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Abstract. Concept drift is a common phenomenon in streamatg énviron-
ments and constitutes an interesting challengadsearchers in the machine
learning and data mining community. This paper psgs a probabilistic repre-
sentation model for data stream classification iandstigates the use of incre-
mental clustering algorithms in order to identifydaadapt to concept drift. An
experimental study is performed using three realdvdatasets from the text
domain, a basic implementation of the proposed dmaonk and three baseline
methods for dealing with drifting concepts. Resalts promising and encour-
age further investigation.

1. Introduction

Recent advances in sensor, storage, processingoamahunication technologies have
enabled the automated recording of data, leadiffgdband continuous flows of in-
formation, referred to as data streams. The dynamaiare of data streams requires
continuous or at least periodic updates of theeriirknowledge in order to ensure
that it always includes the information contenttu# latest batch of data. This is im-
portant in applications where the concept of agbotpss and/or the data distribution
changes over time. This phenomenon is known asepomlrift.

Although traditional vector data representatiorffective and widely used for sta-
tionary data classification tasks, it is not adeguar classification problems involv-
ing concept drift. The main reason is that in c@hakifting scenarios, geometrically
close items in the conventional vector space niigdng to different classes. This is
because of a concept change (drift) that occuredrat time point.

After noticing this problem, we propose a new phalistic representation for data
streams suitable for problems with concept drifor# specifically, we map batches
of data into what we name “Conceptual Vectors”. Sehgectors contain conceptual
information for every batch of data. In this nevelpabilistic space, vectors that are
geometrically close do always belong in the sanmeeptual theme.

Using the proposed representation, we apply incnéghelustering in the stream
of Conceptual Vectors. This way, we organize anthrearize batches of instances
into concepts. The final objective is to train aoremental classifier on every cluster /
concept. When a new batch arrives we identify thiecept (cluster) that this batch
belongs to and apply the corresponding classitierpfediction. Experiments with a



basic incremental clusterer and the Naive Bayessifiar produce interesting results
and encourage further research.

The rest of the paper is organized as follows.eletisn 2 we present background
information on mining data stream whereas in saciove summarize related work
on concept drift detection and adaptation. Seciafiscusses the deficiency of the
conventional data representation and introducegpthposed representation model.
Section 5 suggests a framework for dealing withceph drift with the combination of
incremental clustering and classification. In sat®, we develop a simple implemen-
tation of the proposed framework and evaluate e world datasets from the text
domain. Section 7 concludes the paper by preseatinglans for future work.

2. Mining Data Streams

Recent advances in sensor, storage, processingoamehunication technologies have

enabled the automated recording of data, leadifigstoand continuous flows of data,

referred to as data streams. Examples of datansérage the web logs and web page
click streams recorded by web servers, transactikesredit card usage, data from

network monitoring and sensor networks, video stieauch as images from surveil-

lance cameras, news articles in an RSS reader etc.

2.1 Stream Classification and Concept Drift

The task in data stream classification is the apfibn of a machine learning algo-
rithm that will learn incrementally to classify imming items. For successful auto-
matic classification of data streams we are noy ¢mbking for fast and accurate in-
cremental algorithms, but also for complete methagies that can detect and quickly
adapt to time varying concepts. This problem isallgucalled “concept drift” and
describes the change of concept of a target clabgive passing of time.

There are two main kinds of concept drift: a) Instéabrupt or sudden) and b)
gradual. In the case afbrupt concept driftoncepts alter instantly. Consider a ma-
chine learning based news reader. The user afteptinchase of a car might stop,
momentarily be interested in articles on the toptee classifier should be able to in-
stantly detect the drift and rapidly adapt. An epéerof gradual concept drifts the
spam filtering problem. Spam messages change @wevthey become harder to
identify by filters) with a certain rate. Algorittenshould be able to emphasize in
those changes and make more accurate future atassins.

An interesting situation that can occur in instantl gradual concept drift is the
repetition of previous concepts. For example in pleesonalized news reader, user
could re-gain interest in topics that was intemstethe past. Furthermore, there are
some special spam messages that re-appear inncént@ periods (e.g. Christmas).
This subtype of concept drift has been noted asutrent themes” [7].

As stated in [17], an ideal concept drift handlgygtem should:

1. Quickly adapt to concept drift.
2. Be robust to noise and distinguish it from conaiit.
3. Recognize and reacts to reoccurring contexts.



2.2 Stream Clustering

The task in the stream clustering problem is tealisr groups of similar object in a
sequence of items. The problem is far more intergstom the case of static data
because we have no prior knowledge of the datatlamsl groups must be created
incrementally. As noted in [3] the main requirensefdr methods dealing with clus-
tering data streams are: a) compactness of repatisen b) fast, incremental process-
ing of new data points c) clear and fast identifara of “outliers”. Well known repre-
sentatives of streaming clusterers are COBWEBHBRCH [21], STREAM [13] and
CluStream [1]. In our approach, we use a combinatibincremental classification
and incremental clustering in order to tackle wite problem of concept drift

3. Related Work

As other researchers have noted [17], methodolqgi@sosed for tackling with con-
cept drift can be divided in three main groups.

Instance selectionin this category, proposed systems try to seleeintost appro-
priate set of past cases in order to make futwasstications. Typical representatives
of this group are time-window based methods, wileeeclassifier is always trained
from a fixed or adaptive window of instances. Im#ow approaches, we make the
assumption that older instances are useless fesifiation of new data and there-
fore, adapting to concept drift is synonym to ssstaly forgetting old instances /
knowledge. Examples of this group can be foundjrp, 19].

Instance weightingtn this group, we assume that old knowledge besdes im-
portant as time goes by. All instances are taketeunonsideration for building clas-
sification models, but this time, new instancesehlavger effect in the model than the
older ones. To achieve this goal, a weighting seherdefined (aging function) that
assigns weights to instances [10]. A classifieb¢oused as a base learner in this ap-
proach must fulfill two requirements: a) must ber@mental and b) must be able to
consider weights. SVMs and Naive Bayes Classifiertao examples that meet the
aforementioned criteria.

Ensemble Methodd'he main idea behind ensemble methods is to havember
of classifiers that are effective only on a certagncept. The important part is to
identify correctly in which concept a future instanbelongs to and apply the most
appropriate classifier. Representatives of thisigrean be found in [18] and [11].

An additional group of methods could be the categiirQuickly adapting incre-
mentalalgorithms: This group consists of methods likeRDM [8] that try to adapt
rapidly to the newest batch of data in order toecegth the drift. Finally, a recent
work that also exploits clustering for detectioncofhcept but in different direction is
[16].



4. Probabilistic Representation

In classification tasks, data is usually represgnte an n-dimentional feature

space. Every item (data point) is represented asctor of size ix= (f,, f,,...f).

We generally assume that geometrically close itdmbelong in the same class. See
for example Figure la. In Figure 1b we have theasgntation of the streaming clas-
sification data. Numbers in objects denote sequeheerival. Unfortunately this rep-
resentation in steaming classification problemsnisufficient. As can be seen in Fig-
ure 1c, small distance between objects can notgtee that they belong in the same
class.
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Fig. 1. (a) Static Classification (b) Streaming Classifimat(c) Streaming Classification with
concept drift.

To overcome the problems of the aforementionedtiomdl representation, we pro-
pose a mapping function from conventional featyrace into a probabilistic / con-
ceptual space more suitable for detecting and adpfat concept-drift.

First, we separate data into a number of smallHestof examples. When a batch
has fully arrived, we calculate its mapping to pebabilistic space, which is a vector
that we call Conceptual Vectdr A Conceptual Vector will be constructed out of a
set ofconceptual feature-se(€F) which are transformations of the original feature
Let's assume that an example of a dataset is repes as a simple vector:

X=(f, f2,...fn,cj)
Wheref; is the value of théh feature, nominal or numeric, amxliis the belonging
class of the instance. Number of attributes &d number of classesns Each fea-

ture f, is mapped / assigned into a conceptual featurassteilows:
CF {P:i=LmveV} if fisnominal
L {e,;,00; 1j=1.m}, if fisnumeric
For nominal attributeR", = P(f, =v|C,) whereie[Ln], je[Lm], veV,, where

V, is the set of the potential values of the attedutTypically, R is considered to



be equal ton,, /n, where n,; is the number of training samples of clasjshaving
the valuev for attributei andn; is the number of training samples belonging:Jto
For continuous (numeric) attributes we use the nfgap ) and standard deviation
™)

(o, ) of attribute fi for training samples of claesj.

Thus, the obtained Conceptual Vector wouldChe= (CFl,...,CFn)
The expected average dimensionality wouldX@en+ y2m, wherex andy are the

total number of nominal and numeric attributes eesipely andV is the average
number of labels for nominal attributes.

While instances arrive, we incrementally calculdite above statistics in order to
be able to construct the conceptual vector immeljiatfter the batch is finished.

The notion behind this representation is that ewdeynent of the conceptual vec-
tors expresses in what degree a feature charaedegizertain class. For example, if
we notice that in two different batches P("brakes”|interesting)
P(“road”|interesting), P(“wheel’[interesting) are similarly high, we could assume
that these batches might belong to the same olasimdncept (e.g. to a concept
where car-related documents are considered initegesihe same principal applies
in numeric attributes. Batches of instances thaetgimilar mean values for many
attributes, should be close conceptually.

Conceptual Euclidean Distance between two Concepteetors can be defined as
follows:

CF,,)

n?

DistanceCV;,CV,) = /dis(CF,;,CF,,) +...+ dis(CF,

Where dis(CF,,CF,) = (CFll - Cle)2 +ot (CFl' -CF, )2 , andCFis thejth
element of théth conceptual feature-set, ahid the length of the feature set.

In Figure 2a, we see an example of abrupt concefptird the probabilistic repre-
sentation discussed here. Small circles represamteptual vectors and numbers de-
note order of arrival. Note that from batch 4 aneint on we suddenly go into concept
2 (instant concept drift). Then we return to conceprhis also includes the recurrent
theme type of concept drift discussed earlier.igufe 2b, we see a gradually chang-
ing concept, like the spam example discussed earlie

By observing Figure 2, we could set the requiresméot the optimal solution for
both types of concept drift. For the case of instaomcept drift, we would like a sin-
gle classifier for every different concept. Clags# trained for older concepts should
be maintained in case this concept re-appeargumefuThe classifier in this case will
be “strengthened” with new examples instead ohingj from the beginning.

For the case of gradual concept drift, we shouldehaore classifiers distributed in
the probabilistic space. Less classifiers will quroe better generalization whereas
more classifiers will lead to creation of a greater of “experts”. Again additional
classifiers can be utilized in case of recurreetibs. In Figure 2, with “X” we repre-
sent the classifiers ideally distributed in thehabilistic space for both cases.
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Fig. 2. Instant (a) and Gradual (b) Concept Drift in thevqEobabilistic representation. Circles
represent Conceptual Vectors of Batches. Numberstelesequence of arrival.
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5. The CCPFramework

Considering a) the requirements for systems dealiitiy concept drift (see section
2.1) and b) the probabilistic representation inticetl in the previous section, we pro-
pose a data stream classification framework thalo@s incremental clustering in
order to group the stream’s conceptual vectors. mam aim of clustering is the on-
line identification of groups of concepts and thee tland maintenance of cluster-
specific classifiers.
The main components of the framework are:
a) A mapping function (M}hat transforms data into the probabilistic repre
tation.

b) An incremental clustering algorithm (Rhat will group conceptual vectors
into clusters.

¢) An incremental classifigfP) for every cluster / concept discovered.

The framework CCP — ConceptualClustering & Prediction), in brief, works as
follows. After a batch(B..;) is received, its conceptual vector is createl (). The
incremental clustergR) assignCV,; into clusterc (or creates a new cluster if neces-
sary). Knowing that thi€V is within the cluster / concept the corresponding classi-
fier P. can therefore be updated with all instances of tfatch. Instances of next
batch(B;) are classified using classifi€. By classifying the current batch according
to the classifier built from the cluster of the yiois batch we make a kind of a “Lo-
cality Assumption”. We assume that successive leatchost of the time will belong
to the same concept. This assumption generallyiegppspecially when small batches
are used. Final step is to update the clusterez.peudocode of the framework can
been seen in figure 3. It is important to know ttiere is no need to maintain past
Batches or Conceptual Vectors in memory. What iswtamed is the clusters centers
and the appropriate classifiers for every cluster.

As basic components, any incremental clusteringrafgn could be exploited like
the ones mentioned in section 2.2 or the basic érebdllower clusterer [4] pre-
sented in Figure 3b. For the classification componany incremental classifier could
be use (e.g. Incremental SVMs, Incremental NaivweBa



Commenting on the requirements stated in [17](ssxi@& 2.1) and the proposed
framework:

a) System based on this framework will quickly adaptoncept drift as long
as the batch size is small. It will start using thest appropriate classifier if
it notices that the concept vector of the batclolgs to a different cluster
(concept).

b) In this approach, being able to distinguish norsenfdrift is equal to identi-
fying outliers in the clusering problem. Much wdrks been done success-
fully to this direction by researchers working dastering and incremental
clustering algorithms (see section 2).

c) Reoccurring contexts will be recognized as clusters

CCP Franewor k Leader - Fol | oner Cl ustering
B :i"data batch xi:sample i n: stability parameter
CV, : conceptual vector of;B ci:cluster j 0: sensitivity parameter

P. :incremental classifier of cluster c
R :incremental clusterer
M :Mapping function

begin
begin initializen, 6
for i=1 to infinity do C1=X1 o
CV.,=M.conceptualVectorOf(B) fori=2 to infinity do
¢ = R.getClusterOf(CY) J = argmiy(distance;,c;))
P.update(B;) if(distancex;,c;))<0)
P..classify(B) thenc;=(1-n)cytnx;
R.update(CY elseadd new clustet,=x;
end end

Fig. 3. (a) The main operation €CP framework (b) The basic leader-follower clusterer

6. Evaluation

To evaluate the representation and solution discussthis paper, we made a simple
implementation of the proposed framework and comparagainst three baseline
methods that tackle concept drift in three realtdistreaming textual datasets.

6.1 Datasets

The first two datasets (usenetl and usenet2) wesaed from the well known 20
newsgroups collection from the UCI repository [12]e kept messages from three
discussion groups to simulate a stream of newslesti These datasets represent the
news filtering problem. In news filtering, we haaesystem that accepts user feedback
and is able to learn user interests in order tacedrrelevant news articles shown and



reduce information overload. Hence, this is a thas< problem, news articles are
markedinterestingor junk. Both datasets contain articles from the scienceities
science/space, and recreation/sports/hockey gréigzh dataset is a stream of 1500
instances, split into five time periods. Each perémntains 300 instances. After the
end of each period concept drift occurs. Tabled Hrpresent which messages are
considered interesting (+) or junk (-) in each périwe notice that the first (usenetl)
dataset is a far more diverse dataset with allgoates changing class in each period.
The second dataset (usenet2) is more moderatenagepbchanges (2 out of 3 classes
change concept every time). Both datasets reprsselidien concept drift and contain
recurrent themes. In preprocessing, we removedéaelers from all messages and
applied a Boolean bag-of-words [14] representation.

Table 1. Dataset Usenet 1 Table 2. Dataset Usenet2

Usenetl From 0 (301|600 900 |1200 Usenet2 From 0 [301]600| 900 |1200
group To 300 | 600 | 900 | 1200 (1500, group To 300|600 | 900 | 1200 {1500
med + - + - + med + - - - +
space - + - + - space - + - +
baseball -+ - + - baseball - - + -

The Spam Assassin collection comes in four paolsl¢fs): “spam”, “spam2”, “ham”,
and “easy ham” which is a collection of more easigognized legitimate messages.
In order to convert this collection into a longital data set we extracted the date
and time that the mail was sent. Then we convehedime into GMT time. Date was
also changed where needed. We stamped each naiitsvitate and time. If an email
occurred more than once in the corpus we keptoglies (because many times users
get the same spam messages over and over). Alhatents were removed. The Boo-
lean bag-of-words approach was used for repregerntie emails. We chose the
SpamAssasin (http://spamassasin.apache.org/) diextion because a) Every mail
of the collection is available with the headersisthive were able to extract the exact
date and time that the mail was sent or received,ly It contains both spam and
legitimate (ham) messages with a decent spam (albiout 20 %). This dataset con-
sists of 9324 instances and represents the gradoeépt drift.

All datasets are available in Weka (ARFF) formdt fallowing URL:
http://mlkd.csd.auth.gr/datasets.html

6.2 Methods

To compare the framework and representation prapegemade a comparison with
three baseline stream learning methodologies.

Simple Incremental Classifier(SIQh this simple method we maintain a classifier
that has the ability to update its knowledge foergvincoming instance. Such classi-
fiers are the Naive Bays classifier, #iN classifier etc.

Time Window (TW)In this case, we have a machine learning algorithah classi-
fies incoming instances based on the knowledgdeflatestN instances. Main ad-
vantage of this method is that the classifier 8agk focused on the latest batch of



data. The main disadvatanges are that it lacksenémglization due to smaller set of
examples used and the fact that it disregards éda@wledge that might be useful for
future classification in case of the recurring tiesm

Weighted Examples (WEhis methodology consists of a base classifiat i$in-
cremental but can also comprehend weighted learBiigger weights are assigned to
most recent instances in order to force the clasdificus on new concepts and forget
old ones.

6.3 Experimental Setup

We evaluated the four methodologies in the threéasgas discussed above. All meth-
odologies and algorithms are implemented with iteoh the Weka [20] API.

For Time Windows we tested two classifiers (Naivay® and Support Vector
Machines — both widely used classifiers in TextsSiication [15] ), and three differ-
ent time window sizesn=100, w=150, w=30Q. SVMs are used with default Weka
parameter settings (SMO, Linear Kern€k1, L=0,001). For Weighted examples,
with preliminary experimentation we found out tlaatiecent way to update weights
is according tow(n) = w(n—1) + n*. Wherew(n)is the weight of the-th instance.

Our framework was implemented with the Mapping fiort discussed in section
4, the basic Follower-Leader Clustering describef#] as the clustering component
and incremental Naive Bayes classifier. By expenitaton we observed that a batch
size around 50 instances is sufficient enough. \Wdither batches, the aforementioned
locality assumption loses its validity, whereas Benabatches are not sufficient for
calculating the summary probabilistic statistics.

The pseudocode of the Follower-Leader clusteringrésented in Fig. 3b. Parame-
ter 8 actually determines how sensitive the clusterinigj lvé in creating new clusters.
Small values of) tend to create many new clusters. Paramgsats the stability of
the cluster centers. It determines how rapidlyaddters will move into the direction
of new points arriving. Note that studying parametagriation and how it affects the
clustering performance is out of the scope of plaiger.

We additionally included in the experiments a benatk version of our frame-
work (dubbed Oracle) where we manually providepbgect clustering assignments
to the system. This aims at approximating the marinperformance that can be
achieved using the CCP framework.

6.4 Results and Discussion

Table one depicts the results of the experimenthénthree concept-drifting textual
datasets discussed in the paper. The first obsenviatthat even a basic implementa-
tion of the CCP framework achieves better perforreatihan all other methods in all
datasets.

The second best performance in general is achieyasleighted examples (WE).
The main reason that WE outperforms the rest ofntle¢hods is a) because it is
trained from more data than time windows (TW) amer¢fore has better generaliza-
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tion capabilities and b) because it focuses onntiost recent documents and thus
adapts faster than simple incremental classifi6Z)Y® concept drift.

Table 3. Accuracy of the four methods in the three datasets

Usenetl Usenet2 spam

Simple Incremental NB 0.59 0.73 0.75
NB 0.56 0.60 0.60

TimeWindow (w=100)
SVM 0.60 0.63 0.67
NB 0.59 0.62 0.64

TimeWindow (w=150)
SVM 0.63 0.66 0.69
NB 0.58 0.70 0.62

TimeWindow (w=300)
SVM 0.59 0.72 0.70

CCP (Oracle) NB 0.81 0.80 -

CCP (L eader-Follower) NB 0.75 0.77 0.93
Weighted Examples NB 0.67 0.75 0.91

On the other hand, CCP outperforms WE mainly bex&E lacks of real concept
drift detection mechanism and consequently caradapt fast enough when drift oc-
curs. In Figure 4 we see the average accuracy fdtseinstances for the Clustering
and WE methods for the Usenetl dataset. Note ttidesucollapses of WE's accu-
racy in drift time-point (300, 600, 900, 1200).dwery case, CCP manages to recover
much faster from the drift and maintain a nearbst performance. Most notably, at
the last drift point, CCP recognizes the recurtbetme and does remains accurate in
classifications.

Usenetl is the most demanding dataset due to nf@mges in concepts. Thus, al-
gorithms have difficulties in coping with the driéispecially the ones that lack of de-
tection mechanism. This fact explains the noticeallvantage of CCP over WE.

Usenet2 dataset is especially complicated for thd Mecause after drift time-
points there are some sub-concepts that remairangeld and therefore the clustering
problem here is more difficult. This explains thaadl differences between WE and
CCP, although CCP still manages to outperform athmds.

The spam corpus is obviously the easiest datasatlymiaecause it contains no
sudden changes in concepts. The Leader Followstetkr created three clusters in
this dataset one significantly larger and two seratines maybe discovering some
recurrent messages.

Support Vector Machines naturally performed betitan the Naive Bayes classi-
fier in the TW approach. Furthermore, results stibat windows of bigger size do
not guaranteed better performance obviously beaasiudata becoming outdated fast.

Finally, the performance of Oracle, strongly unihexd the fact that there is further
room for improvement by using more advanced incréaielustering algorithms.
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Fig. 4. Average accuracy over 50 instances for WE and @@ arrows are pointed out the
drift time points

7. Conclusions and Future Work

In this paper we discussed the deficiency of cotigaal data representation and pro-
pose a new probabilistic representation for proklénvolving concept drift. Addi-
tionally we propose a basic framework that can @xkphis representation to identify
and adapt to drift. We experiment with a basic enpéntation and three textual data-
sets retrieving interesting results encouraginth&rexperimentation.

It is in our immediate plans to test the framewordre extensively by using more
advanced incremental clustering algorithms andsiflass and supplementary data-
sets from different domains. At present we work imtegrating this framework into
our adaptive RSS aggregator PersoNews [2] whiatuieently using the framework
described in [9], in order to evaluate it in a repplication and test scalability.
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