065–1070, 2007.

9. Matthew E. Taylor, Nicholas K. Jong, and Peter Stone. Transferring instances for
model-based reinforcement learning. In European conference on Machine Learning
and Knowledge Discovery in Databases, pages 488–505, 2008.

10. Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous transfer
for reinforcement learning. In 7th international joint conference on Autonomous
agents and multiagent systems, pages 283–290, 2008.

11. Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(1):1633–1685, 2009.

12. Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task
mappings for temporal difference learning. Journal of Machine Learning Research,
8:2125–2167, 2007.

13. Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer via inter-task
mappings in policy search reinforcement learning. In 6th international joint con-
ference on Autonomous agents and multiagent systems, pages 37:1–37:8, 2007.

