
PID-17

Abstract
RuleML is a promising standardization effort for
rule languages for the Semantic Web. However,
the RuleML syntax may appear too complex for
many users. Furthermore, the interplay between
various Semantic Web technologies and lan-
guages impose a demand for using multiple, di-
verse tools for building rule-based applications
for the Semantic Web. In this demonstration we
present VDR-Device, a visual RuleML-compli-
ant rule editor and an integrated development
environment for developing and using defeasible
logic rule bases on top of RDF ontologies. The
visual rule editor constrains the allowed vocabu-
lary through analysis of the input RDF ontolo-
gies. The development environment is supported
by an RDF-aware defeasible reasoning system.
Defeasible reasoning is a rule-based approach
for efficient reasoning with incomplete and in-
consistent information. Such reasoning is useful
for many applications in the Semantic Web, such
as policies and business rules, agent brokering
and negotiation, ontology and knowledge merg-
ing, etc., mainly due to interesting features, such
as conflicting rules and rule priorities.

1 Introduction
Defeasible reasoning [Nute, 1987], a member of the non-
monotonic reasoning family, constitutes a simple rule-
based approach to reasoning with incomplete and con-
flicting information. Defeasible reasoning can represent
facts, rules as well as priorities and conflicts among
rules. Such conflicts arise, among others, from rules with
exceptions, which are a natural representation for policies
and business rules [Antoniou et al., 1999]. And priority
information is often implicitly or explicitly available to
resolve conflicts among rules. Potential applications in-
clude security policies, business rules, personalization,
brokering, bargaining and agent negotiations.
 Although defeasible logic is certainly a very promising
reasoning technology for the Semantic Web, the devel-

opment of rule-based applications for the Semantic Web
can be greatly compromised by two factors. First, defea-
sible logic is certainly not an end-user language but
rather a developer's one, because its syntax may appear
too complex. Furthermore, the interplay between various
technologies and languages involved in such applica-
tions, namely defeasible reasoning, RuleML, and RDF,
impose a demand for using multiple, diverse tools, which
is a high burden even for the developer.
 In this demonstration we present VDR-Device, a visual
RuleML-compliant rule editor and an integrated devel-
opment environment for developing and using defeasible
logic rule bases on top of RDF ontologies. VDR-Device
is supported by a defeasible reasoning system that proc-
esses RDF data and RDF Schema ontologies [Bassiliades
et al., 2004]. The rule editor helps users to develop a de-
feasible rule base by constraining the allowed vocabulary
after analyzing the input RDF ontologies. Therefore, it
removes from the user the burden of typing-in class and
property names and prevents potential semantical and
syntactical errors. The visualization of rules follows the
tree model of RuleML.

2 The VDR-Device System
VDR-Device consists of two primary components:

1. DR-Device, which acts as the reasoning system,
performing the processing of RDF schema and
data, the inferencing and producing the results.

2. DRREd (Defeasible Reasoning Rule Editor) that
serves both as a visual rule authoring tool and as
a graphical integrated development environment,
wrapped around the core reasoning system.

2.1 The DR-Device Reasoning System
The core reasoning system of VDR-Device is DR-Device
[Bassiliades et al., 2004] and consists of two primary
components (Fig. 1): The RDF loader/translator and the
rule loader/translator. The user can either develop a rule
base with the help of the rule editor described in the fol-
lowing section, or he/she can load an already existing
one. The rule base contains: (a) a set of rules, (b) the
URL(s) of the input RDF document(s), which is for-

VDR-DEVICE: A Visual Editor for a Defeasible Logic RuleML-compatible Rule
Language

Nick Bassiliades1, Efstratios Kontopoulos1, Grigoris Antoniou2
1Department of Informatics, Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece
{nbassili, skontopo}@csd.auth.gr

2Institute of Computer Science, FO.R.T.H.
P.O. Box 1385, GR-71110, Heraklion, Greece

antoniou@ics.forth.gr

PID-17
warded to the RDF loader, (c) the names of the derived
classes to be exported as results and (d) the name of the
output RDF document.

RDF triple
Loader

RDF triple
Translator

Local Disk

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

DRREd USER

Fig. 1. The architecture of the core reasoning system.

The rule base is submitted to the rule loader, which
transforms it into the native CLIPS-like syntax through
an XSLT stylesheet and the resulting program is then
forwarded to the rule translator, where the defeasible
logic rules are compiled into a set of CLIPS production
rules.

Meanwhile, the RDF loader downloads the input RDF
documents, including their schemas, and translates RDF
descriptions into CLIPS objects, according to the RDF-
to-object translation scheme described in [Bassiliades
and Vlahavas, 2004].

Finally, the result-objects are exported to the user as an
RDF/XML document through the RDF extractor. The
RDF document includes the instances of the exported
derived classes, which have been proven.

2.2 The DRREd Rule Editor
Writing rules in RuleML can often be a highly cumber-
some task; thus, the need for authoring tools that assist
end-users in writing and expressing rules is imperative.
VDR-Device is equipped with DRREd, a Java-built vis-
ual rule editor that aims at enhancing user-friendliness
and efficiency during the development of VDR-Device
RuleML documents. Its implementation is oriented to-
wards simplicity of use and familiarity of interface.

The development of a rule base with DRREd follows
the XML-tree format, the most intuitive means of dis-
playing RuleML-like syntax. The user can navigate
through the tree and add to or remove elements from it.
However, since a rule base is backed by a DTD docu-
ment, potential addition or removal of tree elements has
to obey the DTD limitations. Therefore, the rule editor
allows a limited number of operations performed on each
element, according to its meaning within the rule tree.

The same principle is encountered in attribute process-
ing. The values that the user can insert for each attribute

are limited by the chosen attribute and node as well as the
DTD specifications each time.

DRREd also permits namespace handling; namespace
declarations are treated as addresses of input RDF
Schema ontologies that contain the vocabulary for the
input RDF documents, over which the rules of the rule
base will be run. The namespaces entered by the user, as
well as those contained in the input RDF documents are
then analyzed in order to extract all the allowed class and
property names for the rule base being developed. These
names are then used throughout the authoring phase of
the RuleML rule base, constraining the corresponding
allowed names that can be applied and narrowing the
possibility for errors on behalf of the user.

3 Conclusions and Future Work
In this demonstration we argued that although defeasible
reasoning is useful for many applications in the Semantic
Web, the development of defeasible rule bases on top of
Semantic Web ontologies may appear complex to most
users. To this end, we have implemented VDR-Device, a
visual RuleML-compliant rule editor and a visual inte-
grated development environment that facilitates the de-
velopment of rule-based applications for the Semantic
Web.

The system is freely available at the address:
iskp.csd.auth.gr/systems/dr-device.html.

In the future, we plan to delve into the proof layer of
the Semantic Web architecture by enhancing further the
graphical environment with rule execution tracing, ex-
planation, proof exchange in an XML or RDF format,
proof visualization and validation, etc. These facilities
would be useful for increasing the trust of users for the
Semantic Web agents and for automating proof exchange
and trust among agents in the Semantic Web.

Acknowledgments
This work is partially supported by the PYTHAGORAS
II program which is jointly funded by the Greek Ministry
of Education (EPEAEK) and the European Union.

References
[Antoniou et al., 1999] Antoniou G., Billington D. and Maher
M.J., “On the analysis of regulations using defeasible rules”, Proc.
32nd Hawaii International Conference on Systems Science, 1999.

[Antoniou and van Harmelen, 2004] Antoniou G., Harmelen F.
van, A Semantic Web Primer, MIT Press, 2004.

[Bassiliades et al., 2004] Bassiliades N., Antoniou, G., Vlahavas I.,
“A Defeasible Logic Reasoner for the Semantic Web”, RuleML
2004, Springer-Verlag, LNCS 3323, pp. 49-64, Hiroshima, 2004.

[Bassiliades and Vlahavas, 2004] Bassiliades N., Vlahavas I., “R-
DEVICE: A Deductive RDF Rule Language”, RuleML 2004,
Springer-Verlag, LNCS 3323, pp. 65-80, Hiroshima, 2004.

[Nute, 1987] Nute D., “Defeasible Reasoning”, Proc. 20th Int. Con-
ference on Systems Science, IEEE Press, 1987, pp. 470-477.

PID-17

Demo Explanation
This section presents a full example of using VDR-
Device in a brokered trade application that takes place
via an independent third party, the broker. The broker
matches the buyer’s requirements and the sellers’ capa-
bilities, and proposes a transaction when both parties can
be satisfied by the trade. In our case, the concrete appli-
cation (adopted from [Antoniou and van Harmelen,
2004]) is apartment renting and the landlord takes the
role of the abstract seller.

Available apartments reside in an RDF document (Fig.
2). Each apartment has the following properties:
• size of the apartment (in m2)
• number of bedrooms of the apartment
• price of the apartment
• floor of the apartment
• size of the garden (gardenSize) of the apartment
• existence of a lift in the house of the apartment
• pet allowance (pets) in the house of the apartment
• apartment location (central or not)
<carlo:apartment rdf:about="&carlo_ex;a1">
 <carlo:bedrooms rdf:datatype="&xsd;integer">1
 </carlo:bedrooms>
 <carlo:central>yes</carlo:central>
 <carlo:floor rdf:datatype="&xsd;integer">1
 </carlo:floor>
 <carlo:gardenSize rdf:datatype="&xsd;integer">0
 </carlo:gardenSize>
 <carlo:lift>no</carlo:lift>
 <carlo:name>a1</carlo:name>
 <carlo:pets>yes</carlo:pets>
 <carlo:price rdf:datatype="&xsd;integer">300
 </carlo:price>
 <carlo:size rdf:datatype="&xsd;integer">50
 </carlo:size>
</carlo:apartment>

Fig. 2. RDF document excerpt for available apartments.

The requirements of a potential renter, called e.g. Car-
los, are the following:
• Carlos is looking for an apartment of at least 45m2

with at least 2 bedrooms. If it is on the 3rd floor or
higher, the house must have an elevator. Also, pet
animals must be allowed.

• Carlos is willing to pay $300 for a centrally located
45m2 apartment, and $250 for a similar flat in the
suburbs. In addition, he is willing to pay an extra $5
per m2 for a larger apartment, and $2 per m2 for a
garden.

• He is unable to pay more than $400 in total. If given
the choice, he would go for the cheapest option. His
2nd priority is the presence of a garden; lowest prior-
ity is additional space.

These requirements are expressed in defeasible logic,
in the RuleML-like syntax of VDR-Device. For example,
Fig. 3 displays the RuleML-like format of rule
r4:¬pets(X)⇒¬acceptable(X), which reads as “If
pets are not allowed, then the apartment is not accept-
able”. Fig. 4 shows rule r4 in the graphical rule editor.

<imp>
 <_rlab ruleID="r4" ruletype="defeasiblerule"
 superior="r1"/>
 <_head> <neg><atom>
 <_opr><rel>acceptable</rel></_opr>
 <_slot name="apartment"><var>x</var>
 </_slot></atom></neg></_head>
 <_body><atom>
 <_opr><rel href="carlo:apartment"/></_opr>
 <_slot name="carlo:name"><var>x</var>
 </_slot>
 <_slot name="carlo:pets"><ind>"no"</ind>
 </_slot>
 </atom></_body>
</imp>

Fig. 3. A sample rule.

The set of Carlo’s requirements forms a rule base
document, which is loaded into VDR-DEVICE. It is ini-
tially transformed into the native DR-DEVICE syntax
[Bassiliades et al., 2004]. DR-DEVICE rules are further
translated into R-DEVICE rules [Bassiliades and Vlaha-
vas, 2004], which in turn are translated into CLIPS pro-
duction rules. Then the RDF document is loaded and
transformed into CLIPS (COOL) objects. Finally, the
reasoning takes place and ends up with 3 acceptable
apartments and one suggested apartment for renting, ac-
cording to Carlo’s requirements and the available apart-
ments.

The results (i.e. objects of derived classes) are ex-
ported in an RDF file according to the specifications
posed in the RuleML document. Both the positively and
negatively proven (defeasibly or definitely) objects are
exported, while objects that cannot be at least defeasibly
proven, either negatively or positively, are not exported,
although they exist inside DR-DEVICE. Furthermore, the
RDF schema of the derived classes is also exported.

Users can examine all the exported results and the exe-
cution trace of compilation and running.

Fig. 4. The graphical rule editor.

