
adfa, p. 1, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Knowledge-based e-Contract Negotiation among Agents 
Using Semantic Web Technologies 

Kalliopi Kravari, Christos Papavasileiou, and Nick Bassiliades 

Dep. of Informatics, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece 

{kkravari, cpapavas, nbassili} AT csd.auth.gr 

Abstract: E-Commerce enabled new ways of transactions. Companies and in-
dividuals negotiate and make contracts every day. Practically, contracts are 
agreements between parties that must be kept. These agreements affect the in-
volved parties irretrievably. Hence, negotiating them efficiently is proved vital. 
To this end we propose the use of intelligent agents, which benefit from Seman-
tic Web technologies, such as RDF and RuleML, for data and policy exchanges. 
Each agent encounter is characterized by the interaction or negotiation protocol 
and each party’s strategy. This study defines a knowledge-based negotiation 
procedure where protocols and strategies are separated enabling reusability and 
thus enabling agent participation in interaction processes without the need of 
reprogramming. In addition, we present the integration of this methodology into 
a multi-agent knowledge-based framework and next a use case scenario using 
the contract net protocol that demonstrates the added value of the approach. 

Keywords: Semantic Web, Agents, e-Contract negotiation, Reaction RuleML. 

1 Introduction 

The massive growth of e-Commerce [13] is indisputable, being clear that it will con-
tinue to grow. However, e-Commerce is rather complicated, since the parties involved 
have to collect information, negotiate and safely execute transactions. Although com-
panies and individuals interact every day, they face difficulties in reaching agree-
ments; namely contracts that create relations and obligations that must be kept. Nego-
tiating efficiently such a contract is important since the decisions made during negoti-
ation affects the parties irretrievably. To this end we propose the use of Intelligent 
Agents (IAs) [8]. IAs benefit from Semantic Web (SW) technologies [3], performing 
unsupervised complex actions on behalf of their users, reflecting their specific needs 
and preferences. While SW full vision may be a bit distant, there are already capabili-
ties that can make software more interoperable and cheaper to maintain. For instance, 
the use of SW technologies, such as RDF and RuleML, for data and policy exchanges 
maximizes interoperability among parties. Hence, as IAs are gradually enriched with 
SW technologies their use is increasing.  

Each agent is able to manage a private policy (or strategy), a set of rules represent-
ing requirements, obligations and restrictions, and personal data that meet its user’s 



interests. Sophisticated tasks, such as negotiation and brokering services, are already 
carried out efficiently by IAs. On the other hand, each transaction among parties is 
strictly specified by an interaction protocol, a set of rules that specify among others 
guidelines and restrictions on the parties involved. Hence, using IAs could be the 
answer for a flexible but efficient (contract) agreement procedure management. How-
ever, in order to reach SW agents’ maximum efficiency, a well–formed modeling 
framework is needed. It should be re-usable, easily comprehensible by the user (pro-
moting agent usage) and easily analyzable by the agent (promoting automatization). 

Usually both private negotiation strategies and public interaction protocols are 
jointly hard-coded in each agent. Undoubtedly, it is a common and convenient prac-
tice, however it is inflexible. Yet, separating policies (personal strategies) from proto-
cols is imperative. Each agent’s policy is private and any disclosure of it could lead to 
incalculable loss. On the other hand, each protocol should be a common resource 
since agents must comply with the same interaction protocol in order to interact. 
Hence, this study attempts to define the necessary requirements and procedures that 
will let agents interact without the need of reprogramming. The proposed knowledge-
based approach enables agents to choose the appropriate protocol (e.g. library of re-
usable protocols) and combine it with their personal strategy by using SW technology. 

Hence, this article proposes the use of SW languages for expressing both protocol 
and strategy, in addition to separating them. Separating strategy from the protocol and 
automatically combining them will let agents to modify their behavior while remain-
ing compliant to the protocol with no extra programming cost. Hence, a fully auto-
mated procedure for agent transactions (here in contracts) is presented. Nevertheless, 
an appropriate framework providing enough compliance with the proposed SW tech-
nologies should be used, thus, an integration of the above methodology into 
EMERALD [11], a knowledge-based MAS, is presented. The rest of the paper is 
structured as follows: Section 2 gives an overview of the approach, Section 3 briefly 
overviews EMERALD, while Section 4 illustrates a Contract Net use case, which 
better displays the potential of the approach. The paper is concluded with references 
to related work, conclusions and directions for future improvements. 

2 Overview 

E-Contracts are the most common procedures in everyday life. The main differentia-
tion is that they are modeled, specified and executed by a software system, overcom-
ing the delays and drawbacks of the manual process. Hence, here, we study contract 
protocols and more specifically the FIPA Contract Net Interaction Protocol.  

2.1 FIPA Contract Net Interaction Protocol 

Although, contract interaction protocols are acknowledged as vital, their modeling is a 
really challenging task. Yet, several domain-depended interaction protocols have 
already been developed. The Contract Net Protocol (CNET), for instance, is a note-
worthy and probably the most widely used protocol, firstly introduced by Smith [15].  



 
Fig. 1. FIPA Contract Net Interaction Protocol 

In CNET negotiation is considered as a two-way communication in which an agent 
evaluates the offer of assigning a contract or receiving one from its own perspective. 
Since then, much research has been done, successfully resolving important issues in 
the field. Although CNET was proved valuable in a variety of situations, it had to be 
modified in order to reflect changes in agent technology. In this direction, FIPA, an 
IEEE Computer Society standards organization, provides among others the FIPA 
Contract Net Interaction Protocol [16]. This standardized protocol has been used over 
time as the basis for a variety of cases. According to the FIPA specification (Fig. 1) in 
the contract net interaction protocol, one agent (the Initiator) takes the role of manag-
er which wishes to have some task performed by one or more other agents (the Partic-
ipants) and further wishes to optimize a function that characterizes the task. This 
characteristic could be for instance the minimum price. For a given task, the Initiator 
has to send a call for proposal message communicating its request. Next, any number 
of the Participants may respond positively; the rest must refuse. Negotiations then 
continue with the Participants that accepted the call. A positive response however is 
not a strict acceptance but rather a counter proposal. Hence, the Initiator has to evalu-
ate the offers and ignore the refusals. Finally, it has to accept the best offer by sending 
back an acceptance messages whereas reject messages should be send to the rest. 

2.2 Separating Interaction Protocol from Agent Strategy  

However, having an appropriate protocol is not enough, flexibility and reusability is 
also needed, which actually can be obtained by separating each agent’s private policy 
from the protocol. To this end, in the proposed approach two main rulesets were de-
fined. The first one is related to the Strategy (agent’s personal policy), while the sec-
ond one is related to the Protocol. The Strategy ruleset defines the agent’s personal 
preferences whereas the Protocol ruleset mainly orchestrates message exchange 
among agents. It is obvious that the message exchange, defined by the protocol, is the 
key for a successful transaction. Hence, providing appropriate message structures is 



vital. To this end, Reaction RuleML was chosen for expressing both the protocol and 
the strategy rules [4], [7]. This rule language was chosen for two major reasons. First-
ly, it is flexible in rule representation and secondly its syntax supports a message 
structure that can include all message modules provided by the FIPA specifications. 
The message structures in RuleML (Fig. 2) and FIPA are similar since they both con-
tain predicates for Sender, Receiver, Content (Payload), Protocol and Conversation 
Identifier (called conversation-id in FIPA and oid in RuleML). 

<Message mode="outbound" directive="CFP” 
 <oid> <!-- conversation ID--> </oid> 
 <protocol> <!-- transport protocol --> </protocol> 
 … 
</Message> 

Fig. 2. (Call-For-Proposal) Message structure in Reaction-RuleML syntax 

Using appropriately the above message structures, agents are able to exchange 
from simple facts to rulebases (sets of rules). Even more useful is the fact that due to 
the conversation-id module, agents will be also able to get involved in longwinded 
and usually asynchronous communications, and thus being flexible. In this context, 
Reaction RuleML is expedient since it provides specific predicates (SendMsg and 
rcvMsg) which are appropriate for message exchange in any agent interaction. How-
ever, having both protocol and strategy rules expressed in Reaction RuleML is not 
enough. Agents’ final behavior, the combination of protocol and strategy, should be 
executed in a compact way that will let them represent both their environment 
knowledge and their behavior patterns quite easily. To this end, the JESS execution 
engine and language was chosen [9]. JESS is considered as a very expressive lan-
guage that can express complex logical relationships with very little code, while it is 
commonly used by agent programmers. Additionally, it is also FIPA compliant.  

2.3 Combining Protocol with Strategy  

Practically, there is a public repository where protocols are stored with their rulesets 
expressed in Reaction RuleML. Additionally, there are private repositories, one or 
more, for each agent where their personal strategy rulesets are stored, also expressed 
in Reaction RuleML. For instance, assume that there is a number of agents (e.g. four) 
interacting according to the FIPA Contract Net Interaction Protocol. One of them 
should be the initiator of the process and the rest (participants) will respond according 
to their personal intentions. Each of them will retrieve the protocol ruleset from the 
appropriate repository (Fig. 3), which is common for all of them, whereas they have 
their private repository for their strategies. In other words, the protocol will define 
how they will communicate whereas their strategy will define what to share. What is 
important here is the fission of the protocol rules to initiator and participant rules. 
This is essential because although there is a single protocol, it defines rules for both 
roles (initiator and participant) since each of them have to act from another perspec-
tive. How these sets of rules should be combined and executed is an important issue. 



 
Fig. 3. Procedure overview 

Fig. 4 presents the process; domain depended XSLT transformations will use both 
RuleML sets of rules (for protocol and strategy) and transform them to an executable 
ruleset (e.g. in Jess) which is fused inside each agent in order to participate in the 
transaction effectively. Notice that using a high-level, declarative description of the 
protocol and strategy no extra programming cost is needed by the agent owners. 

 
Fig. 4. Strategy – Protocol Combination 

3 EMERALD 

EMERALD (Fig. 5) is a multi-agent knowledge-based framework, based on SW and 
FIPA standards, that enables reusability and interoperability of behavior between 
agents. It is built on JADE [2], a reliable and widely used framework. EMERALD 
supported so far the implementation of various applications, like brokering and agent 
negotiations. This framework, in order to model and manage the parties involved in 
an e-Contract negotiation procedure, provides a generic, reusable agent prototype for 
knowledge-customizable agents (KC-Agents), consisted of an agent model (KC Mod-
el), a directory service (Advanced Yellow Pages Service) and several external Java 
methods (Basic Java Library). Agents that comply with this prototype are equipped 
with a Jess rule engine [9] and a knowledge base (KB) that contains environment 
knowledge (facts), behavior patterns and strategies (Jess production rules). Addition-
ally, since trust has been recognized as a key issue in SW MASs, EMERALD adopts 
a variety of reputation mechanisms, both decentralized and centralized. In this study, 
the Jess KB is actually the agent’s data and rules that comprise its policy and charac-



terize its behavior, as described above. Using the KC-Agents prototype offers certain 
advantages, such as modularity, reusability, maintainability and interoperability, as 
opposed to having behavior hard-wired into the agent’s code (e.g. in Java).  

 
Fig. 5. EMERALD abstract architecture 

Hence, since agents do not necessarily share a common rule or logic formalism it is 
vital for them to find a way to exchange their position arguments seamlessly. To this 
end, EMERALD proposes the use of Reasoners [12], which are agents that offer rea-
soning services to the rest of the agent community. This approach does not rely on 
translation between rule formalisms, but on exchanging the results of the reasoning 
process of the rule base over the input data. Currently, EMERALD implements a 
number of Reasoners that offer services in two major reasoning paradigms: deductive 
rules and defeasible logic. Following the above specifications EMERALD commits to 
SW and FIPA standards, namely, it uses among others the RuleML language [4] since 
it has become a de facto standard. Additionally, it uses the RDF model [14] for data 
representation both for the agents’ private data and the reasoning results generated 
during the process, as used in contract agreement interactions presented in [10]. 

3.1 Extending KC-Agents prototype 

EMERALD’s KC-Agents prototype was extended in order to adapt to the new re-
quirements; namely the initial separation of protocol and strategy definitions and the 
final combination in one Jess rulebase. So far, KC-Agents were limited in receiving 
one file containing both strategy and protocol; hence it was the programmer’s respon-
sibility to merge them. Each time a new behavior was needed, a new file containing 
both (new) strategy and protocol should be provided. Yet, a new agent model was 
added in the prototype based on this study. The extended KC-Agents agent derives 
two separated files one for the protocol and one for the strategy. Hence, whenever 
protocol or strategy is modified, no extra programming cost is needed. The agent will 
retrieve the appropriate (new) files from the corresponding repositories. The trans-
formation and merge of them will be executed automatically. Following this approach 



new behaviors and protocols can be added to the private and public repositories, re-
spectively, for future use. Agents will automatically use them when needed. In this 
context, the new agent model contains a function that retrieves the appropriate XSLT 
(from another repository) and uses it in the protocol-strategy fusion process (Fig. 5). 

4 Use Case 

A use case scenario based on the FIPA Contract Net Interaction Protocol is presented 
here in order to clarify why protocols and strategies should be separated and how an 
automated combination procedure will save time and programming effort. It is im-
plemented in EMERALD and involves four parties; an initiator and three participants 
(Fig. 3) who comply with the new KC-Agents; hence protocol and strategy will com-
bine automatically according to the XSLT transformation procedure. The Initiator 
agent is interested in the best offer for a laptop. It is aware of three potential e-shops, 
which are represented by the participant agents. First of all, it has to get the appropri-
ate protocol in RuleML from the public repository. Hence, the Initiator following the 
protocol sends a CFP (Call-for-proposal) message containing the name of the product 
and a desired price to them in order to initiate the negotiation procedure. Next, it waits 
for their response, which could be either positive (PROPOSE) or negative (REFUSE). 
A positive response however is not a strict acceptance but rather a price proposal. 
Hence, the Initiator has to evaluate the offers and ignore the refusals. Next, it has to 
accept one by sending back an ACCEPT message whereas REJECT messages should 
be sent to the rest. The above rules are defined by the protocol since they refer to 
message exchange. The decision making however is defined in the private strategies.  

The Initiator’s strategy for instance determines the agent’s main restriction; the 
price offered by a participant should be lower than the price the Initiator is willing to 
pay. That price for the Initiator is the firstly indicated price in the CFP (here 300 Eu-
ros) plus an amount (here 50 Euros). Hence, if none of the participants fulfill this 
restriction, the Initiator will reject all of them. On the other hand, each participant has 
a list (set of facts called Products) that contains their available products accompanied 
with the product type (e.g. laptop) and its price (e.g. 500 Euros). For instance, such a 
product is described in JESS syntax as: (products (type laptop)(price 200)). A com-
prehensible flow of rule activation, triggering and execution for this use case is pre-
sented in Fig. 7. The same principles can also be applied in other interaction scenari-
os. Using EMERALD and its KC-Agents prototype we activated the four agents de-
fining two files, one for the protocol and one for the strategy. Following the CNET 
protocol a straight-forward procedure is performed from the first call to the final ac-
ceptance. Here, the transaction was successfully completed when the Initiator chose 
the participant called p by sending an Accept Proposal message, as presented in the 
EMERALD’s execution diagram (Fig. 7). Furthermore, participant p sent back an 
inform message which according to FIPA specifications is needed in order to verify 
that the final decision is received.  

Finally, it is worth mentioning that Reaction RuleML enables two types of rules, 
namely production and reactive. Production rules are used for agents’ private strategy 



allowing them to act according to their user’s will whereas reactive rules are used for 
the protocol (Fig. 6) allowing agents to adjust to their partner’s behavior based on 
events related to message exchanges. Below is presented shortly a reactive (protocol) 
rule example in JESS syntax due to space limitations, where a participant when re-
ceives a CFP message, it posts it as a fact in the agent’s internal KB. Notice how the 
rules interact through a predefined set of fact templates that play the role of API (here 
callforp). All RuleML files used are available at http://tinyurl.com/usecase-ruleml. 

(defrule receive-cfp  
 ACLMessage(communicative-act CFP)…(protocol fipa-contract-net)) 
 => 
(assert (callforp (cfp_content ?c)……(cfp_cid ?cid))) 
(modify ?p_start_state (state p_check_state) (state_id ?cid))) 

Fig. 6. Reactive Rule (Protocol): Participant receives a call 

PARTICIPANT AGENTINITIATOR AGENT

Reactive Rule (PROTOCOL)
 Result: CFP Messages

Reactive Rule (PROTOCOL)
 Result: Receive CFP

INITIATOR’S KNOWLEDGE BASE INITIATOR’S BEHAVIOR PARTICIPANT’S KNOWLEDGE BASEPARTICIPANT’S BEHAVIOR

Productive Rules (STRATEGY)
Result: call evaluation

(negatively or positively)

Reactive Rule (PROTOCOL)
 Result: Send PROPOSE or 

REFUSE message

Basic Knowledge Facts 
Trigger Facts

PROPOSE or REFUSE info

Expected number of messages.
Facts containing receiving info.

Cheaper offer (provider’s data).
Rest offers.

Prepare messages info 
(ACCEPT-PROPOSAL/REJECT)

Fact containing Initiator’s 
ACCEPTANCE data  

INFORM-DONE or INFORM-
FAILURE info

Fact containing Initiator’s data

Productive and Reactive 
Rules 

Productive and Reactive 
Rules

Reactive Rules  (PROTOCOL)
 Result: Receive expected 

number of messages (either 
negative or positive)

Productive Rules (STRATEGY)
Find cheaper offer.

Evaluate it. 
Meets requirements?

 YES->ACCEPT/NO->REJECT 

Reactive Rule (PROTOCOL)
 Result: Send messages

Reactive Rule (PROTOCOL)
 Result: Receive ONLY 
ACCEPT-PROPOSAL 

Ignore the rest

Basic Knowledge Facts 
Trigger Facts

Productive Rules (STRATEGY)
Evaluate ACCEPT-PROPOSAL  

Prepare response 
(INFORM-DONE/INFORM-

FAILURE)

Reactive Rule (PROTOCOL)
 Result: Send INFORM-DONE 

or FAILURE message 

PROPOSE or REFUSE 
message

Prepared messages
(ACCEPT-PROPOSAL/

REJECT)

Prepared messages
(INFORM-DONE / INFORM-

FAILURE)

 
Fig. 7. Scenario overview and message exchange in EMERALD 



5 Related Work 

A work that automates price negotiations in e-commerce transactions using a rule-
based implementation is presented in [1]. It is based on JESS and the JADE frame-
work. It concerns only price negotiation rather than a more generic protocol. Our 
work on the other hand concerns modeling a reusable procedure that could be used 
not only in this case but also in any other protocol case. Additionally, although both 
approaches consider IAs and FIPA standards important for maximizing automation 
and efficiency in users’ everyday life only our approach complies with SW standards. 

Another related approach is the DR-CONTRACT [6] architecture for representing 
and reasoning on e-Contracts in defeasible logic. The architecture captures the notions 
relevant to execution and performance of e-Contracts in defeasible logics. It uses a 
RuleML extension and RDF/XML syntax for its exported conclusions. Hence, it uses 
SW standards like RDF and RuleML, similarly to our approach, whereas it is an ar-
chitecture focused on e-Contract procedures omitting separation of protocols and 
strategies, which is an important and challenging task for the field. 

Concerning interoperability, Rule Responder [5] is quite similar to EMERALD. It 
builds a service-oriented methodology and a rule-based middleware for interchanging 
rules in virtual organizations. It demonstrates the interoperation of distributed plat-
form-specific rule execution environments, with Reaction RuleML as a platform-
independent rule interchange format. It has a similar view of reasoning service for 
agents and usage of RuleML but it is not based on FIPA specifications. In other 
words, it is interested in interoperability, reusability and even protocol-strategy sepa-
ration, yet it doesn’t support IAs but rather web services acting like agents. 

6 Conclusions and Future Work 

The article argued that e-Commerce met a massive growth over the past years; with e-
Contracts like ordinary contracts to be the most common procedures in everyday life. 
However, they are rather complicated, since involved parties have to collect infor-
mation, negotiate and execute transactions. We addressed this problem by using intel-
ligent agents acting in the Semantic Web, as agents can perform the same tasks unsu-
pervised, relieving their users of time consuming processes. To this end, this article 
presented a modular and reusable framework using SW technologies, such as RuleML 
and RDF. We defined a knowledge-based negotiation procedure where protocols and 
strategies are separated enabling reusability and thus enabling agent participation in 
interaction processes without the need of reprogramming. In addition, an integration 
of this methodology into a multi-agent knowledge-based framework and a use case 
scenario that demonstrated the added value of the approach was also presented. 

As for future direction, our main interest is in extending the proposed framework to 
model more protocols, such as brokering, price negotiations and auctions. Our final 
goal is to provide a general-purpose framework for protocol-strategy separation in 
multi-agent environments, letting agents maximize their autonomy, flexibility and 
efficiency. Additionally, since agents not necessarily share the same logic or rule 



representation formalism, our intention is to provide a mechanism for automatic for-
malism transformation or interpretation.  

Acknowledgments 

This work is partially supported by the Greek R&D General Secretariat through a 
bilateral Greek-Romanian project. 

Rererences 

1. Badica C., Ganzha M., Paprzycki M.L: Implementing Rule-Based Automated Price Nego-
tiation in an Agent System. J. of Universal Computer Science, 13(2), pp. 244-266 (2007) 

2. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A white Paper. EXP in search of 
innovation, 3(3), 6-19 (2003) 

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Maga-
zine,284(5), 34-43 (2001) (Revised 2008) 

4. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of Web 
Rules. 4th International Web Rule Symposium: Research Based and Industry Focused 
(RuleML’10), Springer vol .6403, pp 162-178 (2010) 

5. Boley, H., Paschke, A.: Rule responder agents framework and instantiations. Semantic 
Agent Systems, Studies in Computational Intelligence, Vol. 344, pp. 3–23 (2011) 

6. Governatori G., Hoang D. P..: A Semantic Web Based Architecture for e-Contracts in De-
feasible Logic. In Int. Conf. on Rules and Rule Markup Languages for the Semantic Web 
(RuleML-2005), Springer-Verlag, LNCS 3791, pp. 145 - 159, Galway, Ireland (2005) 

7. Governatori, G., Rotolo, A.: Modelling contracts using RuleML. In Legal Knowledge and 
Information Systems. Jurix 2004, pp. 141–150. IOS Press, Amsterdam (2004) 

8. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems, 16(2), 30-37 (2001) 
9. JESS, the Rule Engine for the Java Platform (2008) Available at 

http://www.jessrules.com/. 
10. Kravari, K., Kastori, G.-E., Bassiliades, N., Governatori, G.: Contract Agreement Policy-

Based Workflow Methodology for Agents Interacting in the Semantic Web. Semantic Web 
Rules, Proc. 4th Int. Web Rule Symposium (RuleML 2010), LNCS, Vol. 6403, 225 – 239. 
Springer, Berlin/Heidelberg (2010) 

11. Kravari, K., Kontopoulos, E., Bassiliades, N.: EMERALD: A multi-agent system for 
knowledge-based reasoning interoperability in the semantic web. In Artificial Intelligence: 
Theories, Models and Applications, 6th Hellenic Conference on Artificial Intelligence, 
SETN 2010: LNCS, Vol. 6040/2010, 173-182. Springer, Berlin/Heidelberg (2010) 

12. Kravari, K., Kontopoulos, E., Bassiliades, N.: Trusted Reasoning Services for Semantic 
Web Agents. Informatica: Int. J. of Computing and Informatics, 34(4), 429-440 (2010) 

13. Laudon, K., Traver, C. G.: E-Commerce 2012 (8th ed.). Prentice Hall, New Jersey (2012) 
14. Resource Description Framework (RDF): Model and Syntax Specification (2004). Availa-

ble at http://www.w3.org/TR/PR-rdf-syntax/. 
15. Smith, R. G.: The contract net protocol: high level communication and control in a distrib-

uted problem solver. IEEE Transactions on Computer, 29(12), 1104-1113 (1980) 
16. FIPA Communicative Act Library Specification: Fipa Contract Net Interaction Protocol 

Specification, version H (2003). Available at http://www.fipa.org/specs/. 

http://www.citeulike.org/user/jucagi/author/Bellifemine:F
http://www.citeulike.org/user/jucagi/author/Caire:G
http://www.citeulike.org/user/jucagi/author/Poggi:A
http://www.citeulike.org/user/jucagi/author/Rimassa:G
http://www.w3.org/TR/PR-rdf-syntax/
http://www.fipa.org/specs/

	1 Introduction
	2 Overview
	2.1 FIPA Contract Net Interaction Protocol
	2.2 Separating Interaction Protocol from Agent Strategy
	2.3 Combining Protocol with Strategy

	3 EMERALD
	3.1 Extending KC-Agents prototype

	4 Use Case
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	Rererences

