

Visual Stratification of Defeasible Logic Rule Bases

Efstratios Kontopoulos1, Nick Bassiliades1, Grigoris Antoniou2

1Department of Informatics
Aristotle University of Thessaloniki

GR-54124, Thessaloniki, Greece
{skontopo, nbassili}@csd.auth.gr

2Institute of Computer Science,
FO.R.T.H., P.O. Box 1385

GR-71110, Heraklion, Greece
antoniou@ics.forth.gr

Abstract

Logic and proofs constitute key factors in increas-
ing the user trust towards the Semantic Web. Defeasi-
ble reasoning is a useful tool towards the development
of the Logic layer of the Semantic Web architecture.
However, having a solid mathematical notation, it may
be confusing to end users, who often need graphical
trace and explanation mechanisms for the derived con-
clusions. In a previous work of ours, we outlined a
methodology for representing defeasible logic rules,
utilizing directed graphs that feature distinct node and
connection types. However, visualizing a defeasible
logic rule base also involves the placement of the mul-
tiple graph elements in an intuitive way, a non-trivial
task that aims at improving user comprehensibility.
This paper presents a stratification algorithm for visu-
alizing defeasible logic rule bases that query and rea-
son about RDF data as well as a tool that applies this
algorithm.

1. Introduction

The mature steps towards accomplishing the Se-
mantic Web vision have reached as far as the develop-
ment of ontologies and OWL [13], the Web Ontology
Language, which is now the dominant standard in on-
tology encoding. The upcoming efforts will be targeted
at logic and proofs, which are believed to possess a key
role in assisting users towards eventually accepting the
Semantic Web.

Defeasible reasoning [8], a member of the non-
monotonic reasoning family, represents a rule-based
approach to reasoning with incomplete and conflicting
information. It can represent facts, rules, priorities and
conflicts among rules. Nevertheless, defeasible reason-
ing features a solid mathematical notation, which may
seem confusing to end users, who often need graphical
trace and explanation mechanisms for the derived con-
clusions.

Directed graphs (or digraphs) can assist in con-
fronting this drawback. They are a flexible visualiza-
tion tool, offering a comprehensible way to represent

relationships between entities [5]. Their applicability,
however, is balanced by the fact that it is difficult to
associate data of a variety of types with the nodes and
with the connections between the nodes in the graph.

The basic theoretical principles for representing de-
feasible logic rules using digraphs were presented in a
previous work of ours [7]. By applying digraphs, we
attempt to exploit their expressiveness, but also try to
mitigate their main disadvantage, mentioned above, by
proposing distinct node types for rules and atomic for-
mulas and distinct connection types for each rule type
in defeasible logic and for superiority relationships.
However, visualizing an entire rule base involves deci-
sions regarding the arrangement of the various graph
elements, a task that considerably improves clarity.

This paper presents a stratification algorithm for
visualizing defeasible logic rule bases as well as a
software tool that applies this algorithm. The tool,
called dl-RuleViz, can represent defeasible logic rule
bases that query and reason about RDF data, taking
into account the semantics of RDF Schema ontologies.
The software is implemented as part of VDR-DEVICE
[2], an environment for modeling and deploying defea-
sible logic rule bases on top of RDF ontologies. Notice
that stratification is solely used for visualization pur-
poses and is indifferent for the underlying defeasible
logic inference engine, since rule cycles in defeasible
logic (with the presence of strong negation) are treated
skeptically and no conclusion is derived.

The rest of the paper is organized as follows: Sec-
tion 2 describes the key aspects of applying directed
graphs for the representation of defeasible logic rules,
emphasizing on the representation of arguments and
conditions. The next section illustrates the principles of
visualizing a defeasible logic rule base, focusing on the
proposed stratification algorithm and dl-RuleViz, while
section 4 discusses related work, followed by the con-
clusions and directions for future research.

2. Digraphs and Defeasible Logics

A defeasible theory D (i.e. a knowledge base or a
program in defeasible logic) consists of three basic

components: a set of facts (F), a set of rules (R) and a
superiority relationship (>). Therefore, D can be repre-
sented by the triple (F, R, >).

The representation of defeasible logic rules in our
approach is substantially based on the methodology
presented by Nute in [9], who applies d-graphs for
visualizing a defeasible logic rule base. However, the
method we adopt adds extra features to the graph that
offer expressiveness. More specifically, the digraphs in
our approach contain two kinds of nodes: (a) literals,
represented by rectangles, called “literal boxes” and
(b) rules, represented by circles. Furthermore, in defea-
sible logic, there are three distinct types of rules: strict
rules, defeasible rules and defeaters; each one of the
rule types is mapped to one of three distinct connection
types, similarly to [9]. This results in rules of different
types being represented more distinctively.

2.1. Rule Types in Defeasible Logic

The full theoretical approach, regarding the graphi-
cal representation of defeasible reasoning elements is
thoroughly described in [7]; here only a brief outline
will be made. Thus, the first rule type in defeasible
reasoning is strict rules, which are denoted by A → p
and are interpreted in the typical sense: whenever the
premises are indisputable, then so is the conclusion. An
example of a strict rule is: “Novels are books”, which
formally would become:
r1: novel(X) → book(X), and would be repre-
sented by the digraph in Fig. 1.

 r1

¬
novel

¬

book

Fig. 1. Visual representation of strict rule r1

Each literal box consists of two adjacent “atomic
formula boxes”, where the upper one represents a posi-
tive and the lower one a negated atomic formula. This
way, atomic formulas are depicted together distinc-
tively, maintaining their independence. Notice also that
in the rule graph we only represent the predicate and
not the literal (i.e. predicate plus all the arguments),
because we are currently interested in clarifying the
interrelationships between the concepts (through the
rules) and not the complete defeasible theory details.
Nevertheless, the final representation (presented later)
implements a full-fledged representation of literals.

Defeasible rules, on the other hand, can be defeated
by contrary evidence and are denoted by A ⇒ p. Two
examples are: r2: book(X) ⇒ hardcover(X)
(“Books are typically hard-covered”) and r3:
novel(X) ⇒ ¬hardcover(X) (“Novels are typi-
cally not hard-covered”). Both are depicted in Fig. 2.

r2

¬
hardcover

r3

¬

novel

¬

book

Fig. 2. Representing defeasible rules r2, r3

Defeaters, denoted by A ∼> p, do not actively sup-
port conclusions, but can only prevent some of them.
An example is: r2’: cheap(X)
∼> ¬hardcover(X) that reads as: “Cheap books are
not hard-covered”. This defeater can defeat, for exam-
ple, rule r2 mentioned above and it can be represented
by Fig. 3.

r2’

¬

cheap

¬
hardcover

Fig. 3. Visual representation of defeater r2’

Finally, the superiority relationship among the rule
set R is an acyclic relation > on R, used, in order to
resolve conflicts among rules. For example, given the
defeasible rules r2 and r3 above, no conclusive deci-
sion can be made about whether novels are eventually
hard-covered or not, because rules r2 and r3 contradict
each other. But if the superiority relationship r3 > r2 is
introduced, then r3 overrides r2 and we can indeed
conclude that novels are not hard-covered. In this case,
rule r3 is called superior to r2 and r2 inferior to r3. In
the case of superiority relationships a fourth connection
type is introduced, displayed in Fig. 4.

 r3 r2 >>>>>>>>>>>>>>>

Fig. 4. Visual representation of r3 > r2

2.2. Representing Arguments and Conditions

So far we have demonstrated how rules are repre-
sented by interconnecting literal boxes with rule nodes.
However, we have not yet included how literal argu-
ments are presented, either being variables or con-
stants. Also, variables are usually associated with sim-
ple conditions, such as X > 4, which could be repre-
sented as predicates, but it is practically more conven-
ient to consider them more closely related to the closest
literal that contains the corresponding variable as an
argument.

Arguments are incorporated inside the literal box
just after the predicate name. The set of all arguments
for each literal box is called argument pattern. For
instance, the literal a(X,2) is represented as in Fig. 5
(a). Simple conditions associated with any of the vari-
ables of a literal can also appear inside the literal box,

each on a separate line (called condition pattern) below
the literal. For example, if fragment a(X,Y),Y>4 ap-
pears in a rule condition, it can be represented as in
Fig. 5 (b).

(b) (a)

¬
a(X,2)

¬

a(X,Y)
Y > 4

Fig. 5. Representing (a) arguments of literals and

(b) simple conditions on variables

A certain predicate, say a, can appear many times in
a rule base, in rule conditions or even rule conclusions.
All literal boxes of the same predicate can be grouped,
so that the user can realise that all these boxes refer to
the same set of literals. To this end, we introduce the
notion of a predicate box, a container for all literal
boxes that refer to the same predicate. The literal boxes
inside the predicate box "lose" the predicate name,
which is now located at the top of the predicate box.
The literal boxes inside predicate boxes that express
conditions on instances of the specific predicate exten-
sion are called predicate patterns.

 a

¬

(X,Y)
Y > 4

¬
(X,2)

Fig. 6. Predicate box and predicate patterns

For example, the literal boxes of Fig. 5 can be
grouped inside a predicate box as in Fig. 6. Notice that
each predicate pattern contains exactly one argument
pattern and zero, one or more condition patterns.

3. Visualizing a Defeasible Logic Rule Base

VDR-DEVICE (Visual DR-DEVICE) [2] is a visual,
integrated development environment for modeling and
deploying defeasible logic rule bases on top of RDF
ontologies. It consists of two primary components: (i)
DR-DEVICE, the reasoning system that processes RDF
data, performs the defeasible inference procedure, pro-
duces the results and exports them as RDF data; (ii)
DRREd (Defeasible Reasoning Rule Editor), the rule
editor, which serves both as a rule authoring tool and
as a graphical shell for the core reasoning system.

Moreover, DRREd is equipped with dl-RuleViz, a
module that allows users to visualize defeasible logic
rule bases. Besides the XML-tree format, featured by
DRREd, dl-RuleViz offers an additional graph-based

means of visualizing the rule base. The following sub-
sections present key-aspects of this representation.

3.1. Brief Description of the Reasoning System

DR-DEVICE employs an object-oriented RDF data
model, which is different from the established triple-
based RDF data model, treating properties as typical
encapsulated attributes of resource objects. This way,
properties of resources are not scattered across several
triples, as in most other RDF inference systems, in-
creasing query performance due to fewer joins [3].

DR-DEVICE rule bases are expressed in an exten-
sion of RuleML (see [1] for a reference and DTD).
Extensions deal with two aspects of DR-DEVICE,
namely defeasible logic and its CLIPS [4] implementa-
tion. Defeasible logic extensions include rule types,
superiority relations and conflicting literals, while
CLIPS-related extensions deal with constraints on
predicate arguments and functions.

A fragment of a rule is displayed in Fig. 7. The
names (rel elements) of the operator (_opr) elements
of atoms are class names, since atoms actually repre-
sent CLIPS objects [1]. RDF class names, used as base
classes in the rule condition, are referred to via the
href attribute of the rel element (e.g. novel in Fig.
7), while derived class names are text values of the
rel element. Atoms have named arguments (slots),
which correspond to object/RDF properties. Since
RDF resources are represented as CLIPS objects, at-
oms in the rule body correspond to queries over RDF
resources of a certain class with certain property val-
ues, while atoms in the rule head correspond to tem-
plates of materialized derived objects, which are ex-
ported as RDF resources at the end of the inference
process ([1], [3]).

3.2. Collecting the Class Names

The RDF Schema documents, designated by the
DRREd user, are being parsed and the names of the
classes found are collected in the base class set (CSb),
which already contains rdfs:Resource, the super-
class of all RDF user classes. Therefore, the CSb set is
constructed as follows:
rdfs:Resource ∈ CSb

∀c (c rdf:type rdfs:Class) → c ∈ CSb
where (X Y Z) represents an RDF triple found in the
RDF Schema documents.

There also exists the derived class set (CSd), con-
taining the names of the derived classes, i.e. classes
which lie at rule heads (conclusions). CSd is initially
empty and is dynamically extended every time a new
class name appears inside the rel element of the atom
in a rule head (or a negated atom). This set is mainly

used for loosely suggesting possible values for the rel
elements in the rule head, but not constraining them,
since rule heads can either introduce new derived
classes or refer to already existing ones.
(∀r∈{<imp>})

(∀c∈ rel(_opr(atom{_head(r)}))) → c ∈ CSd
The union of the above two sets results in the full

class set CSf (CSf = CSb ∪ CSd), which is used for con-
straining the allowed class names, when editing the
contents of the rel element inside atom elements of
the rule body.

3.3. Elements of the Rule Graph

The graph consists of nodes and edges. This section
shows how we identify which are the nodes and con-
nections to be displayed, according to their type.

3.3.1. Class Boxes, Class Patterns, Slot Patterns. For
each class c that belongs to the base, derived and full
class sets respectively, a class box cb with the same
name is constructed and placed inside the correspond-
ing class box set CBb, CBd and CBf:
(∀c) c ∈ CSb → (∃ cb) cb ∈ CBb
(∀c) c ∈ CSd → (∃ cb) cb ∈ CBd
CBf = CBb ∪ CBd

Class boxes are simply containers and are the
equivalent of predicate boxes, described previously.
They are initially empty and are dynamically populated
with one or more class patterns, the equivalent of
predicate patterns, also referred to in a previous sec-
tion. In practice, class patterns express conditions on
instances of the specific class. Class boxes are popu-
lated as follows: for each atom element a inside a rule
head or body, a new class pattern cp is created and is
inserted into the class box, whose name cb matches the
class name that appears inside the rel element of the
specific atom. The set of all class patterns is denoted
by CP. In the meantime, the class pattern is associated
with the rule it appears and its position in the rule
(head or body) is noted.
(∀ r∈{<imp>})

(∀ a∈atom{_body(r)})
((∀ cb∈ CBf), cb = _opr(rel(a)))

→ ((∃ cp) cp ∈ CP ∧ N(cp) = cb ∧ Body(cp) = r ∧ cp
∈ S(cb))

The expression S(cb) represents a set attribute of
object cb, namely the storage of class patterns for each
class box, the expression N(cp) represents a string at-
tribute of cp that holds its corresponding class name,
while the Body(cp) expression denotes the rule in the
body of which the class pattern appears.

There is a corresponding procedure for the class
patterns of the rule heads:

(∀ r∈{<imp>})
(∀ a∈atom{_head(r)})

((∀ cb∈ CBf) cb = _opr(rel(a)))
→ ((∃ cp∈CP) N(cp) = cb ∧ Head(cp) = r ∧ cp ∈
S(cb))

Visually, class patterns appear as literal boxes,
which were described in section 2.1. The mapping of
class patterns to literal boxes is justified by the fact that
atoms - expressed in the RuleML-like language of
VDR-DEVICE - are actually atomic formulas (they
correspond to queries over RDF resources of a certain
class with certain property values), as stated in section
3.1. Thus, the truth value associated with each returned
class instance will be either positive or negative.

Similarly to class boxes, class patterns are empty,
when they are initially created, but are soon populated
with one or more slot patterns. For each _slot ele-
ment inside an atom, a slot pattern sp is created that
consists of a slot name (contained inside the corre-
sponding attribute) and, optionally, a variable and a list
of value constraints. Slot pattern sp is then inserted into
the storage of the class pattern cp that corresponds to
the relevant atom a. The set of all slot patterns is de-
noted by SP.
(∀ a∈{<atom>})

(∀ s∈name(_slot(a)))
(∀ cb∈CBf)

 ((∀ cp∈S(cb)), cb = rel(_opr(a)))
→ ((∃ sp∈SP) N(sp) = s ∧ sp ∈ S(cp))

Each of the slot pattern parts (slot name, variable
and list of value constraints) is being retrieved from the
children (direct and indirect) of the _slot element in
the XML tree representation of the rule base.
(∀ a∈{<atom>}) (∀ s ∈_slot(a)) (∀ v ∈ var(s) ∪
var(_and(s)))

(∀ cb ∈ CBf) (∀ cp ∈ S(cb))
((∀ sp∈S(cp)), cb=rel(_opr(a)) ∧ N(sp)=name(s)

→ v ∈ Var(sp))

(∀ a∈{<atom>}) (∀ s ∈ _slot(a))
(∀ c ∈ ind(s) ∪ _not(s) ∪ ind(_and(s)) ∪ func-

tion_call(_and(s)))
(∀ cb∈CBf) (∀ cp∈S(cb))

((∀ sp∈S(cp)), cb=rel(_opr(a)) ∧
N(sp)=name(s)
→ c ∈ Constraint(sp))

In the above expressions, Var(sp) and Con-
straint(sp) are the attributes that store the variable and
the list of constraints of a slot pattern, respectively.
However, the above expressions have been simplified
for clarity reasons, since variables can be either direct
children of _slot elements in the RuleML format, or
they can be indirect descendants when combined with
a constraint. Also, there is no such thing as a constraint

element, as suggested by the expressions above. In this
case, assume that the expression constraint(s) is a func-
tion that delivers constraints from the RuleML docu-
ment through a complicated, case-based algorithm. The
variable in the slot pattern is used, in order for the slot
value to be unified, with the latter having to satisfy the
list of constraints. In other words, slot patterns repre-
sent conditions on slots (or class properties).

Slot patterns are the equivalent of argument and
condition patterns. There are, however, certain differ-
ences that arise from the different nature of the tuple-
based model of predicate logic and the object-based
model of VDR-DEVICE. In the latter, class instances
are queried via named slots rather than positional ar-
guments. Not every slot needs to be queried and the
position of the slot inside the object is irrelevant.
Therefore, instead of a single-line argument pattern we
have a set of slot patterns in many lines; each slot pat-
tern is identified by the slot name. Furthermore, in the
VDR-DEVICE RuleML-like syntax, simple conditions
are not attached to the slot patterns; this is reflected to
the visual representation where condition patterns are
encapsulated inside the associated slot patterns.

An example of all the above is seen in Fig. 7, which
shows a class box that contains three class patterns
applied on the novel class and a code fragment match-
ing the third class pattern, written in the RuleML-like
syntax of VDR-DEVICE. The first two class patterns
contain one slot pattern each, while the third one con-
tains two slot patterns. As can be observed, the argu-
ment list of each slot pattern is divided in two parts,
separated by ”|”; on the left all the variables are placed
and on the right all the expressions and conditions,
corresponding to the variables on the left. In the case of
constant values, only the right-hand side is utilized;
see, for instance, the second class pattern of the box in
Fig. 7. Finally, the third class pattern refers to all the
novels by Asimov with price greater than 18.

¬

novel

¬
name(X|)

collectible(|“yes”)

¬

author(|“Asimov”)
price(X|X>18)

 <atom>
<_opr>
<rel href="novel"/>

</_opr>
<_slot name="author">
<ind>"Asimov"</ind>

</_slot>
<_slot name="price">
<_and>
<var>x</var>
<function_call name=">">
<var>x</var>
<ind>18</ind>

</function_call>
</_and>

</_slot>
</atom>

Fig. 7. A class box example and a code fragment
for the third class pattern

3.3.2. Rule Circles and Arrow Types. Besides class
boxes and their “ingredients” (class patterns, slot pat-
terns), there also exist circles that represent rules and

arcs that connect the nodes in the graph. The visual
representation of rules in the digraph, using circles,
was described in a previous section. There exist five
types of connections in the graph: three for the rule
type, one for the superiority relationship, plus a simple
arrow connection type for connecting the class patterns
of rule bodies to the rule circles.

For every rule r in the rule base a rule circle rc is
constructed, whose name N(rc) matches the name of
the rule, namely the value of the ruleID attribute in
the _rlab element of the corresponding rule. The set
of all rule circles is denoted by RC.
(∀ r∈{<imp>}) (∃ rc∈RC) N(rc) = ruleID(_rlab(r))

All rules are included in the rule set RS:
(∀ r∈{<imp>}) (∃ r') r'=ruleID(_rlab(r)) ∧ r' ∈ RS

The rule type is equal to the value of the ruletype
attribute inside the _rlab element of the respective
rule and can only take three distinct values (stric-
trule, defeasiblerule, defeater). The corre-
sponding arrow sets are denoted by SA, DA and FA.
The set of all arrows originating from rule circles is
denoted by RA.
(∀ r∈{<imp>}) ruletype(_rlab(r)) = strictrule

→ (∃ ar∈SA) N(ar) = ruleID(_rlab(r))
(∀ r∈{<imp>}) ruletype(_rlab(r)) = defeasiblerule

→ (∃ ar∈DA) N(ar) = ruleID(_rlab(r))
(∀ r∈{<imp>}) ruletype(_rlab(r)) = defeater

→ (∃ ar∈FA) N(ar) = ruleID(_rlab(r))
RA = SA ∪ DA ∪ FA

Rule circles are connected with the arrows repre-
senting rules, regardless their type:
(∀ rc∈RC) (∀ ar∈RA) N(rc) =N(ar)

→ Out(rc) = ar ∧ In(ar) = rc
The expressions In(x) and Out(x) denote pointers to

the previous/next graph element, respectively.
As for the superiority relationship, it is represented

as an attribute (superior) inside the superior rule
element. For each such relationship, a superiority ar-
row object is created, linking the superior rule (SUP
attribute) with the inferior rule (INF attribute). The set
of all superiority arrows is SRA.
(∀ r∈{<imp>}) (∀ sr∈superior(_rlab(r))

(∃ ar∈SRA) SUP(ar) = r ∧ INF(ar) = sr
Superiority arrows connect two rule circles:

(∀ ar∈SRA) Out(SUP(ar)) = ar ∧ In(ar) = SUP(ar)
∧ In(INF(ar)) = ar ∧ Out(ar) = INF(ar)
The arrows between the class patterns of the rule

body and the rule circles are contained in the CA set:
(∀ cp∈CP) (∃ ar∈CA) N(ar) = <cp,Body(cp)>
where <cp, Body(cp)> is a tuple that consists of the
class pattern ID and the corresponding rule ID. Both
are needed to uniquely identify such arrows, because
the same class pattern can be re-used in the body of
many rules.

Class patterns of the rule body are connected to rule
circles as follows:
(∀ ar∈CA)

(∀ rc∈RC) <cp,r>=N(ar) ∧ r=N(rc)
→ Out(cp) = ar ∧ In(ar) = cp ∧ In(rc) = ar ∧ Out(ar) =
rc

What remains to be established is how the arrows
between the rule circles and the class patterns of the
rule head are constructed. These arrows are contained
in the RA set, presented above. Class patterns of the
rule head are connected to rule arrows as follows:
(∀ ar∈RA) (∀ cp∈CP)

Head(cp) = N(ar) → In(cp) = ar ∧ Out(ar) = cp

3.4. The Visualization Algorithm

After having collected all the necessary graph ele-
ments and having populated all the class boxes with
the appropriate class and slot patterns, three sets exist:
(i) the base class boxes set CBb that contains the class
boxes corresponding to base classes, (ii) the derived
class boxes set CBd that contains the class boxes corre-
sponding to derived classes, and (iii) the set RS that
includes all the rules of the rule base.

The next important task is the placement of each
element in the graph. To this end, an algorithm for the
visualization of the rule base was implemented, which
utilizes common rule stratification techniques (for ex-
ample, see [12]). Unlike the latter, however, that focus
on computing the minimal model of a rule set, our al-
gorithm aims at the optimal visualization outcome,
namely the simplest and more comprehensible graph
possible. The algorithm is displayed in Fig. 8.
 str:=1
foreach cb∈CBb do stratum(cb):=str
while |RS|≠0 do

RuleTemp:=∅
str:=str+1
foreach R∈RS do

if ((∀p∈premises(R) → stratum(class(p))<str) ∧
(∃p'∈premises(R) ∧ stratum(class(p'))=str-1))

then stratum(R):=str, RS:=RS-{R}, RuleTemp:=RuleTemp ∪{R}
foreach R∈RuleTemp do

foreach p∈premises(R) do
if stratum(class(p))=str-1
then Type:=plain else Type:=expandable,

in-arrow(R):=in-arrow(R)∪{<p,Type>},
out-arrow(p):=out-arrow(p)∪{<R,Type>},

str:=str+1
CbTemp:=∅
foreach R∈RuleTemp do

if unknown(stratum(class(conclusion(R))))
then stratum(class(conclusion(R))):=str,

CbTemp:=CbTemp∪{class(conclusion(R))}
foreach R∈RuleTemp do

if type(R)=strictrule then Type:= strict
else if type(R)=defeasible then Type:=defeasible
else Type:=defeater,
if class(conclusion(R))∈CbTemp
then Orient:=plain else Orient:=dotted,
out-arrow(R):=

out-arrow(R)∪{<conclusion(R),Orient,Type>},
in-arrow(class(conclusion(R))):=

in-arrow(conclusion(R))∪{<R,Orient,Type>}
Fig. 8. The rule stratification algorithm

The algorithm aims at giving a left-to-right orienta-
tion to the flow of information in the graph; namely,

the arcs in the digraph are directed from left to right,
resulting in a less complex derived graph. The graph
elements are “stratified”, meaning that they are placed
in strata (or columns), with the first stratum located on
the utmost left and the numbering of the strata follow-
ing the same left-to-right orientation. In other words,
the proposed algorithm deals with the “stratification”
of the graph elements, calculating the optimal stratum,
in which each graph element has to be placed.

During the execution of the algorithm, the following
steps can be distinguished:
1. All the base class boxes are placed in stratum #1.
2. The algorithm enters a loop, consecutively assigning

strata to rule circles and derived class boxes, incre-
menting each time the stratum counter by 1.
a. In order for a rule circle to be assigned to a stra-

tum, all its premises have to belong to previous
strata, with at least one of them belonging to the
immediately previous stratum.

b. In order for a class box to be assigned to a stra-
tum, it has to contain the conclusions of rules in
the immediately previous stratum.

In the cases of cycles in the graph (i.e. a conclusion
of a rule serves as a premise for another rule in a pre-
vious stratum), neither the conclusion is drawn again,
nor the arrow connecting the rule with the conclusion
is drawn backwards. Instead, in order to prevent graph
cluttering, a special type of “dotted” arrow is applied,
commencing from the rule circle and ending in three
dots “…”. By clicking on the arrow, the user is led to
the desired rule conclusion in a previous stratum.

Also, according to the algorithm, only the arcs that
connect two consecutive graph elements are drawn by
default. When the stratum difference between a class
pattern and a rule circle is greater than 1, the arrow that
connects them is qualified as “expandable” (contrary to
“plain”). Expandable arrows are not drawn by default,
but can be included in the graph, by “expanding” (or
revealing) all the arcs of the corresponding rule.

3.5. Example of Using dl-RuleViz

This section outlines an example that could better il-
lustrate the functionality of the algorithm described
above. Suppose that we have the following rule base:
r1: novel(X) → book(X)
r2: book(X) ⇒ hardcover(X)
r3: novel(X) ⇒ ¬hardcover(X)
r4: novel(X), collectible(X,“yes”) ⇒
rare(X,“yes”)
r5: novel(X),author(X,“Asimov”),
price(Y), Y>18 ⇒ hardcover(X)

The first three rules were encountered in section
2.1, while rule r4 reads as “Collectible novels are con-
sidered rare books” and rule r5 reads as “Novels by

Asimov with a price greater than 18 are typically hard-
covered”. Also, three classes are needed in the exam-
ple, as Table 1 indicates: one base class (novel) and
two derived classes (book and hardcover).

Table 1. Classes included in the example

Base Class novel
Derived Classes book, hardcover

Table 2. Stratum assignments

stratum #1 novel
stratum #2 r1, r3, r4, r5
stratum #3 book, hardcover
stratum #4 r2

After applying the algorithm, it comes up that four
strata are needed to display all the graph elements.
Table 2 displays the final stratum assignments, accord-
ing to the algorithm. The first stratum is mapped to the
first column on the left, the second stratum to the col-
umn on the right of the first one and so on. Nodes in
one column are never connected with nodes in the
same column, except from the case of rule superiority.

Fig. 9 displays the resulting graph, produced by dl-
RuleViz, the rule base visualization module of
DRREd. The implementation is compliant with the
algorithm presented previously. Notice the “dotted”
arrow “leaving” rule r2. As explained earlier, this ar-
row type is applied in cases of rule conclusions appear-
ing in earlier strata than the rule. By clicking on the
arrow, the user is navigated to the corresponding rule
conclusion, applied in a previous stratum. In this case,
the conclusion is the positive atomic formula high-
lighted in the figure.

Fig. 9. Implementation of the visualization algo-

rithm

4. Related Work

d-GRAPHER [10] is system that consists of a visual
defeasible graph (d-graph) editor and a prolog-based
inference engine. The system includes error-checking

routines that prevent the construction of illegal graphs,
displaying appropriate error messages. Although d-
GRAPHER is the first system that offered visual de-
velopment of d-graphs, adopting a representation that
comprised the starting point for dl-RuleViz, it presents,
nevertheless, a number of drawbacks: the rule bases
produced are of an elementary level of expressiveness,
not allowing conjunction/disjunction of atoms or repre-
sentation of slot variables and value constraints. Fur-
thermore, the system is not able to represent more ex-
pressive rule bases and is, thus, an isolated solution.

On the other hand, there exists a variety of systems
that implement rule representation and visualization,
although, to the best of our knowledge, no modern
system exists yet that can visually represent defeasible
logic rules. Such an example is VisiRule [11], a graphi-
cal tool (module of LPA Win Prolog) for delivering
business rule and decision support applications. The
user draws a flowchart that represents the decision
logic and VisiRule produces Flex code and compiles it.
The system offers guidance during the construction
process, constraining errors, based on the semantic
content of the emerging program. This reduces the
possibility of constructing invalid or meaningless links,
improving productivity and helping detect errors early
within the design process.

CPL (Conceptual Programming Language) [6] con-
stitutes an effort to bridge the gap between Knowledge
Representation and Programming Languages. CPL is a
visual language for expressing procedural knowledge
explicitly as programs. The basic notion are Concep-
tual Graphs, which are connected, multi-labeled, bipar-
tite, oriented graphs and can express declarative and
procedural knowledge, by defining object and action
constructs. Particularly, the addition of visual language
constructs (data-flow/flowchart) to Conceptual Pro-
gramming allows the process of actions as data-flow
diagrams that convey the procedural nature of knowl-
edge within the representation. Both CPL and the dl-
RuleViz underlying visual rule language are expres-
sive; the latter, however, adds the flexibility and intui-
tiveness of defeasible reasoning to the graph.

5. Conclusions and Future Work

This paper argued that logic is currently the target
of the upcoming efforts towards the realization of the
Semantic Web vision and presented an algorithm for
visualizing defeasible logic rule bases. dl-RuleViz, a
tool that implements the proposed algorithm, was also
briefly presented. For the representation of defeasible
logic rules, the software utilizes directed graphs,
which, however, find it difficult to associate data of a
variety of types with the nodes and with the connec-
tions between the nodes in the graph. Trying to lever-

age this disadvantage, dl-RuleViz adopts a novel “en-
hanced” digraph approach that features distinct types
of nodes for rules and literals and various distinct con-
nection types for each defeasible logic rule type and
the superiority relationship.

As for our future research goals, a variety of tasks
still remain to be addressed. Potential improvements of
dl-RuleViz and the visualization algorithm include
enhancing the derived graph with negation-as-failure
and variable unification, for simplifying the display of
multiple unifiable class patterns. Expressive visualiza-
tion of a defeasible logic rule base can then lead to
proof explanations. By adding visual rule execution
tracing, proof visualization and validation to the dl-
RuleViz module, we can delve deeper into the Proof
layer of the Semantic Web architecture, implementing
facilities that would increase the trust of users towards
the Semantic Web.

6. References

[1] Bassiliades N., Antoniou G., Vlahavas I., "A De-

feasible Logic Reasoner for the Semantic Web",
Int. Journal on Semantic Web and Information
Systems, 2(1), pp. 1-41, 2006.

[2] Bassiliades N., Kontopoulos E., Antoniou G., “A
Visual Environment for Developing Defeasible
Rule Bases for the Semantic Web”, Proc. RuleML-
2005, Galway, Ireland, Springer-Verlag, LNCS
3791, pp. 172-186, 2005.

[3] Bassiliades N., Vlahavas I., “R-DEVICE: An Ob-
ject-Oriented Knowledge Base System for RDF
Metadata”, Int. Journal on Semantic Web and In-
formation Systems, 2(2), pp. 24-90, 2006.

[4] CLIPS Basic Programming Guide (v. 6.24),
www.ghg.net/clips/CLIPS.html, last accessed:
April 27, 2007.

[5] Diestel R., Graph Theory (Graduate Texts in
Mathematics), 2nd ed. Springer, 2000.

[6] Hartley R., Pfeiffer H., “Visual Representation of
Procedural Knowledge”, Proc. 2000 IEEE Int.
Symp. on Visual Languages, IEEE Computer So-
ciety, Washington DC, 2000.

[7] Kontopoulos E., Bassiliades N., Antoniou G.,
“Visualizing Defeasible Logic Rules for the Se-
mantic Web”, Proc. 1st Asian Semantic Web Conf.
(ASWC'06), Springer-Verlag, LNCS 4185, pp.
278-292, Beijing, China, 2006.

[8] Nute D., “Defeasible Reasoning”. Proc. 20th Int.
Conf. on Systems Science, pp. 470-477, IEEE
Press, 1987.

[9] Nute D., Erk K., “Defeasible logic graphs: I. The-
ory”, Decis. Support Syst., 22(3), pp. 277-293,
1998.

[10] Nute D., Hunter Z., Henderson C., “Defeasible
logic graphs: II. Implementation”, Decis. Support
Syst., 22(3), pp. 295-306, 1998.

[11] Shalfield R., VisiRule User Guide,
http://www.lpa.co.uk/ftp/4600/vsr_ref.pdf, 2005.

[12] Ullman J.D., Principles of Database and Knowl-
edge-Base Systems, Vol 1, Computer Science
Press, 1988.

[13] W3C, Web Ontology Language (OWL)
http://www.w3.org/2004/OWL/.

