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Abstract. Fuzzy Cognitive Map (FCM) technique is a combination of Fuzzy Logic and Artificial 
Neural Networks that is extensively used by experts and scientists of a diversity of disciplines, for 
strategic planning, decision making and predictions. A standardized representation of FCMs 
accompanied by a system that would assist decision makers to simulate their own developed Fuzzy 
Cognitive Maps would be highly appreciated by them, and would help the dissemination of FCMs. 
In this paper, a) a RuleML representation of FCM is proposed and b) a system is designed and 
implemented in Prolog programming language to assist experts to simulate their own FCMs.  This 
system returns results in valid RuleML syntax, making them readily available to other cooperative 
systems. The representation capabilities and the design choices of the implemented system are 
discussed and a variety of examples are given to demonstrate the use of the system.  
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1   Introduction 

Fuzzy Cognitive Map (FCM) is a formal method for making predictions and taking decisions, that 
is used by scientists from various disciplines. The success of the construction of an FCM is heavily 
depended on the degree of expertise of the domain experts involved in the FCM construction. Making 
decisions through FCM, requires the simulation of the FCM model, which is a hard task especially 
from those scientists that do not possess the necessary computer skills.  

Some of the major problems that concern nowadays FCMs are the following: 

a) Although many scientists create their own FCMs there is no solid and standard representation of 
them that would make them easily reusable and transportable. 

b) There is not any standard software that would simulate these FCMs, so every scientist has to 
create his own software system. 

c) No repository of FCMs exists to assist their dissemination. 

In this paper these problems are handled by developing an XML representation of FCMs, which is 
based on a popular rule interchange format for the web, namely RuleML (Boley, 2006), accompanied 
by a Prolog-based simulation system that can assist FCM authors to both create syntactically correct 
FCMs and simulate their scenarios in FCMs. The basic assumption that we make in this paper is that 
FCMs closely resemble rules, since they represent causality relations between concepts, something 
that matches with the logical implication semantics of rules. 

This study can provide additional dissemination of the use of FCMs because  

a) FCMs authors will have a tool to create and simulate FCM,  
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b) a RuleML repository of FCMs can be created that will help the concentration and distribution 
of FCMs and  

c) FCMs represented in RuleML will be able to be used in RuleML projects. Additionally, the 
results of the FCM simulation are stored in RuleML format, making easy their use by other 
systems.  

In this paper, a short introduction to FCMs and related literature is given in section 2. The 
representation capabilities of RuleML are presented and discussed in section 3. In section 4, the 
proposed extensions to RuleML in order to be able to represent FCMs are presented. The design of the 
Prolog-based simulation system that simulates FCMs represented in RuleML is discussed in section 5, 
followed by a section concerning the implementation and demonstration of the system’s capabilities. 
Finally, in section 7, a summary is presented, accompanied by a number of conclusions and 
recommendations for further research. 

2   Fuzzy Cognitive Maps and Related Literature 

Based on Axelord's work on Cognitive Maps (Axelrod, 1976), Kosko introduced in 1986, Fuzzy 
Cognitive Maps (FCMs) (Kosko, 1986, Kosko, 1992). FCMs are considered a combination of fuzzy 
logic and artificial neural networks and many researchers have made extensive studies on their 
capabilities (see for example (Khan et al., 2000, Khan & Quaddus, 2004, Stach et al., 2005, Taber et 
al., 2006, Tsadiras & Margaritis, 1997). An example of an FCM, concerning a car industry (Eberhart 
& Dobbins, 1990), is given in Figure 1.   
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Figure 1: An FCM concerning a car industry (modified version of original taken from 
Eberhart & Dobbins, (1990) 

 

FCMs create models as collections of concepts and the various causal relations that exist between 
these concepts. So in figure 1, the nodes represent the concepts that are involved in the model and the 
directed arcs between the nodes represent causal relationships between the corresponding concepts. 
The type of the causal relation between the two nodes is determined by the weight that each arc is 
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accompanied. A positive (negative) causal relation between two concepts iC  and jC  means that an 

increase of the activation level of concept iC  will increase (decrease) jC  and also a decrease of 

concept iC   will decrease (increase) jC .  

The level of activation of each concept iC  at time step t is determined by number t
iA , i=1,...,n with 

n to be the number of concepts of the FCM. We define ijw  as the weight of the arc that connects iC  

and jC . There is synchronous updating to the FCM system which means that 1+t
iA , i=1,...,n is 

calculated by one of the following formulas: 

i) 1+t
iA = Mf ( t
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using Recursive  Certainty Neurons (Tsadiras & Margaritis, 1997b) 
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is the function that was used for the aggregation of certainty factors at the MYCIN expert system  
(Buchanan & Shortliffe, 1984). 

 
Many years have passed since the pioneering work of Taber (1991) on FCM and this technique is 

still an active research field (Glykas, 2010). The applications of FCMs are numerous and scientists 
from a wide diversity of disciplines are studying and using them. For example FCMs were developed 
for analyzing success factors in retail industry (Büyüközkan & Vardaloğlu, 2012) and for the design of 
controls in business-to-consumer e-commerce systems (Lee & Ahn, 2009).  Lee & et al. (2012) used 
an FCM for personalized pricing of last minute theatre tickets, while Lee & Lee (2011), studied the 
creation of an Internet-based stock trading system, using an FCM. Kang et al. 2011, created an FCM 
for the relationship management in airline service. The privatization of a firm was studied by Çoban & 
Seçme (2005) using an FCM. Trappey et al. (2010), proposed the use of FCMs for RFID reverse 
logistic management while Kim et al. (2008), used an FCM for forward–backward analysis of RFID-
enabled supply chain. FCM models for the analysis in nuclear power reactors have been proposed by 
Espinosa-Paredes et al. (2009), while Ghaderi et al. (2012) proposed the application of FCMs for 
studying the electricity markets. 

 FCMs are also widely used in various areas of medicine. For example, Papageorgiou & Kannappan 
(2012) have applied FCMs to autism identification, while Giabbanelli et al. (2012) used them for 
studying the psychosocial determinants of obesity.  Lee et al. (2012) used FCMs for the selection of 
dental implant abutments while Stylios et al. (2008) proposed FCMs for creating medical decision 
support systems. John & Innocent (2005) used FCMs for modeling uncertainty in clinical diagnosis. 

Concerning political science, Andreou et al.  (2003) and Tsadiras et al. (2003), proposed FCMs as a 
Decision Support System for political Decisions. 

FCMs are also used in topics concerning ecology (Ramsey and Veltman, 2005, Hobbs et al., 2002) 
while their forecasting and decision making capabilities are presented in a number of studies e.g. the 
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forecasting of artificial emotions (Salmeron, 2012), the prediction of chaotic time series (Song et al., 
2010), multicriteria analysis (Salmeron et al. 2012). 

FCMs has also been used for web-mining inference (Lee et al., 2002) and for the navigation of 
mobile robots (Motlagh et al., 2012). 

Although there are many recent attempts toward training and learning of FCMs (Papageorgiou 
2012, Papakostas et al. 2012, Stach et al. 2012), the application of FCM technique to a wide variety of 
scientific areas makes crucial the development of a commonly used tool that can assist the creation 
and simulation of FCMs. Various attempts have been done towards the creation of such a tool.  For 
example: 

• FCM Constructor is a knowledge acquisition system that builds an FCM by direct knowledge 
acquisition (Cheah et al., 2011).  

• FCMapper is an FCM analysis and visualization tool based on MS Excel 
(http://www.fcmappers.net/).  

• The FCM Designer Tool is a tool in Spanish which allows the design of the structure of the 
FCMs (Jose & Contreras, 2010). The tool handles casual relationships as rules. 

• The Fuzzy Cognitive Map applet is an on line calculator and downloadable Java application 
for FCM computations (http://www.ochoadeaspuru.com/fuzcogmap/index). 

• A Java standalone library for FCM computations exists in http://jfcm.megadix.it/. 
• FCModeler tool is a Java interface that reads and displays data from an Excel spreadsheet of 

links and nodes (Dickerson  et al., 2001). 
• A Java software design for a fuzzy cognitive map modeling tool exists in (Mohr, 1997). 

An FCM tool should not only assist the creation and simulation of FCMs but it should also facilitate 
knowledge sharing and reuse of this knowledge in order to deal with semantic interoperability between 
different systems. Jung (2012) proposed ontological Cognitive Maps (ontoCM) as an extension to 
Cognitive Maps that additionally provides semantic information by ontology that is organized on a 
tree-like hierarchical structure. The semantics of FCMs for the modeling and simulation of complex 
social, economic and political systems are studied by Carvalho (2012). In our study, we propose the 
use of RuleML for the representation of FCM that promotes interoperability between different systems 
and reuse of knowledge. 

3   Representation Capabilities of Rules and RuleML  

Rule-based systems have been extensively used in several applications and domains, both in academia 
and industry, such as e-commerce, personalization, games, medicine, etc. They offer a simplistic 
model for knowledge representation for both domain experts and programmers; experts usually find it 
easier to express knowledge in a rule-like format and programmers usually find rule-based 
programming easier to understand and manipulate, decoupling computation from control. The first is 
performed by the rules whereas the latter is determined by the rule engine itself, that is when and how 
to apply the rules. In that way, it is more easily to add new rules or data, especially in continuously 
changing environments. 

Nowadays, the Web has evolved in a large repository of information and has become a useful 
means of communication and knowledge sharing. Rules on the Web come in various formats and with 
diverse packaging (Boley, 2007). Often, however, the semantics of Web-distributed rule content are 
compatible. In such cases, rulebases can be reused with an interchange technology consisting of a 
family of canonical rule languages and bi-directional translators between canonical languages and the 
languages to be interchanged. The need for Web rule interchange has been increasing with the amount 
of business rules (incl. policies, regulations, laws), in many domains (e.g. finance, engineering, and 
healthcare) on the Web (Ross, 2009). 

The Rule Markup Language (RuleML) is a markup language designed for the interchange of the 
major kinds of Web rules in an XML format that is uniform across various rule languages and 
platforms (Boley, 2006). RuleML was developed to express both forward (bottom-up) and backward 
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(top-down) rules in XML for deduction, rewriting, and further inferential-transformational tasks. The 
specification of RuleML constitutes a modular hierarchical family of Web sublanguages, whose root 
accesses the language as a whole and whose members identify customized, combinable subsets of the 
language. Each of the family’s sublanguages has an XML Schema definition, addressed by a URI, 
which permits inheritance between sublanguage schemas and precise reference to the required 
expressiveness. The RuleML family’s top-level distinctions are derivation rules, queries, and integrity 
constraints as well as production and reaction rules. 

Logic rules are in the form A→Β, whereas A is called antecedent or condition of the rule, while B is 
the consequent or the conclusion of the rule. The usual semantics of a rule is that whenever the 
condition is true, then the conclusion is also true. In other words, the existence of the antecedent 
causes the existence of the consequent (assuming that existence of something in an e.g. database is 
equivalent to being true). 

Fuzzy cognitive mapping (Kosko, 1986) is an extension of cognitive mapping (Axelrod, 1976), 
which is based on graph theory. An FCM consists of factors (concepts / nodes) which represent the 
important elements of the mapped system. The directed weighted arcs show the strength of the causal 
relationships between the factors. Therefore, it is natural to think of rules as a way to represent these 
causal relationships between concepts. Other scientists also followed this idea, e.g. the FCM system of 
Jose & Contreras, (2010) handles casual relationships as rules.The concept nodes are equivalent to 
things being true, whereas the directed arc is equivalent to the implication operation of a rule between 
the concepts.  

For this reason, we have chosen a rule-based representation of FCMs as a basis for a standard 
representation language. Furthermore, we have chosen RuleML, a de-facto web rule standard, as a 
candidate language for representing and exchanging FCMs on the Web. To this end, we have slightly 
modified the RuleML standard, in order to cover all the representational requirements of FCMs. This 
is detailed in the next section. 

4  RuleML representation of FCMs 

As it is discussed in section 2, an FCM contains a number of arcs that represent causal relationships 
between the concepts of the FCM. All these relationships are of the following form: 

Concept1 “influences” Concept2 “with weight” W. 

Having justified the isomorphism between causal relationships and rules in the previous section, in 
this section we detail how FCM causal relationships are being represented in RuleML as rules. The 
above abstract relationship is represented as follows (in RuleML 1.01), using our mapping scheme: 

 

<Implies> 
 <if> 
  <Atom> 
   <op> 
    <Rel>Concept1</Rel> 
   </op> 
  </Atom> 
 </if> 
 <then> 
  <Atom> 
   <degree> 
    <Data>W</Data> 

                                                           
1 http://ruleml.org/1.0/  

http://ruleml.org/1.0/
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   </degree> 
   <op> 
    <Rel>Concept2</Rel> 
   </op> 
  </Atom> 
 </then> 
</Implies> 

 

Notice that since concepts in FCM are atomic with no parameters, the equivalent atoms in RuleML 
need not have arguments, so rules are in propositional logic. As an example, the arc between concepts 
C2:“Customers Satisfaction” and C3:“High Sales” with weight 0.7 in figure 1, which is presented by 
the following causal relationship: 

Customers Satisfaction influences Sales with weight 0.7, 

is represented by the following RuleML rule: 
 

<Implies> 
 <if> 
  <Atom> 
   <op> 
    <Rel>customers satisfaction</Rel> 
   </op> 
  </Atom> 
 </if> 
 <then> 
  <Atom> 
   <degree> 
    <Data>0.7</Data> 
   </degree> 
   <op> 
    <Rel>sales</Rel> 
   </op> 
  </Atom> 
 </then> 
</Implies> 

 

Of course, in order to represent a complete FCM with N arcs/causal relationships, we need a 
RuleML rulebase with N rules as the above. Furthermore, the representation of an FCM also requires 
statements like the following: 

Concept “is set to” Value. 

Statements like the above mean that the activation level of the specific concept should be kept 
steady to that certain value through the whole simulation process. In RuleML these statements can be 
represented as facts about concepts referred to by rules, in the following manner: 

 

<Atom dynamic="false"> 
 <degree> 
  <Data>Value</Data> 
 </degree> 
 <op> 
  <Rel>Concept</Rel> 
 </op> 
</Atom> 
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Notice that the dynamic attribute is introduced in this paper to the RuleML schema in order to 
capture the dynamic/static nature of concepts/facts during the simulation process of FCMs. So, for 
example, to represent in RuleML that “foreign competition is set to 0.8” or “foreign competition is set 
to high”, the following RuleML code is needed. 

 
<Atom dynamic="false"> 
  <degree> 
    <Data>0.8</Data> 
  </degree> 
  <op> 
    <Rel>foreign competition</Rel> 
  </op> 
</Atom> 
 

<Atom dynamic="false"> 
  <degree> 
    <Data>high</Data> 
  </degree> 
  <op> 
    <Rel>foreign competition</Rel> 
  </op> 
</Atom> 

 
 

A similar representation is required in FCM, for statements like the following: 

Concept “is initially set to” Value. 

Statements like the above mean that the activation level of the specific concept initially (at time step 
0) is set to the specific value and afterwards, the concept is free to interact with other concepts and to 
change this value accordingly. In RuleML such statements are presented by facts, setting the 
dynamic attribute to true: 

 

<Atom dynamic="true"> 
  <degree> 
    <Data>Value</Data> 
  </degree> 
  <op> 
    <Rel>Concept</Rel> 
  </op> 
</Atom> 
 

So for example, to represent in RuleML that “satisfaction is initially set to 0.3” or “satisfaction is initially set 
to low”, the following RuleML code is needed. 

 

<Atom dynamic="true"> 
  <degree> 
    <Data>0.3</Data> 
  </degree> 
  <op> 
    <Rel>satisfaction</Rel> 
  </op> 
</Atom> 
 

<Atom dynamic="true"> 
  <degree> 
    <Data> low </Data> 
  </degree> 
  <op> 
    <Rel>satisfaction</Rel> 
  </op> 
</Atom> 

 
 

Other parameters, described in section 2, that must be specified are: 

a) the type of transfer function that should be used through the simulation (either the mycin 
function for equation 1 or the recursive function for equation 2), 

b) the value of the decay factor d,  

In order to represent this global simulation parameter in RuleML, we extended the RuleML schema 
so that they can be declared in the header of the RuleML document: 
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<Assert trans-fun="TRANS_FUN" trans-fun-param="decay VALUE"> 

 

where TRANS_FUN is either mycin or recursive and VALUE is a decimal between 0 and 0.5. For 
example: 

 
<Assert trans-fun="mycin" trans-fun-param="decay 0.1"> 

 

Having defined the above representation of FCM in RuleML, the FCM of Figure 1 can be presented 
as follows: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<RuleML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.ruleml.org/1.0/xsd 
http://dl.dropbox.com/u/3157468/fcm.xsd"  

   xmlns="http://www.ruleml.org/1.0/xsd"> 
 <Assert trans-fun="mycin" trans-fun-param="decay 0.1"> 
  <!--  Rules of an FCM concerning a car industry. --> 
  <!--  Rule 1 profits influences strikes with weight 0.8. --> 
  <Implies> 
   <if> 
    <Atom> 
     <op> 
      <Rel>profits</Rel> 
     </op> 
    </Atom> 
   </if> 
   <then> 
    <Atom> 
     <degree> 
      <Data>0.8</Data> 
     </degree> 
     <op> 
      <Rel>strikes</Rel> 
     </op> 
    </Atom> 
   </then> 
  </Implies> 
<!--  Rule 2 profits influences foreign competition with weight 0.9.. --> 
  <Implies> 
   <if> 
    <Atom> 
     <op> 
      <Rel>profits</Rel> 
     </op> 
    </Atom> 
   </if> 
   <then> 
    <Atom> 
     <degree> 
      <Data>0.9</Data> 
     </degree> 
     <op> 
      <Rel>foreign competition</Rel> 
     </op> 
    </Atom> 
   </then> 
  </Implies> 
<!--  Rule 3 customers satisfaction influences sales with weight 0.7.. --> 
  <Implies> 
…. 
… 
… 
  </Implies> 
<!-- Rule 21 low prices influence foreign competition with weight -0.5.--> 
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  <Implies> 
   <if> 
    <Atom> 
     <op> 
      <Rel>low prices</Rel> 
     </op> 
    </Atom> 
   </if> 
   <then> 
    <Atom> 
     <degree> 
      <Data>-0.5</Data> 
     </degree> 
     <op> 
      <Rel>foreign competition </Rel> 
     </op> 
    </Atom> 
   </then> 
  </Implies> 
  <!--  fact 1. foreign competition is set stable to 0.5. --> 
  <Atom dynamic="false"> 
   <degree> 
    <Data>0.5</Data> 
   </degree> 
   <op> 
    <Rel>foreign competition</Rel> 
   </op> 
  </Atom> 
  <!--  fact 2.profits are set initially to 0.3. --> 
  <Atom dynamic="true"> 
   <degree> 
    <Data>0.3</Data> 
   </degree> 
   <op> 
    <Rel>Profits</Rel> 
   </op> 
  </Atom> 
 </Assert> 
</RuleML> 

Figure 2: RuleML representation of FCM shown in figure 1. 

 

Finally, in figure 3, we present the schema file for the RuleML-FCM representation, which is 
actually a minimal reconfiguration of the RuleML 1.0 schema. 

 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"  
 xmlns:ruleml="http://ruleml.org/spec"  
 targetNamespace="http://ruleml.org/spec"> 
  <xs:redefine schemaLocation="http://www.ruleml.org/1.0/xsd/datalog.xsd"> 
    <xs:attributeGroup name="Atom.attlist"> 
      <xs:attributeGroup ref="ruleml:Atom.attlist"/> 
      <xs:attribute name="dynamic" type="xs:boolean" use="optional" default="true"/> 
    </xs:attributeGroup> 
    <xs:attributeGroup name="Assert.attlist"> 
      <xs:attributeGroup ref="ruleml:Assert.attlist"/> 
      <xs:attribute name="trans-fun" type="xs:string" use="optional"/> 
      <xs:attribute name="trans-fun-param" type="xs:NMTOKENS" use="optional"/> 
    </xs:attributeGroup> 
  </xs:redefine> 
</xs:schema> 

Figure 3: RuleML-FCM schema. 
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5. Design of the RuleML-FCM simulation system  

Having represented the FCM in RuleML, the next step is that of simulating the represented FCM. 
The stages for the simulation of scenarios imposed to FCMs, are shown in figure 4. 

 

RuleML file FCM.xslt file

XSLT Processor

.fcm file

FCM Simulation 
in Prolog 

Stage 1

Stage 2

InputUSER

Output text file of 
simulation data

On screen 
results of FCM 

simulation

OutputUSER

RuleML-
FCM 

System

.fcm file

 

Figure 4. Stages for the simulation of FCM represented in RuleML 
 

In stage 1 of the simulation system a) the RuleML file that represents the FCM and b) the XSLT file 
of Figure 5, are inputted to an XSLT processor which performs an XSL transformation and produces 
at the output an FCM text file having statements of the forms shown in figure 6.  

 
<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns:n="http://www.ruleml.org/1.0/xsd"> 
 <xsl:output method="text" version="1.0" encoding="UTF-8" indent="yes"/> 
 <xsl:template match="/"> 
  <xsl:apply-templates select=".//n:Assert"/> 
 </xsl:template> 
 <xsl:template match="n:Assert"> 
 use <xsl:value-of select="@trans-fun"/> with <xsl:value-of select="@trans-fun-
param"/> . 
 <xsl:apply-templates select="n:Implies"/> 
  <xsl:apply-templates select="n:Atom"/> 
 </xsl:template> 
 <xsl:template match="n:Implies"> 
  <xsl:value-of select="n:if//n:Rel"/> influences <xsl:value-of 
select="n:then//n:Rel"/> with weight <xsl:value-of select="n:then//n:degree/n:Data"/> 
. 



11 

 </xsl:template> 
 <xsl:template match="n:Atom"> 
  <xsl:value-of select=".//n:Rel"/> is set <xsl:choose><xsl:when 
test="@dynamic='true'"> initially to </xsl:when><xsl:otherwise> stable to 
</xsl:otherwise></xsl:choose><xsl:value-of select=".//n:degree/n:Data"/> . 
 </xsl:template> 
</xsl:stylesheet> 

Figure 5: XSLT file for transforming the RuleML representation to a textual FCM 
representation. 

 

Concept1 “influences” Concept2 “with weight” W. 

Concept “is set to” Value. 

Concept “is initially set to” Value. 

“use” mycin/recursive “ with decay” D . 

Figure 6. Generic statements in the textual FCM file. 

 

Using the above transformation in stage 1, the RuleML representation of the FCM of figure 2 will 
transformed to that shown in figure 7, and it will be saved to an .fcm file. It is apparent from figure 7, 
that the FCM in the .fcm file is represented to a format close to natural language, which makes more 
intuitive the interactions that exists in it.  

 

profits influences strikes with weight 0.8. 
profits influences foreign competition with weight 0.9. 
customers satisfaction influences sales with weight 0.7. 
customers satisfaction influences foreign competition with weight -0.4. 
sales influences profits with weight 0.98. 
sales influences  customers satisfaction with weight 0.6. 
sales influences foreign competition with weight -0.4. 
strikes influences profits with weight -0.4. 
strikes influences  customers satisfaction with weight -0.3. 
strikes influences foreign competition with weight 0.7. 
safe cars influences customers satisfaction with weight 0.8. 
safe cars influences foreign competition with weight 0.3. 
safe cars influences low prices with weight -0.5. 
foreign competition influences sales with weight -0.8. 
foreign competition influences strikes with weight -0.7. 
foreign competition influences safe cars with weight 0.3. 
foreign competition influences low prices with weight 0.3. 
low prices influences customers satisfaction with weight 0.8. 
low prices influences profits with weight 0.7. 
low prices influences strikes with weight -0.4. 
low prices influences foreign competition with weight -0.5. 
 
foreign competition is set to 0.5. 
use mycin with decay 0.1. 

Figure 7. Content of the .fcm file containing the transformation of the RuleML 
representation of the FCM shown in figure 1  
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5.1 Design of the Prolog subsystem of the RuleML-FCM simulation system 

To execute the FCM represented in the form of figure 6, a program written in the Prolog 
programming language (Bratko, 2000) has been created. The main reasons for choosing Prolog are: 

a) Statements of figure 7 resemble logical facts of the Prolog language.  

b) Statements of figure 7 suit the declarative nature of Prolog. 

c) Prolog has been used successfully in Natural Language Processing (Sharp, 1991). 

d) The grammar of the statements in figure 7 can be directly handled by Prolog. This 
grammar, written in valid Prolog syntax, appears in figure 8. 

 

statement-->concept,[influences],concept,[with,weight],value. 
statement-->concept,[is,set,to],value. 
statement-->concept,[is,initially,set,to],value. 
 
statement-->[use,mycin,with,decay],number05. 
statement-->[use,recursive,with,decay],number05. 
 
concept-->[X]. 
concept-->[X],concept. 
 
value-->[X],{number(X)},{X=<1}, {-1=<X}. 
value--> [X], {member(X,[low,average, high])}. 
value-->[very,high]. 
value-->[very,low]. 
 
number05--> [X],{number(X)},{X=<0.5}, {0=<X}. 

Figure 8. Grammar of statements in figure 7 

 

In the above grammar: 

a) “Concept” is defined as a series of one or more words. 

b) “Value” is considered either any number in the interval [-1,1], or a linguistic value such as 
“very low”, “low”, “average”, “high” and “very high”. These linguistic values during 
execution are translated to the values 0.1, 0.3, 0.5, 0.7, 0.9, respectively. 

c) Decay factor is allowed to have a numerical value in the interval [0, 0.5]. 

The above syntax contains all the necessary facilities for parsing the textual FCM output file created 
in stage 1 of the system, but also bears certain restrictions in order to prevent the user from 
representing ambiguities or introducing misunderstandings. 

The simulation of the FCM is performed in stage 2 of the system (see figure 2) by the developed 
Prolog application. A preliminary version of this application was presented in (Tsadiras, 2008). FCM 
can reach a) an equilibrium point, b) a limit circle periodical behaviour or c) a chaotic behaviour 
(Tsadiras & Margaritis 1999)]. If an equilibrium point is reached, i) the activation levels of all FCM’s 
concepts at equilibrium are shown on the computer screen, ii) these activation levels are saved to an 
output file in a RuleML format as a set of facts, to make them available for use by other systems and 
iii) the activation levels of the concepts of the FCM model through the transition phase towards this 
equilibrium point are saved in a “.txt” data file for possible further examination. If the FCM reaches a 
limit circle behaviour or a chaotic behaviour then the system simulates 10000 time steps of interaction 
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and saves the activation levels of the concepts of the FCM model through these 10000 time steps to a 
“.txt” file for further examination to a graph plotting software tool.  

6. Implementation and Demonstration of the RuleML-FCM Simulation System 

The RuleML-FCM simulation system is implemented in SWI-Prolog (http://www.swi-prolog.org/), 
following the design described in section 5. To demonstrate its implementation, the FCM of figure 1 
will be used, that imposes scenario #1. According to this scenario, “lower price is set to 0.3” so it 
attempts to predict the consequences of a small decrease at the prices of the cars, by the car industry. 
To examine this scenario, the RuleML representation of FCM of figure 1(as shown in figure 2) is 
saved to a file called ‘car_industry.ruleml’ and inserted to the RuleML-FCM system together with the 
fcm.xslt file of figure 5.  

The output of the system is shown in figure 9. Seven (7) different concepts are identified and one of 
them, concept “lower prices”, is set constant to 0.3. After 137 time steps, FCM reaches an equilibrium 
point to the state that is presented in figure 9.  

From that, we can conclude that the small decrease at the prices of the cars (0.3), leads to a 
significant increase to customers satisfaction (0.6452) and also to profits (0.57871). Sales are 
increased (0.31105) and the same applies to foreign competition (0.38398). There is a small pressure 
to create safer cars (0.24467) and a small increase to union claims (0.18821). 

The data of the interactions during the 137 time steps are saved to an output text file. This file can 
be processed by a graph plotting software tool and the transition phase towards equilibrium can be 
exhibited. This transition phase for the case above is shown in figure 10. 

Additionally, a RuleML output file is created, as shown in figure 11, containing the activation levels 
of all FCM’s concepts at equilibrium point, represented as RuleML facts. This facilitates the use of 
FCM’s results by other systems, using the common RuleML representation. 
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Figure 9: Output of RuleML - FCM simulation system for an FCM concerning a Car 
Industry. Scenario #1: Lower Prices is set to 0.3. Equilibrium reached after 137 time steps 

 

 

Figure 10. Transition phase towards equilibrium for scenario #1. 
 

<RuleML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
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 xsi:schemaLocation="http://ruleml.org/spec  
    http://dl.dropbox.com/u/3157468/fcm.xsd"  
 xmlns="http://ruleml.org/spec"> 
  <Assert> 
    <Atom> 
      <degree><Data>0.38398</Data></degree> 
      <op><Rel>foreign competition</Rel></op> 
    </Atom> 
    <Atom> 
      <degree><Data>0.3</Data></degree> 
      <op><Rel>lower prices</Rel></op> 
    </Atom> 
    <Atom> 
      <degree><Data>0.18821</Data></degree> 
      <op><Rel>union raises</Rel></op> 
    </Atom> 
    <Atom> 
      <degree><Data>0.57871</Data></degree> 
      <op><Rel>profits</Rel></op> 
    </Atom> 
    <Atom> 
      <degree><Data>0.6452</Data></degree> 
      <op><Rel>customers satisfaction</Rel></op> 
    </Atom> 
    <Atom> 
      <degree><Data>0.26467</Data></degree> 
      <op><Rel>safer cars</Rel></op> 
    </Atom> 
    <Atom> 
      <degree><Data>0.31105</Data></degree> 
      <op><Rel>sales</Rel></op> 
    </Atom> 
  </Assert> 
</RuleML> 

Figure 11. RuleML output file representating the activation levels of FCM’s Transition phase 
towards equilibrium for scenario #1. 

 

Other “what-if” scenarios can be checked with the system, in order the decision maker to examine 
the predicted outcomes according to the FCM. Let’s imagine that we would like to predict the 
consequences of a moderate increase to “customers satisfaction”. To simulate this scenario, concept 
“customers satisfaction” should be set constant to value “0.5”. 

Running this new scenario #2, the outcome is that of figure 11. Once again seven (7) different 
concepts are identified, and one of them, concept “customers satisfaction”, is set constant to 0.5. After 
211 time steps, FCM reached an equilibrium point, with the concepts to be activated to the degree 
shown in figure 12. It can be concluded that according to the FCM predictions, the moderate increase 
to customers satisfaction leads to small increase in sales (0.22355) and profits (0.30029). Prices 
remain almost the same (-0.05698), while there is very small increase to union claims (0.10462). 
There is small pressure to produce safer cars, and the foreign competition is increased (0.32231). A 
RuleML output file is created, containing the activation levels of FCM’s concepts at equilibrium. 
Additionally, an output text file is created, containing the data of the interactions during the 211 time 
steps. Figure 13 exhibits the transition phase towards equilibrium, based on this data.  
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Figure 12: Output of RuleML - FCM simulation system for an FCM concerning a Car 
Industry. Scenario #2: Customers satisfaction is set to 0.5. Equilibrium found after 211 time 
steps. 

 

 

Figure 13. Transition phase towards equilibrium for scenario #2. 
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Another scenario (scenario #3) is tried with the system, to examine the consequences of a decision 
to manufacture quite safer cars (“safer cars” is set stable to 0.5). Running this scenario in the system, 
the outcome is that of figure 14.  

 

 

Figure 14: Output of RuleML - FCM simulation system for an FCM concerning a Car 
Industry. Scenario#3:“Safer cars” is set to 0.5. 

 

No equilibrium point is found even after making 10000 time steps. Conclusions can only be drawn 
by studying the transition phase, which is saved in the output file. The transition phase according to 
the data of this output file is shown in figure 15. It is apparent that FCM exhibits damped oscillation 
behavior. From studying the values that concepts reach after the damped oscillations (shown in Table 
1) the various conclusions can be drawn. The construction of safer cars (0.5) leads to an increase in 
customers satisfaction (0.46296) and also to a small increase in sales (0.28915). On the other hand, 
there is an increase in prices (low prices=-0.3565) and in foreign competition (0.24235). Profits 
(0.05112) and union rises (0.04135) remain stable. The fact that this equilibrium point is reached after 
damped oscillation behavior and after a long transition phase, indicates that there are strong 
interactions between the concepts of the FCM, before they reach the equilibrium point.  

Table 1. Equilibrium point after damped oscillation behavior of scenario #3. 

Sales Safe 
Cars 

Customers 
Satisfaction Profits Union 

Rises 
Low 

Prices 
Foreign 

Competition 

0.28915 0.5 0.46296 0.05112 0.04135 -0.3565 0.24235 

 



18 

 

Figure 15. Transition phase of an FCM concerning a car industry for scenario #3. Damped 
oscillation behaviour is exhibited. 

Scenarios can also run in the RuleML-FCM system by changing one or more weights of the 
connections between FCM’s concepts. For example, in scenario #4, is similar to scenario #3 (“safer 
cars” is set stable to 0.5) but in scenario #4 the weight of the influence of “safer cars” to “customer 
satisfaction” is 0.5, instead of 0.8 that is in scenario#3. In other words, scenario #4 examines how 
scenario #3 is affected by a change of the strength that “safer cars” influences “customers 
satisfaction”. Running this scenario in the system, the outcome is that of figure 16. 

 
Figure 16: Output of RuleML - FCM simulation system for an FCM concerning a Car 

Industry. Scenario#4:“Safer cars” is set to 0.5. “safer cars” influences “customer satisfaction” 
with weight 0.5 (instead of 0.8 that is in scenario#3). 
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After 295 time steps, FCM reached an equilibrium point, with the concepts to be activated to the 
degrees shown in figure 15. It can be concluded that according to the FCM predictions, the 
construction of safer cars (0.5) leads to a clear increase in prices (low prices=-0.49496). This can 
justify the decrease in sales (-0.24922) and profits (-0.59715). Customers are getting less satisfied (-
0.3942), and there is a decrease in both union raises (-0.29083) and foreign competition (-0.21212). 
The transition phase according to the data of the output file is shown in figure 17, exhibiting similar 
dynamic behaviour (damped oscillations) with that of scenario #3. A RuleML output file is also 
created, containing the activation levels of FCM’s concepts at equilibrium. 

 

 

Figure 17. Transition phase of an FCM concerning a car industry for scenario #4. 
Equilibrium reached after 295 time steps 

 

For the car industry, scenario #4 is much worse than scenario #3. It is interesting to notice that the 
results of the same action (construction of better cars) can lead to completely different outcome, even 
when a single interaction in FCM is changed (in scenario #4, “safer cars” influences “customer 
satisfaction” with weight 0.5, while in scenario #3 the weight of the same influence is 0.8). This 
indicates that: 

a) Experts should be very careful when they create an FCM. 

b) Decision makers, by using FCMs, can also be supported in their decisions by examining scenarios 
that involve the change of the weights between the interactions of the FCM’s concepts. 

c) Decision makers can also use results of FCM’s scenarios, in order to examine what structural 
changes should strategically be done, in order to reach the desired results. 

In the last scenario that is examined in this study (scenario #5), no concept is set to a specific level 
but all concepts are free to interact with each other. Imposing this scenario, the system returns the 
results of figure 18. No equilibrium point is reached after 10000 iterations. To examine the dynamical 
behaviour of this scenario, figure 19 is created based on the data of the output file. It is apparent that 
the FCM enters a limit cycle behaviour where all concepts are getting high and low periodically. For 
the car industry, it can be concluded that these concepts will constantly increase and decrease, 
meaning that there will be strong interactions in the car industry and no equilibrium for this scenario. 
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Figure 18: Output of RuleML - FCM simulation system for an FCM concerning a Car 
Industry. Scenario#5: All concepts are free to interact. 

 

 

Figure 19. Transition phase of an FCM concerning a car industry for scenario #5. Limit cycle 
behaviour is reached. 

 

More scenarios can be created and the predicted outcome will be immediately received. This is 
highly appreciated by decision makers that are willing to examine a number of “what-if” scenarios and 
check the predicted consequences of these scenarios. 

6. Summary – Conclusions 

After a short introduction to Fuzzy Cognitive Maps and RuleML, a RuleML representation of 
FCMs is proposed that make: 
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a) FCMs easily transferable and reusable. 
b) FCMs ready to interact with other systems that interact with RuleML. 
c) Easy the creation of a repository of FCMs, that is important for FCM researchers and 

practitioners. 
A system for simulating RuleML representation of FCMs is designed and implemented in order to: 
a) Simulate the scenario written in the form of the RuleML representation of FCM. 
b) Present the equilibrium point of the imposed scenario (if such a point exists). 
c) Produce a RuleML output file that contains the activation levels of FCM’s concepts at 

equilibrium. 
d) Produce an output file that contains the data of the transition phase to visualize it, if the user 

wants to. 
The use of the system above is illustrated using a number of examples, to prove its utility for 

decision makers working with FCMs. The main reasons for that are the facts that: 
a) The representation of FCMs in RuleML is simple. 
b) No programming skills are required to create and simulate FCMs. 
c) A number of different scenarios can be tested easily and quickly, having the decision maker 

focused on the FCM itself and not to computer technicalities. 
In the future we would like to work towards the following improvements to the usability of the 

system: 
• Integrate the various functionalities of the system into a single stand-alone web application that 

will help disseminate FCM research and development.  
• Create a repository of FCMs represented in RuleML in which web users will be able to import 

and export various FCMs. 
• Develop user-friendly editor(s) for building FCMs, such as a natural language interface to feed 

directly the Prolog simulator (e.g. in ACE (Fuchs et al., 2006)), and/or a graphical/visual 
RuleML-ware editor, as in (Kontopoulos et al., 2008). 

• Make the input and output data of FCM compliant to the linked open data initiative2 so that at 
least initial concept activations and concept activations at equilibrium can be interchanged with 
other systems using RDF triples. Of course, this step also requires the definition of an 
appropriate ontology, which should be properly linked with other scientific ontologies. 
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