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Abstract. We consider the problem of scheduling Electric Vehicle (EV)
charging within a single charging station aiming to maximize the number
of charged EVs, as well as the amount of charged energy. In so doing, we
propose one offline optimal solution using Mixed Integer Programming
(MIP) techniques, and two online solutions which incrementally execute
the MIP algorithm each time an EV arrives to the charging station. More-
over, we apply agent based negotiation techniques between the station
and the EVs in order to service EVs when the MIP problem is initially
unsolvable due to insufficient resources (i.e., requested energy, charging
time window). We evaluate our solutions in a setting partially using real
data, and we show that when applying negotiation techniques, the num-
ber of EVs charged increases on average by 7%, energy utilization by
6.5%, while there is only a small deficit (about 10%) on average agent
utility which is unavoidable due to the fact that the initial incremental
demand-response problem is unsolvable.

1 Introduction

Electric vehicles (EVs) are an efficient alternative to internal combustion en-
gined ones when it comes to running costs, environmental impact and quality
of driving. However, these advantages come with a certain cost, as EVs suffer
from short range and long charging times. In order such problems to be reduced,
a large number of charging stations with state of the art facilities (i.e., fast
chargers, or battery swappers) should exist. However, here there is a quandary
problem, as drivers will not buy EVs if charging stations are not available, and
companies, organizations, or even countries will not invest in charging facilities
unless many EV-customers exist.

In this paper, we claim that multi-agent systems can be proved useful in
partially solving such problems and making EVs popular. In particular, we study
a setting where EVs arrive at a single charging station and need to charge. The
EVs are self-interested agents that need to maximize their profit (i.e., maximize
energy charged and minimize waiting time), while the charging station aims to
maximize the number of serviced EVs and the utilization of the available energy.



To date, a number of papers trying to solve similar problems exist in the
literature [9]. For example, Bayram et al. [1] assumes a large number of charg-
ing points, each of them having pre-ordered a certain amount of energy. They
use a centralized mathematical programming algorithm to optimally allocate the
energy to EVs, so as to service the maximum number of EVs. The authors evalu-
ate the mechanism in a setting where both selfish (want to charge at the nearest
charging point), and cooperative EVs exist, and verify the performance of their
algorithms. In turn, [6] propose dynamic programming algorithms that schedule
the charging of EVs according to the availability of energy while guaranteeing
the intended journeys can be completed. They also show that their solutions
can adapt to fluctuations in energy generation from renewable sources thus in-
creasing EV penetration to the grid. Instead, in [4], agents state time windows
within which they will be available to charge, and bid for units of electricity
in a periodic multi-unit auction (one auction per time step). In order to ensure
truthfulness, the authors developed a mechanism that occasionally leaves units
of electricity unallocated (burned), even if there is demand for them. In addi-
tion, using more traditional agent-based negotiation techniques, Gan et al. [3],
implement an iterative procedure to allow EVs to negotiate the charging rate (at
different time points) with a utility company (that broadcasts a price signal to
control charging). Crucially, they show that, should the charging characteristics
of all EVs be known, an optimal solution is reached in a decentralized fashion.
Finally, the authors in [5] and [2] propose methodologies for coping with the
important problem of placing the charging stations in such places so that the
number of EVs they service can be maximized.

The common characteristic of the majority of the work in this field is that
the preferences of the EVs, once communicated to the charging station(s) are
taken for granted (e.g., to [1], [6], and [4]). In other words, the preferences of the
EVs do not change. The main difference of our approach is that here, we propose
an agent-based scheme where in case an EV’s preferences cannot be fulfilled, the
station can negotiate with it and suggest a different charging plan. In contrast to
[3], charging characteristics of all EVs are not assumed to be known. Note that,
negotiation techniques [7] have already been considered as an efficient method
to increase the participation of various actors within the smart grid [8].

We advance the state of the art as follows:

1. We propose an offline optimal solution to schedule the charging of EVs in a
single charging station aiming to maximize energy utilization and EV satis-
faction (i.e., number of serviced EVs).

2. We propose an online algorithm, which incrementally uses the aforemen-
tioned optimal formulation, for EV charging scheduling.

3. We extend the aforementioned algorithm with the ability to start a negoti-
ation procedure with the EVs (by making counter offers to them) in case a
charging plan based on their initial preferences cannot be calculated. In this
vein, we propose three algorithms for calculating the offers that are made to
the EVs during the negotiation procedure.



4. Finally, we empirically evaluate our proposed algorithms in a setting par-
tially using real data (renewable energy generation) and we prove the effi-
ciency of the negotiation technique in increasing EVs satisfaction and energy
utilization

2 Problem Definition

In this paper, we study a setting where a number of EVs arrive at a single
charging station over time and need to charge. We assume that each EV has
his own agent which communicates to the charging station the EV’s needs and
constraints and tries to satisfy them in the best possible way. In a real scenario,
such an agent could reside on the navigation system of the car. At the same
time, the charging station aims to serve as many clients as possible in order
to maximize its profit, as well as the total welfare of the agents. In so doing,
it takes into consideration its available resources (i.e., charging slots, available
energy (both renewable and non-renewable energy is assumed to be available to
the charging station)), as well as the EVs’ constraints.

In more detail, we denote the set of EV-agents ai ∈ A, and the charging
station c which has a number of charging slots sj ∈ S. Moreover, we assume a
set of discrete time points t ∈ T to exist. At each time point, the charging station
has et ∈ E energy units available for EV charging (note that, energy storage is
not supported). The number of charging slots, as well as the amount of energy
set an upper limit to the number of EVs that can charge simultaneously. Now, for

each EV we define a tuple pi =
〈
ai, t

sys
i , tarri , tdepi , emax

i , emin
i

〉
. In more detail,

upon its arrival to the system at time point tsysi , each EV i informs the charging
station about its arrival time at the station tarri ≥ tsysi (i.e., the EV can inform
the charging point about its preferences the time it arrives to it, or earlier), the

preferred departure time tdepi , as well as the maximum emax
i and minimum emin

i

energy that it prefers to charge.
Now, once an EV has informed the charging station about its preferences,

the station applies a scheduling algorithm to decide on its charging schedule. In
case, given the EV’s and station’s constraints, such a schedule is impossible to
be computed, the station begins a negotiation procedure with the EV, during
which a number of counter offers / suggestions are communicated to it. During
this procedure, the EV can either accept or reject the offers. This procedure is
presented in detail in Section 3.3.

3 EV Scheduling Algorithms

To solve the problem of EV charging scheduling, three approaches are considered.
In more detail, the charging station’s parameters (i.e., number of chargers, and
available energy) are assumed to be known in advance, while the EVs’ preferences
can either be known in advance (offline approach - see Section 3.1) or can be
made known dynamically (online approaches - see Sections 3.2, 3.3).



3.1 Offline Optimal Solution

In this section we present a centralized, static, optimal Mixed Integer Program-
ming (MIP) formulation of the problem (developed using IBM ILOG CPLEX
12.5) which is used for benchmarking purposes, but it also acts as an impor-
tant building block for the online algorithms presented in the following sections.
The aim of this formulation is to find the optimal charging plan such that both
the number of EVs serviced, and the amount of energy charged are maximized.
Thus, the objective function to be maximized (Equation 1) is a weighted sum
of these two values. The weights show the priority that the station gives to the
two values. The formulation contains two binary decision variables: 1) decision
variable ai,t ∈ {0, 1} denoting whether an EV i is charging at time point t, and
2) bi ∈ {0, 1} denoting whether an EV is serviced or not. The objective function
is maximized under a number of constraints:

Objective Function:

w1 ×
∑
ai∈A

∑
t∈T

ai,t + w2 ×
∑
ai∈A

bi (1)

where w1 + w2 = 1

Constraints:

∀ai ∈ A,

tdep
i∑

t=tarr
i

ai,t × bi ≤ emax
i (2)

∀ai ∈ A,

tdepv∑
t=tarr

v

ai,t × bi ≥ emin
i (3)

∀t,
∑
ai∈A

ai,t ≤ |S| (4)

∀t,
∑
ai∈A

ai,t ≤ et (5)

In more detail, every vehicle i must charge a number of energy units between
its minimum and maximum preferred values (Equations 2 and 3), while the
number of the vehicles that charge simultaneously must not exceed the total
number of charging slots (Equation 4). Finally, the total number of energy units
charged at one time point, should not exceed the total number of the available
energy units (Equation 5). From now on, we will refer to the MIP formulation
of the problem as Optimal which takes as input parameters all tuples pi∀ai.



3.2 On-Line Scheduling Algorithm without Suggestions

To this point, the number and the preferences of the EVs were assumed to be
known in advance. However, here, the EVs inform the charging station about
their preferences dynamically, the time they arrive at the system (see Algo-
rithm 1). Once the station receives a new charging request, it calls the optimal
scheduling algorithm giving as input the preferences of the new EV as well as
the charging plan of the EVs that have already arrived at the past, while con-
straints 6 and 7 are added to the MIP formulation. In more detail, the EVs
ai ∈ charged ⊆ A that have already been scheduled to charge (Equation 6) are
constrained to receive the number of energy units (i.e., etotali ) that was decided
the first time, within the predefined departure time (Equation 7). What can
change is the time points that the EV will actually charge. Regarding the new
EV, the charging station is free to decide whether or not it will be charged, as
well as the time points the charging will take place.

∀ai ∈ charged, bi = 1 (6)

∀ai ∈ charged, etotali =
∑
t∈T

ai,t (7)

Algorithm 1 Dynamic EVs Scheduling Algorithm Using MIP

for ∀t ∈ T do
for ∀ai ∈ A : tarri = t do
{All EVs arriving at t are assigned to set current.}
current← current + pi

end for
Call Algorithm 2(current)

end for
Return: ∀ai ∈ A, ai,t, e

total
i and charged

3.3 On-Line Approach with Suggestions

Similarly to the previous algorithm, here EVs’ preferences become available dy-
namically, the moment the EV arrives to the system. However, in addition to
what has been studied so far, here the charging station has the ability to make
counter offers / suggestions to the EVs in case it is impossible to cover their
needs as they are communicated to it at first. In more detail, once an EV arrives
at the system and communicates its needs to the station, it applies the optimal
scheduling algorithm as this has been described in Algorithm 1. In case a feasi-
ble solution does not exist and a schedule cannot be calculated, then the station
starts a negotiation procedure and makes a number of counter offers to the EV,
which can either be accepted or rejected (see Algorithm 3 and Figure 1). In order



Algorithm 2 EVs Scheduling Algorithm

Require: current
Call Optimal(current)
{Each EV that has charged and is not in set charged}
for ∀ai ∈ A do

if (bi = 1) AND (ai /∈ charged) then
charged← charged + ai

etotali =
∑

t∈T
ai,t

end if
end for
Return: (∀ai, t ai,t, e

total
i , bi) and charged

to capture the EV’s reply variable ri ∈ {0, 1} is defined which is actually drawn
from a probabilities distribution. In the next section, the algorithms that are
used in order to calculate the station’s suggestions to the EVs are presented.

Algorithm 3 EVs Scheduling Algorithm with Suggestions.

for ∀t ∈ T do
for ∀ai ∈ A : tarri = t do

current← current + pi
end for
Call Algorithm 2(current)
{For the EVs that couldn’t be scheduled for charging}
for (∀ai ∈ current : bi = 0) do

count = 4
while (accepted! = 1) AND (count ≤ 6) do
{We call Algorithms 4, 5, 6 consecutively (see Figure 1).}
Call Algorithm count
accepted = ri
count = count + 1

end while
end for

end for
Return: ∀ai ∈ A, ai,t, e

total
i and charged

3.3.1 Suggestions Calculation Algorithms Here, we describe how the
charging station calculates the offers made to the EVs during the negotiation
procedure. As one can see in Figure 1, this negotiation phase has up to three
steps. In each one, the station is making an offer to the EV, which can either be
accepted or rejected. This negotiation starts from the stations’ most preferred
solution, where the proposed amount of energy is identical to the original, thus
its utilization is maximized, but the charging time window is widened, then, at
the second step the time window remains the same but the amount of proposed
energy is reduced (the maximum available energy should be at least equal to the



Fig. 1. EV- Station Negotiation Procedure

minimum amount asked by the EV), and finally a totally different time window
but with the initially desired amount of energy is proposed to the EV.

1. Step 1: Here the station calculates a wider time window (see Algorithm 4)
in order to provide to the EV at least the minimum energy it has asked for.
In so doing, the station aims to widen the predefined time window until the
necessary energy becomes available. Firstly, the window is widen to the right
(i.e., future time points) and if enough energy is still not available, it is also
widen to the left, given that the EV’s arrival time to the system is different
(smaller) compared to the arrival time to the station. For every time point
that an available energy unit is found, variable energy ∈ N is increased by
one. If such a time window is not found, or the new time window has a not
acceptable ∈ {0, 1} duration (acceptable is defined by the user), or the EV
rejects the offer, the station goes to the next step.

2. Step 2: In case enough energy is not available within the time window defined
by the EV, the station calculates weather a smaller amount of energy
(see Algorithm 5) can be provided within these time limits. In so doing, the
station has already decided a percentage acceptable ∈ {0, 1} of the initial
energy within which an offer can be made to the EV. In other words, the
station searches within the time window if emin

i × acceptable energy units
are available. In case enough energy is not found, or the EV rejects the offer,
the station goes to the next step.

3. Step 3: Finally, the station can calculate a different time zone (see Algo-
rithm 6) for an EV to charge. In so doing, the time window within which the
EV will charge is shifted across the set of time points (constrained so as the
arrival time of the EV is not violated), while the tightness of the window is
also taken into consideration (i.e., the first and the last time points at which
an EV will charge should not be too far from each other). Note that, the
main difference with Algorithm 4 is that here the time window can be com-
pletely different compared to the initial one, while in 4 the initial window
acts as a pivot, and is always part of the offer.

4 Evaluation

We evaluate our algorithms according to execution times (see Section 4.1),
performance (i.e., EVs charged, EVs’ utility, and energy utilization) (see Sec-



Algorithm 4 Wider Window Calculation Algorithm.

Require: ∀i, pi, acceptable
{First widen window to the right. If desired energy not found, widen window to the
left. If acceptable window is found suggest to EV. Initial window acts as a pivot}
t′arri = tarri ; t′depi = tdepi ; found = 0; energy = 0
{The available energy in the initial time window is calculated.}
for (∀t ∈ T : (t ≥ tarri ) AND (t ≤ tdepi )) do

if (et > 0) AND (
∑

ai∈A
ai,t < |S|) {If enough energy and chargers exist} then

energy= energy + 1
end if

end for
{t′depi is increased by 1 until necessary energy found, or final time point is reached.}
while energy < emin

i do
t′depi := t′depi + 1;
if (et′end

i
> 0) AND (

∑
ai∈A

ai,t′end
i

< |S|) then

energy = energy + 1;
end if

end while
{t′arri is decreased by 1 until necessary energy is found, or tsysi is violated.}
while energy < emin

i do
t′arri := t′arri - 1;
if (et′end

i
> 0) AND (

∑
ai∈A

ai,t′end
i

< |S|) then

energy = energy + 1
end if

end while
{If energy is found and time window not too large.}
if (energy ≥ emin

i ) AND ((t′depi − t′arri )÷ (t′depi − t′arri ) > acceptable) then
found = 1;

end if
Return: t′arri , t′depi , energy, found

Algorithm 5 Less Energy Calculation Algorithm.

Require: ∀i, pi, acceptable
{Searches in given window how much energy is available. If more than acceptable
percentage, then suggest to EV.}
energy = 0
for (∀t ∈ T : (t ≥ tarri ) AND (t ≤ tdepi )) do
{If enough energy and chargers exist.}
if (et > 0) and (

∑
ai∈A

ai,t < |S|) then
energy= energy + 1

end if
end for
percentage = energy ÷emin

i

if percentage ≥ acceptable then
found = 1

end if
Return: energy, found



Algorithm 6 Another Time Zone Calculation Algorithm.

Require: ∀i, pi, acceptable
t′arri = tsysi , t′depi = tsysi − 1
{If the longest time window based on t′arri is large enough for the station to provide
the minimum required energy.}
energy = 0, penalty = 0
while (|T | − t′arri ) ≥ (emin

i ) do
while ((energy < emin

i ) and (t′depi < (|T | − 1))) do
t′depi = t′depi + 1 {Increase new window to the left}
if (et > 0) and (

∑
ai∈A

ai,t < |S|) then {If enough energy, chargers exist}
energy = energy + 1

else
penalty = penalty + 1

end if
end while
{If t′depi has reached the final time point, no window can be found}
if (t′depi = |T |) then

Break
else
{If a window containing the desired energy is found check if it sparse}
if (penalty ÷ (tdepi − tstarti + 1) ≤ acceptable) then

found = 1; break
end if

end if
{If a legitimate window was not found, increase start time by one and continue}
if (et′arr

i
> 0) and (

∑
ai∈A

ai,t < |S|) then
energy = energy − 1

else
penalty = penalty − 1

end if
t′arri = t′arri + 1

end while
Return t′arri , t′depi , found



tion 4.2), and sensitivity (i.e., dependence of the performance on the number of
charging slots) (see Section 4.3).

Throughout the evaluation, we assume the charging station to operate 24hours
a day (we want to show how the system operates in a full day) and 288 time
points to exist (i.e., 1 time point = 5 minutes - as our energy data was measured
every 5 minutes). Moreover, they are divided into 4 zones each one with 72 time
points where the zones are equivalent to: 1) morning to noon, 2) afternoon, 3)
evening to night, 4) early morning of the next day (the four main time zones
of the day). Also, the charging station has 5 chargers (this is a number that
fits our EVs data so as the scenario to be realistic). On top of this, we assume
that all EVs have the same charging rate, which is one unit of energy at each
time point. Moreover, EVs arrival times are generated by Gaussian distributions,
where the probability for an EV to arrive during the first and third time zones
is higher compared to the rest, and energy demand is generated by a uniform
distribution. Also, the weights in our objective function are 50-50, which means
that the station tries to maximize the serviced EVs and its profit with the same
priority. Finally, we use real data regarding energy production from renewable
energy sources (photovoltaic), generated by the International Hellenic Univer-
sity’s solar panel park. The data we used was the energy that was collected in
a single solar panel every five minutes. This data was measured in kilowatts per
hour. We assume that in every five minutes an EV uses 0.6kW/h (1 energy unit)
if for charging. Finally, the collected data is transformed from kW/h to energy
units, and it is multiplied by 5, as we also assume that the station contains five
solar panels (energy that fits the EVs data).

4.1 Execution Times

Execution time and scalability is a major factor in the usability of a given
scheduling algorithm. For this reason, here, keeping all parameters but the num-
ber of EVs fixed, we measure the execution time of both the online and the offline
algorithms. For a setting with 30− 300 EVs (see Figure 2), we could argue that
for the optimal algorithm the execution time increases linearly, while for the on-
line without suggestions increases exponentially with a rather low rate of growth,
while for the online with suggestion the execution time increases exponentially
with a rather large rate of growth. However, in the worst case, the average ex-
ecution time does not exceed the 100 secs, thus making even the online with
suggestions usable for large settings. Remember, that the online algorithms call
the optimal one incrementally when an EV arrives to the system, and therefore
their larger execution times were expected. Also note, that the online algorithm
with suggestions has an even larger execution time as it includes also the execu-
tion of the algorithms for calculating the suggestions. Finally, we should mention
that the execution time of the online algorithm with suggestions depends on the
number of EVs that accept an offer and the negotiation round that this happens,
as the calculation of the offers is time consuming (i.e., less calculation of offers
leads to lower execution time).



Fig. 2. Algorithms’ Execution Time

4.2 EV Satisfaction and Energy Utilization

Here, we evaluate the performance of our proposed algorithms in terms of EV
satisfaction (i.e., number of serviced EVs and average utility), as well as energy
utilization (see Figures 3, 4, 5 and Table 1). In terms of EV satisfaction, the
offline algorithm is better than the online one without suggestions. This was
expected given the fact that in the offline approach full knowledge of EV demand
is assumed to be known in advance. Now, in terms of energy utilization, the
gap between the two approaches is smaller, as even though the online algorithm
charges less EVs, it uses about the same amount of energy. This happens because
the online algorithm decides to charge more vehicles with high needs for energy
compared to the offline one. Thus, the station still has a good profit, but many
agents are unsatisfied. When it comes to the online algorithm with suggestions,
in settings with 30 - 100 EVs, is clearly ahead of the online without suggestions
and close to the optimal solution, while from 100 until 150 EVs remains ahead
of the online without suggestions but with a smaller gap. Here, we can point out
the fact that the online algorithm shows the bigger improvement in settings with
small to medium number of EVs. For larger number of EVs, the station starts
becoming too congested and therefore the negotiation procedure becomes less
effective. If you see this in correlation with the high execution times when the
number of EVs increases, we could argue that the online with suggestions may
not worth being used for large number of EVs. Regarding energy utilization, the
online with suggestions has a clear advantage for small and medium number of
EVs where more available charging slots exist, while later it starts leveling off.

In terms of agent utility, the offline and the online algorithm without sug-
gestions achieve 100% utility of the EVs that have been serviced, as their needs,
and constraints are fully covered. Now, the online algorithm with suggestions
achieves an average utility of about 88 − 90% as despite the fact that more
EVs are charged, some of their initial constraints are relaxed. This small deficit
on average agent utility which is unavoidable due to the fact that the initial
incremental demand-response problem is unsolvable. In order to measure the
utility, for every agent that will finally charge, we compute the Euclidean dis-
tance between its initial preferences and what it finally gets. Later, this value
is normalized to [0, 1]. We notice that, at 30 to 60 EVs the utility is high, at
60 EVs it drops and then it continuously increasing. This can be attributed to
the fact that at 30 EVs not many suggestions have to be made as initial EV



preferences can be fulfilled, thus the utility is high. At 60 to 120 EVs the utility
drops, as in this window, the station is neither too empty, nor too congested,
and therefore many EVs accept offers during the negotiation procedure. From
60 to 150 EVs, the station is already too congested with EVs charging within
their initial preferences and therefore, less offers are being made to EVs.

Fig. 3. EVs Charged

Fig. 4. Energy Used

Fig. 5. Average Utility



Table 1. Algorithms Comparison - 5 Chargers

Number of Evs
60 90 150

EVs Charged
On-Line vs Off-Line -15.48% -14.63% -25.79%
Strategy vs On-Line 11.43% 9.80% 2.88%

Energy Utilization
On-Line vs Off-Line -2.95% -1.19% -1.18%
Strategy vs On-Line 9.59% 7.54% 2.29%

Agents’ Utility
On-Line vs Off-Line 0.0% 0.0% 0.0%
Strategy vs On-Line -12.95% -12.4% -8.45%

Now, regarding the online algorithm with suggestions, its performance is
directly related to the attitude of the agents during the negotiation procedure.
In other words, the more cooperative the agents are, the more successful, the
negotiation is. Therefore, we conducted a set of experiments where different
levels of agent cooperation is assumed to exist. A cooperative agent is defined as
an agent which has a high probability of accepting an offer (80% to 90%), while
a non-cooperative agent is an agent with low probability of accepting offers (25%
to 30%). As can be seen from Figures 6, 7, 8, when the majority of the agents
are cooperative higher number of them are serviced and energy is better utilized,
however the performance is worse in a setting where the majority of the agents
are non-cooperative. Also, as expected, the utility of the cooperative agents is
lower, as they accept more changes to their initial preferences.

Fig. 6. Number of serviced EVs

4.3 Sensitivity Analysis

Here we further evaluate our algorithms, in a setting where the number of charg-
ers varies but infinite amount of energy exists. We can observe (see Figure 9) that
for settings with up to 90 EVs, the online algorithm with suggestions, it performs
better compared to the offline one especially for small numbers of chargers. This
can be explained due to the fact that when chargers are few, the initial pref-
erences of many EVs may not be able to be covered, and thus the negotiation
procedure is more efficient. In contrast, for larger numbers of EVs, full knowl-
edge of future demand gives a big advantage to the offline one, and therefore it is



Fig. 7. Energy Utilization

Fig. 8. Average Utility

better than the online one. Moreover, when the station becomes too congested,
minimal space for feasible suggestions exists. Thus, we can conclude that overall,
the offline algorithm is less sensitive to the change of the number of chargers.

Fig. 9. Offline VS Online with Suggestions with Different Number of Chargers

5 Conclusions and Future Work

In this paper, we propose a number of algorithms for the problem of scheduling
EV charging at a single station. In more detail, we present an offline optimal
algorithm, and two online ones which incrementally call the optimal one when an
EV arrives at the station. Moreover, we use agent-based negotiation techniques
between the charging station and the EV-agents. Through an in depth empirical
evaluation, we show that the performance of our solutions depends on the number



of EVs, the energy they need to charge, the time of the day they need to charge,
and the number of chargers that exist at the charging station. Moreover, we
show that such negotiation techniques can prove to be efficient in increasing the
number of serviced EVs and the utilization of the available energy, with only a
small decrease in the average utility of the EVs. In this way, EVs that otherwise
would not charge, now the can be charged either a smaller amount of energy or
in a different time window.

Future work will look at applying learning techniques so as EVs’ profiles to
be modeled [10]. In this way, personalized suggestions can be made from the
station to the EVs during the negotiation procedure in order to increase the
probability of an EV accepting an offer. Moreover, mechanism design techniques
will be applied so as to force EVs to always report their preferences truthfully.
Finally, sophisticated load balancing techniques will be investigated so as the
integration of the charging station and the EVs to the smart grid to take place
in the most smooth and efficient manner.
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