
Incremental Clustering for the Classification of
Concept-Drifting Data Streams

Ioannis Katakis, Grigorios Tsoumakas, Ioannis Vlahavas

Department of Informatics, Aristotle University, Thessaloniki, 54124, Greece.
{katak, greg, vlahavas}@csd.auth.gr

Abstract. Concept drift is a common phenomenon in streaming data environ-
ments and constitutes an interesting challenge for researchers in the machine
learning and data mining community. This paper proposes a probabilistic repre-
sentation model for data stream classification and investigates the use of incre-
mental clustering algorithms in order to identify and adapt to concept drift. An
experimental study is performed using three real-world datasets from the text
domain, a basic implementation of the proposed framework and three baseline
methods for dealing with drifting concepts. Results are promising and encour-
age further investigation.

1. Introduction

Recent advances in sensor, storage, processing and communication technologies have
enabled the automated recording of data, leading to fast and continuous flows of in-
formation, referred to as data streams. The dynamic nature of data streams requires
continuous or at least periodic updates of the current knowledge in order to ensure
that it always includes the information content of the latest batch of data. This is im-
portant in applications where the concept of a target class and/or the data distribution
changes over time. This phenomenon is known as concept drift.

Although traditional vector data representation is effective and widely used for sta-
tionary data classification tasks, it is not adequate for classification problems involv-
ing concept drift. The main reason is that in concept drifting scenarios, geometrically
close items in the conventional vector space might belong to different classes. This is
because of a concept change (drift) that occured at some time point.

After noticing this problem, we propose a new probabilistic representation for data
streams suitable for problems with concept drift. More specifically, we map batches
of data into what we name “Conceptual Vectors”. These vectors contain conceptual
information for every batch of data. In this new probabilistic space, vectors that are
geometrically close do always belong in the same conceptual theme.

Using the proposed representation, we apply incremental clustering in the stream
of Conceptual Vectors. This way, we organize and summarize batches of instances
into concepts. The final objective is to train an incremental classifier on every cluster /
concept. When a new batch arrives we identify the concept (cluster) that this batch
belongs to and apply the corresponding classifier for prediction. Experiments with a

 2

basic incremental clusterer and the Naïve Bayes classifier produce interesting results
and encourage further research.

The rest of the paper is organized as follows. In section 2 we present background
information on mining data stream whereas in section 3 we summarize related work
on concept drift detection and adaptation. Section 4 discusses the deficiency of the
conventional data representation and introduces the proposed representation model.
Section 5 suggests a framework for dealing with concept drift with the combination of
incremental clustering and classification. In section 6, we develop a simple implemen-
tation of the proposed framework and evaluate it in real world datasets from the text
domain. Section 7 concludes the paper by presenting our plans for future work.

2. Mining Data Streams

Recent advances in sensor, storage, processing and communication technologies have
enabled the automated recording of data, leading to fast and continuous flows of data,
referred to as data streams. Examples of data streams are the web logs and web page
click streams recorded by web servers, transactions like credit card usage, data from
network monitoring and sensor networks, video streams such as images from surveil-
lance cameras, news articles in an RSS reader etc.

2.1 Stream Classification and Concept Drift

The task in data stream classification is the application of a machine learning algo-
rithm that will learn incrementally to classify incoming items. For successful auto-
matic classification of data streams we are not only looking for fast and accurate in-
cremental algorithms, but also for complete methodologies that can detect and quickly
adapt to time varying concepts. This problem is usually called “concept drift” and
describes the change of concept of a target class with the passing of time.

There are two main kinds of concept drift: a) Instant (abrupt or sudden) and b)
gradual. In the case of abrupt concept drift concepts alter instantly. Consider a ma-
chine learning based news reader. The user after the purchase of a car might stop,
momentarily be interested in articles on the topic. The classifier should be able to in-
stantly detect the drift and rapidly adapt. An example of gradual concept drift is the
spam filtering problem. Spam messages change (or evolve, they become harder to
identify by filters) with a certain rate. Algorithms should be able to emphasize in
those changes and make more accurate future classifications.

An interesting situation that can occur in instant and gradual concept drift is the
repetition of previous concepts. For example in the personalized news reader, user
could re-gain interest in topics that was interested in the past. Furthermore, there are
some special spam messages that re-appear in certain time periods (e.g. Christmas).
This subtype of concept drift has been noted as “recurrent themes” [7].

As stated in [17], an ideal concept drift handling system should:
1. Quickly adapt to concept drift.
2. Be robust to noise and distinguish it from concept drift.
3. Recognize and reacts to reoccurring contexts.

 3

2.2 Stream Clustering

The task in the stream clustering problem is to discover groups of similar object in a
sequence of items. The problem is far more interesting from the case of static data
because we have no prior knowledge of the data and thus, groups must be created
incrementally. As noted in [3] the main requirements for methods dealing with clus-
tering data streams are: a) compactness of representation, b) fast, incremental process-
ing of new data points c) clear and fast identification of “outliers”. Well known repre-
sentatives of streaming clusterers are COBWEB [6], BIRCH [21], STREAM [13] and
CluStream [1]. In our approach, we use a combination of incremental classification
and incremental clustering in order to tackle with the problem of concept drift

3. Related Work

As other researchers have noted [17], methodologies proposed for tackling with con-
cept drift can be divided in three main groups.

Instance selection: In this category, proposed systems try to select the most appro-
priate set of past cases in order to make future classifications. Typical representatives
of this group are time-window based methods, where the classifier is always trained
from a fixed or adaptive window of instances. In window approaches, we make the
assumption that older instances are useless for classification of new data and there-
fore, adapting to concept drift is synonym to successfully forgetting old instances /
knowledge. Examples of this group can be found in [5, 10, 19].

Instance weighting: In this group, we assume that old knowledge becomes less im-
portant as time goes by. All instances are taken under consideration for building clas-
sification models, but this time, new instances have larger effect in the model than the
older ones. To achieve this goal, a weighting scheme is defined (aging function) that
assigns weights to instances [10]. A classifier to be used as a base learner in this ap-
proach must fulfill two requirements: a) must be incremental and b) must be able to
consider weights. SVMs and Naïve Bayes Classifier are two examples that meet the
aforementioned criteria.

Ensemble Methods: The main idea behind ensemble methods is to have a number
of classifiers that are effective only on a certain concept. The important part is to
identify correctly in which concept a future instance belongs to and apply the most
appropriate classifier. Representatives of this group can be found in [18] and [11].

An additional group of methods could be the category of Quickly adapting incre-
mental algorithms: This group consists of methods like CVFDT [8] that try to adapt
rapidly to the newest batch of data in order to cope with the drift. Finally, a recent
work that also exploits clustering for detection of concept but in different direction is
[16].

 4

4. Probabilistic Representation

In classification tasks, data is usually represented in an n-dimentional feature

space. Every item (data point) is represented as a vector of size n),...,(21 nfffx=
r

.

We generally assume that geometrically close items do belong in the same class. See
for example Figure 1a. In Figure 1b we have the representation of the streaming clas-
sification data. Numbers in objects denote sequence of arrival. Unfortunately this rep-
resentation in steaming classification problems is insufficient. As can be seen in Fig-
ure 1c, small distance between objects can not guarantee that they belong in the same
class.

Fig. 1. (a) Static Classification (b) Streaming Classification (c) Streaming Classification with
concept drift.

To overcome the problems of the aforementioned traditional representation, we pro-
pose a mapping function from conventional feature space into a probabilistic / con-
ceptual space more suitable for detecting and adapting to concept-drift.

First, we separate data into a number of small batches of examples. When a batch
has fully arrived, we calculate its mapping to the probabilistic space, which is a vector
that we call “Conceptual Vector”. A Conceptual Vector will be constructed out of a
set of conceptual feature-sets (CF) which are transformations of the original features.
Let’s assume that an example of a dataset is represented as a simple vector:

),,...,(21 jn cfffx=
r

Where fi is the value of the ith feature, nominal or numeric, and jc is the belonging

class of the instance. Number of attributes is n and number of classes is m. Each fea-
ture if is mapped / assigned into a conceptual feature-set as follows:







=

∈=
=

numericisif},..1:,{

nominal isif},,..1:{

,,

,

ijiji

ii
v
ji

i
fmj

fVvmjP
CF

σµ

For nominal attributes)|(, ji
v
ji CvfPP == where],,1[],,1[mjni ∈∈ iVv∈ , where

iV is the set of the potential values of the attribute i. Typically, v
jiP,
 is considered to

 5

be equal to:
jjv nn /,
 where

jvn ,
 is the number of training samples of class

jC having

the value v for attribute i and nj is the number of training samples belonging to
jC .

For continuous (numeric) attributes we use the mean (
jCi ,µ) and standard deviation

(
jCi ,σ) of attribute if for training samples of class

jC .

Thus, the obtained Conceptual Vector would be ()nCFCFCV ,...,1=

The expected average dimensionality would be mymvx 2+ , where x and y are the

total number of nominal and numeric attributes respectively and v is the average
number of labels for nominal attributes.

While instances arrive, we incrementally calculate the above statistics in order to
be able to construct the conceptual vector immediately after the batch is finished.

The notion behind this representation is that every element of the conceptual vec-
tors expresses in what degree a feature characterizes a certain class. For example, if
we notice that in two different batches P(”brakes”|interesting),
P(“road”|interesting), P(“wheel”|interesting) are similarly high, we could assume
that these batches might belong to the same or similar concept (e.g. to a concept
where car-related documents are considered interesting). The same principal applies
in numeric attributes. Batches of instances that have similar mean values for many
attributes, should be close conceptually.

Conceptual Euclidean Distance between two Conceptual Vectors can be defined as
follows:

),(...),(),Distance(,2,11,21,121 nn CFCFdisCFCFdisCVCV ++=

Where () ()221

21
2

1
121 ...),(ll CFCFCFCFCFCFdis −++−= , and j

iCF is the jth

element of the ith conceptual feature-set, and l is the length of the feature set.
In Figure 2a, we see an example of abrupt concept drift in the probabilistic repre-

sentation discussed here. Small circles represent conceptual vectors and numbers de-
note order of arrival. Note that from batch 4 and then on we suddenly go into concept
2 (instant concept drift). Then we return to concept 1. This also includes the recurrent
theme type of concept drift discussed earlier. In Figure 2b, we see a gradually chang-
ing concept, like the spam example discussed earlier.

By observing Figure 2, we could set the requirements for the optimal solution for
both types of concept drift. For the case of instant concept drift, we would like a sin-
gle classifier for every different concept. Classifiers trained for older concepts should
be maintained in case this concept re-appears in future. The classifier in this case will
be “strengthened” with new examples instead of training from the beginning.

For the case of gradual concept drift, we should have more classifiers distributed in
the probabilistic space. Less classifiers will produce better generalization whereas
more classifiers will lead to creation of a great number of “experts”. Again additional
classifiers can be utilized in case of recurrent themes. In Figure 2, with “x” we repre-
sent the classifiers ideally distributed in the probabilistic space for both cases.

 6

Fig. 2. Instant (a) and Gradual (b) Concept Drift in the new probabilistic representation. Circles
represent Conceptual Vectors of Batches. Numbers denote sequence of arrival.

5. The CCP Framework

Considering a) the requirements for systems dealing with concept drift (see section
2.1) and b) the probabilistic representation introduced in the previous section, we pro-
pose a data stream classification framework that exploits incremental clustering in
order to group the stream’s conceptual vectors. The main aim of clustering is the on-
line identification of groups of concepts and the use and maintenance of cluster-
specific classifiers.

The main components of the framework are:
a) A mapping function (M), that transforms data into the probabilistic represen-

tation.

b) An incremental clustering algorithm (R), that will group conceptual vectors
into clusters.

c) An incremental classifier (P) for every cluster / concept discovered.

The framework (CCP – Conceptual Clustering & Prediction), in brief, works as
follows. After a batch (Bi-1) is received, its conceptual vector is created (CVi-1). The
incremental clusterer (R) assigns CVi-1 into cluster c (or creates a new cluster if neces-
sary). Knowing that this CV is within the cluster / concept c, the corresponding classi-
fier Pc can therefore be updated with all instances of this batch. Instances of next
batch (Bi) are classified using classifier Pc. By classifying the current batch according
to the classifier built from the cluster of the previous batch we make a kind of a “Lo-
cality Assumption”. We assume that successive batches most of the time will belong
to the same concept. This assumption generally applies especially when small batches
are used. Final step is to update the clusterer. The pseudocode of the framework can
been seen in figure 3. It is important to know that there is no need to maintain past
Batches or Conceptual Vectors in memory. What is maintained is the clusters centers
and the appropriate classifiers for every cluster.

As basic components, any incremental clustering algorithm could be exploited like
the ones mentioned in section 2.2 or the basic Leader-Follower clusterer [4] pre-
sented in Figure 3b. For the classification component, any incremental classifier could
be use (e.g. Incremental SVMs, Incremental Naïve Bayes).

 7

Commenting on the requirements stated in [17](see Section 2.1) and the proposed
framework:

a) System based on this framework will quickly adapt to concept drift as long

as the batch size is small. It will start using the most appropriate classifier if
it notices that the concept vector of the batch belongs to a different cluster
(concept).

b) In this approach, being able to distinguish noise from drift is equal to identi-
fying outliers in the clusering problem. Much work has been done success-
fully to this direction by researchers working on clustering and incremental
clustering algorithms (see section 2).

c) Reoccurring contexts will be recognized as clusters.

 (a) (b)

Fig. 3. (a) The main operation of CCP framework (b) The basic leader-follower clusterer

6. Evaluation

To evaluate the representation and solution discussed in this paper, we made a simple
implementation of the proposed framework and compare it against three baseline
methods that tackle concept drift in three real-world streaming textual datasets.

6.1 Datasets

The first two datasets (usenet1 and usenet2) were created from the well known 20
newsgroups collection from the UCI repository [12]. We kept messages from three
discussion groups to simulate a stream of news articles. These datasets represent the
news filtering problem. In news filtering, we have a system that accepts user feedback
and is able to learn user interests in order to reduce irrelevant news articles shown and

Leader-Follower Clustering
xi:sample i η: stability parameter
ci:cluster j θ: sensitivity parameter

begin
 initialize η, θ
 c1=x1
 for i=2 to infinity do

 J = argminj(distance(xi,cj))
 if(distance(xi,cJ))<θ)
 then cJ=(1-η)cJ+ηxi

 else add new cluster cn=xi

end

CCP Framework
Bi : i

th data batch
CVi : conceptual vector of Bi
Pc : incremental classifier of cluster c
R : incremental clusterer
M :Mapping function

begin
for i=1 to infinity do
 CVi-1=M.conceptualVectorOf(Bi-1)
 c = R.getClusterOf(CVi-1)
 Pc.update(Bi-1)
 Pc.classify(Bi)
 R.update(CVi)
end

 8

reduce information overload. Hence, this is a two class problem, news articles are
marked interesting or junk. Both datasets contain articles from the science/medicine,
science/space, and recreation/sports/hockey groups. Each dataset is a stream of 1500
instances, split into five time periods. Each period contains 300 instances. After the
end of each period concept drift occurs. Table I and II present which messages are
considered interesting (+) or junk (-) in each period. We notice that the first (usenet1)
dataset is a far more diverse dataset with all categories changing class in each period.
The second dataset (usenet2) is more moderate in concept changes (2 out of 3 classes
change concept every time). Both datasets represent sudden concept drift and contain
recurrent themes. In preprocessing, we removed the headers from all messages and
applied a Boolean bag-of-words [14] representation.

Table 1. Dataset Usenet 1 Table 2. Dataset Usenet2

 Usenet1 From

 group To

0

300

301

600

600

900

900

1200

1200

1500

 med + - + - +

 space - + - + -

 baseball - + - + -

The Spam Assassin collection comes in four parts (folders): “spam”, “spam2”, “ham”,
and “easy ham” which is a collection of more easily recognized legitimate messages.
In order to convert this collection into a longitudinal data set we extracted the date
and time that the mail was sent. Then we converted the time into GMT time. Date was
also changed where needed. We stamped each mail with its date and time. If an email
occurred more than once in the corpus we kept all copies (because many times users
get the same spam messages over and over). All attachments were removed. The Boo-
lean bag-of-words approach was used for representing the emails. We chose the
SpamAssasin (http://spamassasin.apache.org/) data collection because a) Every mail
of the collection is available with the headers, thus we were able to extract the exact
date and time that the mail was sent or received, and b) It contains both spam and
legitimate (ham) messages with a decent spam ratio (about 20 %). This dataset con-
sists of 9324 instances and represents the gradual concept drift.

All datasets are available in Weka (ARFF) format at following URL:
http://mlkd.csd.auth.gr/datasets.html

6.2 Methods

To compare the framework and representation proposed we made a comparison with
three baseline stream learning methodologies.

Simple Incremental Classifier(SIC): In this simple method we maintain a classifier
that has the ability to update its knowledge for every incoming instance. Such classi-
fiers are the Naïve Bays classifier, the kNN classifier etc.

Time Window (TW): In this case, we have a machine learning algorithm that classi-
fies incoming instances based on the knowledge of the latest N instances. Main ad-
vantage of this method is that the classifier is always focused on the latest batch of

 Usenet2 From

 group To

0

300

301

600

600

900

900

1200

1200

1500

 med + - - - +

 space - + - + -

 baseball - - + - -

 9

data. The main disadvatanges are that it lacks of generalization due to smaller set of
examples used and the fact that it disregards older knowledge that might be useful for
future classification in case of the recurring themes.

Weighted Examples (WE): This methodology consists of a base classifier that is in-
cremental but can also comprehend weighted learning. Bigger weights are assigned to
most recent instances in order to force the classifier focus on new concepts and forget
old ones.

6.3 Experimental Setup

We evaluated the four methodologies in the three datasets discussed above. All meth-
odologies and algorithms are implemented with the aid of the Weka [20] API.

For Time Windows we tested two classifiers (Naïve Bayes and Support Vector
Machines – both widely used classifiers in Text Classification [15]), and three differ-
ent time window sizes (w=100, w=150, w=300). SVMs are used with default Weka
parameter settings (SMO, Linear Kernel, C=1, L=0,001). For Weighted examples,
with preliminary experimentation we found out that a decent way to update weights
is according to 2)1()(nnwnw +−= . Where w(n) is the weight of the n-th instance.

Our framework was implemented with the Mapping function discussed in section
4, the basic Follower-Leader Clustering described in [4] as the clustering component
and incremental Naive Bayes classifier. By experimentation we observed that a batch
size around 50 instances is sufficient enough. With larger batches, the aforementioned
locality assumption loses its validity, whereas smaller batches are not sufficient for
calculating the summary probabilistic statistics.

The pseudocode of the Follower-Leader clustering is presented in Fig. 3b. Parame-
ter θ actually determines how sensitive the clustering will be in creating new clusters.
Small values of θ tend to create many new clusters. Parameter η sets the stability of
the cluster centers. It determines how rapidly old centers will move into the direction
of new points arriving. Note that studying parameter variation and how it affects the
clustering performance is out of the scope of this paper.

We additionally included in the experiments a benchmark version of our frame-
work (dubbed Oracle) where we manually provide the perfect clustering assignments
to the system. This aims at approximating the maximum performance that can be
achieved using the CCP framework.

6.4 Results and Discussion

Table one depicts the results of the experiments in the three concept-drifting textual
datasets discussed in the paper. The first observation is that even a basic implementa-
tion of the CCP framework achieves better performance than all other methods in all
datasets.

The second best performance in general is achieved by weighted examples (WE).
The main reason that WE outperforms the rest of the methods is a) because it is
trained from more data than time windows (TW) and therefore has better generaliza-

 10

tion capabilities and b) because it focuses on the most recent documents and thus
adapts faster than simple incremental classifier (SIC) to concept drift.

Table 3. Accuracy of the four methods in the three datasets

On the other hand, CCP outperforms WE mainly because WE lacks of real concept
drift detection mechanism and consequently can not adapt fast enough when drift oc-
curs. In Figure 4 we see the average accuracy over fifty instances for the Clustering
and WE methods for the Usenet1 dataset. Note the sudden collapses of WE’s accu-
racy in drift time-point (300, 600, 900, 1200). In every case, CCP manages to recover
much faster from the drift and maintain a nearly stable performance. Most notably, at
the last drift point, CCP recognizes the recurrent theme and does remains accurate in
classifications.

Usenet1 is the most demanding dataset due to many changes in concepts. Thus, al-
gorithms have difficulties in coping with the drift, especially the ones that lack of de-
tection mechanism. This fact explains the noticeable advantage of CCP over WE.

Usenet2 dataset is especially complicated for the CCP because after drift time-
points there are some sub-concepts that remain unchanged and therefore the clustering
problem here is more difficult. This explains the small differences between WE and
CCP, although CCP still manages to outperform all methods.

The spam corpus is obviously the easiest dataset mainly because it contains no
sudden changes in concepts. The Leader Follower clusterer created three clusters in
this dataset one significantly larger and two smaller ones maybe discovering some
recurrent messages.

Support Vector Machines naturally performed better than the Naïve Bayes classi-
fier in the TW approach. Furthermore, results show that windows of bigger size do
not guaranteed better performance obviously because of data becoming outdated fast.

Finally, the performance of Oracle, strongly underlines the fact that there is further
room for improvement by using more advanced incremental clustering algorithms.

 Usenet1 Usenet2 spam

Simple Incremental NB 0.59 0.73 0.75

TimeWindow (w=100)
NB 0.56 0.60 0.60

SVM 0.60 0.63 0.67

TimeWindow (w=150)
NB 0.59 0.62 0.64

SVM 0.63 0.66 0.69

TimeWindow (w=300)
NB 0.58 0.70 0.62

SVM 0.59 0.72 0.70

CCP (Oracle) NB 0.81 0.80 -

CCP (Leader-Follower) NB 0.75 0.77 0.93

Weighted Examples NB 0.67 0.75 0.91

 11

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000 1200 1400

Weighted Examples

CCP

Fig. 4. Average accuracy over 50 instances for WE and CCP. With arrows are pointed out the
drift time points

7. Conclusions and Future Work

In this paper we discussed the deficiency of conventional data representation and pro-
pose a new probabilistic representation for problems involving concept drift. Addi-
tionally we propose a basic framework that can exploit this representation to identify
and adapt to drift. We experiment with a basic implementation and three textual data-
sets retrieving interesting results encouraging further experimentation.

It is in our immediate plans to test the framework more extensively by using more
advanced incremental clustering algorithms and classifiers and supplementary data-
sets from different domains. At present we work into integrating this framework into
our adaptive RSS aggregator PersoNews [2] which is currently using the framework
described in [9], in order to evaluate it in a real application and test scalability.

8. References

1. Aggarwal, C., Han, J., Wang, J., and Yu, P. A framework for clustering
evolving data streams. in 29th VLDB Conference. 2003

2. Banos, E., Katakis, I., Bassiliades, N., Tsoumakas, G., and Vlahavas, I. Per-
soNews: A Personalized News Reader Enhanced by Machine Learning and
Semantic Filtering. in 5th International Conference on Ontologies, Data-
Bases and Applications of Semantics (ODBASE 2006). 2006. Montpellier,
France: Springer-Verlag: p. 975-982.

3. Barbar, D., Requirements for clustering data streams. SIGKDD Explor.
Newsl., 2002. 3(2): p. 23-27.

4. Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification. 2000: Wiley-
Interscience.

5. Fan, W. Systematic data selection to mine concept-drifting data streams. in
Tenth ACM SIGKDD international conference on Knowledge Discovery and
Data Mining. 2004. Seattle, WA, USA: ACM Press: p. 128-137.

6. Fisher, D., Iterative Optimization and Simplification of Hierarchical Cluster-
ings. Journal of Artificial Intelligence Research, 1996. 4: p. 147-180.

 12

7. Forman, G. Tackling Concept Drift by Temporal Inductive Transfer. in 29th
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. 2006. Washington, USA: ACM Press: p. 252-259.

8. Hulten, G., Spencer, L., and Domingos, P. Mining time-changing data
streams. in Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2001. San Francisco, California: ACM Press: p.
97-106.

9. Katakis, I., Tsoumakas, G., and Vlahavas, I. Dynamic Feature Space and
Incremental Feature Selection for the Classification of Textual Data
Streams. in ECML/PKDD-2006 International Workshop on Knowledge Dis-
covery from Data Streams. 2006. Berlin, Germany: Springer Verlag: p. 107-
116.

10. Klinkenberg, R., Learning Drifting Concepts: Example Selection vs. Exam-
ple Weighting Intelligent Data Analysis, Special Issue on Incremental Learn-
ing Systems Capable of Dealing with Concept Drift, 2004. 8(3): p. 281-200.

11. Klinkenberg, R., Boosting Classifiers for Drifting Concepts. Intelligent Data
Analysis, Special Issue on Knowledge Discovery from Data Streams (ac-
cepted for publication), 2006.

12. Newman, D.J., Hettich, S., Blake, C.L., and Merz, C.J., UCI Reprository of
ML databases [http://ics.uci.edu/~mlearn/MLRepository.html]. 1998, Uni-
versity of California, Department of Information and Computer Science: Ir-
vine, CA.

13. O'Callaghan, L., Mishra, N., Meyerson, A., Guha, S., and Motwani, R. High-
Performance Clustering of Streams and Large Data Sets. in ICDE 2002.
2002

14. Salton, G., Wong, A., and Yang, C.S., A Vector Space Model for Automatic
Indexing. Communications of the ACM, 1975. 18(11): p. 613-620.

15. Sebastiani, F., Machine Learning in automated text categorization. ACM
Computing Surveys, 2002. 34(1): p. 1-47.

16. Spinosa, E.J., Carvahlo, A.P.L.F.d., and Gama, J. OLINDDA: A cluster-
based approach for detecting novelty and concept drift in data streams. in
22nd Annual ACM Symposium on Applied Computing. 2007: ACM Press: p.
448-452.

17. Tsymbal, A., The problem of concept drift: definitions and related work,
Technical Report TCD-CS-2004-15. 2004, Department of Computer Science,
Trinity College: Dublin, Ireland.

18. Wang, H., Fan, W., Yu, P.S., and Han, J. Mining concept-drifting data
streams using ensembles classifiers. in Ninth ACM SIGKDD International
conference on Knowledge Discovery and Data Mining. 2003. Washington,
D.C.: ACM Press: p. 226-235.

19. Widmer, G. and Kubat, M., Learning in the Presense of Concept Drift and
Hidden Contexts. Machine Learning, 1996. 23(1): p. 69-101.

20. Witten, I. and Frank, E., Data Mining: Practical Machine Learning tools
and techniques", 2nd Edition. 2005, San Francisco.

21. Zhang, T., Ramakrishan, R., and Livny, M. BIRCH: An efficient data clus-
tering method for very large databases. in ACM SIGMOD International
Conference on Management of Data. 1996. Montreal, Canada: p. 103-104.

