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Abstract

This paper is about the definition of CoLan, a high-level declarative Constraint Description Language, for use
with an Object-Oriented Database (OODB). CoLan has features of both first-order logic and functional
programming and is based on Daplex. CoLan expressions are translated into Prolog code that implements the
operational semantics of the constraint. Pieces of generated code are cached inside the class descriptor of the *host’
class attached to appropriate slots. The pieces of code are retrieved along an inheritance path when an update on
the database is attempted. If the update violates any of the retrieved constraints then it is rejected with an
informative message. Thus constraints are expressed declaratively and they can even be retracted individually.
However, they are implemented efficiently as code-generated methods, triggered selectively by an update. The
implementation is described for the ADAM OODB, which uses meta-classes of the CoLan system to generate class
descriptions.

Keywords: Semantic integrity constraints; Object-oriented databases; Functional data model; Constraint compila-
tion; Incremental constraint checking; Numerical quantifiers

1. Introduction

The goal of storing integrity constraints as part of the database system, instead of having
them embedded in applications, has been pursued ever since the late 70’s. In particular,
Nijssen [21] enunciated the principle that 100% of such constraints should be in the database.
Older programming languages made this hard to achieve, because it was hard to add extra
procedures to running application code in C or PL/1. This paper describes a semantic
constraint language CoLan for an object-oriented database (OODB), implemented using
Prolog procedures as stored methods on entity classes. Thus we are not relying on the
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deductive features of Prolog as in deductive databases. We do use unification and pattern
matching for query transformation [13, 17], but the main advantage of object-oriented
construction using a garbage-collected language such as Prolog or SmallTalk is that it is
comparatively easy to add new procedures, to store them in data structures, and to bind them
to existing code. This surely is the right way ahead for advanced database systems capturing
modern semantic data models.

CoLan captures a wide range of semantic constraints that are not expressible declaratively
by commonly used Data Description Languages, because they are not based on a semantic
data model. These are predicate constraints which restrict the allowable states of the database.
For example, one can specify that a patient in a hospital only takes drugs where they have no
allergy to any of the drug components:

forall p in patient
forall ¢ in components of drugstaken of p
c not in allergies of p

One can also specify existence constraints with numerical quantifiers, for example to say
that each patient has at most two doctors:

forall p in patient
exist at most 2 d in doctor of p

However, the constraints are not dynamic, in the sense that they restrict allowable states but
not particular paths used in transitions between them; also they do not currently check post
conditions relating to values in old and new states.

CoLan is significant because it allows one to express constraints declaratively, and to add or
retract constraints incrementally, whilst taking advantage of an efficient implementation
technique which uses methods triggered by an update. Thus it has the speed advantage of code
embedded in a method, but since it is generated from a declarative form stored in a database,
then it can always be altered and regenerated. Furthermore, its formal specification is
readable and can be referenced by way of explanation or used by a query optimiser. Thus it
overcomes many of the objections made in [27], which argues strongly against embedding
constraints in unintelligible method code. Instead, CoLan uses constraint methods which are
effectively cached with each class and inherited by subclasses.

CoLan uses a functional style, instead of the inference rule style used by the ALICE
language [30]. This is because we are looking for readability. It is strongly influenced by the
syntax of Daplex [26], which we use in one of the databases for which CoLan is designed.
However, it has a similar underlying view of data to many semantic data models, including
that used by ALICE. Thus, property definitions are viewed as functions defined over entity
classes. The functions may be single or multi-valued (i.e. return a set or sequence). They may
range over basic atomic types or else over entity types, and thus be used to represent
relationships between entities. The functions may represent a stored relationship, such as
suppliers(drug), but they may instead be implemented by calculation using a stored
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procedure (or method). The entity classes can form part of a subtype hierarchy, in which case
all properties and methods on the superclass are inherited by each subclass.

This similarity in basis makes CoLan portable to a range of object-oriented data models. In
this paper we describe how it has been implemented as an extension to the ADAM data
language [13, 22]. It provides ADAM with a declarative front end and thus saves the user
from writing many separate complex pieces of method code. Instead, it code-generates pieces
of Prolog which are activated by messages sent to class descriptors. It also uses the powerful
meta-class descriptors of ADAM to ensure that constraints on superclasses cannot be
overridden by more specialised constraints — these can only be added on in conjunction.

The constraint language allows various schemes for its enforcement. In the case of ADAM
we have taken the path of code-generating methods for each class on each slot name (i.e.
attribute or relationship) that appears in a constraint. Each such method starts by calling a
system predicate which checks inherited constraints. Thus the bodies of the various constraint
methods are actually executed starting at the top of the supertype hierarchy. If something
different is wanted, then as argued by [25] one could instead represent the constraints by
active rules and call out to an active rule interpreter. In the case of P/FDM, a large
object-oriented system based on the functional data model [13], performance is critical, so we
intend to use the generated method approach as described in this paper, but with a more
complex transaction model [10].

Besides using object-oriented construction, CoLan relies on the structural constraints of a
semantic data model schema; it is not intended as a language for stating these constraints. In
particular, it does not make checks on single-valuedness or totality of functions, and on
disjointness or covering properties of subtypes, since these are done more efficiently within
kernel system code. What CoLan checks are semantic constraints. These are expressed as
Boolean-valued expressions involving sets and functions taken from the schema, whose values
must be maintained true for any change in the number or state of objects belonging to a given
entity class (or classes). Variables in the set expressions always range over a finite known
universe, either a set of object identifiers of stored objects, or a subrange of integers. Thus we
do not have the problems of safety [32] that happen with relational calculus formulae.

The remainder of this paper is structured as follows; In Section 2 we overview related
approaches to constraint description. Section 3 presents CoLan language. In Section 4 we give
a background to ADAM, the OODBMS that Col.an was first implemented. The next sections
describe the implementation of CoLan; Section 5 describes the structure in detail and Section
6 gives a formal model of the language which is used for the generation of code. Section 7
addresses some of the deficiencies of the current CoLan implementation. Finally, Section 8
concludes this paper with a summary of our work and future directions for CoLan.

2. Related work

Many people [6, 19, 20] have suggested that constraints should be expressed in pure logic
and held in deductive databases, so that the constraints can be proved correct by some kind of
mechanised proof technique. However, semantic constraints on explicit data are relatively
straightforward and deterministic to check. They apply to specific instances and have to be
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checked individually. Thus there is no particular advantage to a logic representation for
CoLan, and indeed we claim that the functional form is easier to read. However, it would be
useful to have a logic-based checker to show that a new constraint being inserted was not
inconsistent with existing constraints, nor was it subsumed by any of them. This would
improve performance. It is really part of constraint design and analysis.

Kulkarni and Atkinson [18] describe a syntax for constraint definitions in their implementa-
tion of Daplex (EFDM). Constraints are expressed on property values thus:

constraint cl on cname(person), sname(person)—>unique;
constraint c2 on sex(person)—>total;
constraint ¢3 on student, staff—>disjoint;
constraint c4 on grade(student,course) —
some ¢ in courses(student) has c=course

Of these, c2 and c3 are structural constraints that CoLan is not designed to handle, as
mentioned earlier, c1 is a structural constraint but expressible in CoLan, and c4 is a predicate
constraint of the kind which CoLan is designed to express. One weakness of EFDM
constraints is that they are expressed in terms of restricting the values of specific properties on
specific entity types. Instead, CoLan expresses the constraint on the entity class rather than
the property, and although stored with this class it is cross-referenced from all the update-
methods for properties mentioned in the constraint. Thus one constraint stands for several
constraints in EFDM. Thus we should express c4 in CoLan by introducing an enrollment
entity with properties student, course and grade:

forall e in enrollment
exists ¢ in courses of student of e
such that c=course of e

Constraint c1 can be expressed as:

forall p in person
not exists p2 in person
such that cname of p2=cname of p
and sname of p2=sname of p

Note that CoLan implicitly requires that a second variable over the same entity class does
not take the same value as the first (i.e. p()p2). CoLan generalises the EFDM syntax in that
it quantifies over entity identifiers and not over property values, also it generalises the notion
of ‘fixed’ value by using the comparator exactly. It also implements numerical quantifiers,
such as at most 3, which appear in EFDM syntax but not in any published examples of
EFDM constraints.

Urban [29, 30] discusses many types of constraint. As noted in [13] most of these are
enforced by FDM as structural constraints, apart from the unique constraint discussed above
and a covering constraint for subtypes. The ALICE language is used by [30, 31] to write
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constraints in a predicate logic style. However, we believe that constraints are easier to read in
a function style. The functional form also makes it natural to call out to functions which
compute derived values, for example using methods declared on object classes. There are no
examples of constraints incorporating derived values in [31]. Thus we feel that the functional
form for constraints fits better with an object-oriented approach.

The original use of ALICE was for ‘constraint analysis’, in conjunction with tools which
allowed a user to foresee interactions between constraints and to specify actions to recover
from violations. Thus there was no system to enforce the constraints, but in [31] a system is
described for constraint enforcement through active rules. This system generates methods
(‘state-altering database operations’) which trigger active rules generated from ALICE
constraints. This is an impressive system. Its aims are similar to ours in that it code-generate
rules from declarative specifications. The main difference is that it uses an active-rule
interpreter, with a forward chaining mechanism instead of a recursive Prolog goal-driven
mechanism. Their system also attempts to use rules to recover from integrity violation by
triggering other updates. This can run into cycles or ‘anomalous rule behaviour’. By contrast,
we are concerned only with rejecting invalid transitions, which is an easier problem to solve.

A recent paper on ADAM by Paton, Diaz and Barja [25] argues strongly for using a
combination of metaclasses and active rules in ADAM to represent object semantics. They are
sceptical of the value of enforcing constraints through methods. In particular, they are worried
about having specialisations of methods accidentally overriding important constraints. They
are also worried about unforeseen interactions between constraints inherited from methods
defined independently on various superclasses. They propose to solve this by triggering active
rules from the methods (which has also been done by [5] for a relational database), and
passing the problems to an active rule interpreter for it to resolve the interactions. We believe
we can overcome their objection by code-generating all constraints in a way that cannot be
overridden. Thus we insist that constraints are defined in a high-level language which is easier
to check at compile time and in a single consistent regime, which makes it easier to deal with
interactions.

Another system [16] that has recently proposed a design for generating constraint checks as
part of methods is Ode. They propose a language CIAO++ with quantifiers similar to ours,
but copying the C++ syntax for record selectors and boolean expressions. Their syntax for
quantifiers uses: foreach X in C and thereis X in C, but does not include numeric
quantifiers as in CoLan such as: exist at least 5 X in C.

They have the same aim of code generating triggers from a declarative specification of the
constraints, but using C++ for performance gains. The really significant difference is that they
have no model for constraint inheritance, which is essential to an object-oriented solution. As
discussed below, we have an integrated scheme for constraint inheritance. Furthermore they
have no proposals for constraint maintenance, whereas constraints in CoLan can be selectivity
retracted without recompiling any methods, and constraints can be queried as part of
metadata. Instead, they implement through use of a precompiler, and presumably any change
to constraints involves a rerun of the precompiler and much recompilation.

They do have interesting proposals for constraint transformation and optimisation. How-
ever, these rely on pre-existing object relationships through object identifier links, whereas
our ideas of constraint inversion, described in section 6.4 are more general.
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It is significant that Ode is based on a C++ data model, not on a semantic data model like
that of ADAM or P/FDM which incorporates many structural constraints. In particular,
P/FDM checks on object deletion using inverses enforced through the data model but Ode has
to fall back on planting extra checks for deleted items to be made on every access to the class,
simply because it cannot be sure what the C++ programmer may do. This is discussed further
in [10] but the philosophical point is that C++ type checks are no substitute for a strong data
model enforced through a central conceptual schema which is able to evolve.

3. Overview of CoLan
3.1. CoLan syntax

A typical constraint expressed in CoLan consists of two parts. The first is the quantification
part, where the variables that are going to be used are given a domain and are quantified over
that domain. The second part is the main part of the constraint and consists of zero, one or
more predicates that should be satisfied by the instances described by the quantification part.
For example, a constraint about the permissible range of ages for a postgraduate student’
would look like the following in CoLan:

forall p in postgrad
age of p>20 and age of p<45

3.1.1. Attribute constraints

The above constraint restricts the range of values that a slot” of an instance of a class can
take and is called attribute constraint. Attribute constraints are conceptually, but not
syntactically, the simplest constraints that are expressible in CoLan and are equivalent to the
attribute-domain constraints in relational database systems [14].

3.1.2. Numerically quantified constraints

More complex constraints are the ones that relate the object that received the update
message with the rest of the objects of its class (relation-aggregate constraints in [14]). For
example, the constraint:

exist at least 3 s in staff
such that position of s = ''security''

restricts the minimum number of instances of class staff that satisfy the predicate part of the

' We will use the university schema illustrated at fig. 1. oftenly throughout the paper.
* We shall hereafter use interchangeably the terms slot, applying to a frame, and attribute (or instance variable),
applying to an object.



N. Bassiliades, PM.D. Gray | Data & Knowledge Engineering 14 (1994) 203-249 209

constraint. To evaluate the validity of such a constraint in the context of a certain update, we
must not only search for data locally (i.e. instance variables of the recipient object), but also
globally (i.e. instance variables of other instances of the same class).

Although the quantification part is mandatory, the predicate part is optional for a CoLan
expression. Some CoLan expressions quantify only the number of instances in a given domain
regardless of their properties. An example of such a constraint is the following:

exist at most 35 p in postgrad
which constrains the cardinality of the object warehouse of a class (class-cardinality), or:
exist at least 2 t in tutor of undergrad

which constrains the cardinality of a set attribute (slot-cardinality).

Since attributes in the relational data model can only have a simple value, no corresponding
slot-cardinality constraint exists in relational databases. On the other hand, the class-cardinali-
ty constraints are known as relation-aggregate constraints [14].

3.1.3. Class relationship constraints
More interesting Colan constraints relate the instances of two classes, classes not
necessarily different from each other. The following example demonstrates this:

forall l in lecturer
not exists s in staff
such that phone of 1=phone of s

The above constraint guarantees the uniqueness of the phone numbers of lecturers. It
combines search among the instances of two classes, lecturer and staff. These two classes
are related through an ‘is-a’ link (Fig. 1), so each instance of class lecturer is also an
instance of class staff. Thus, an additional condition (1(}s) is understood.

This constraint could not be imposed by structural or key-uniqueness constraints, because
the property phone is defined over class staff, but the constraint holds only for class
lecturer. If phone was defined as a key for class staff, then phone numbers would be
unique for every member of the staff and not-only for lecturers. On the other hand, we cannot
override the properties of phone for class lecturer, because it is an attribute and not a
method. Furthermore, a key-attribute named phone at class lecturer would not ensure the
uniqueness of the phone numbers of lecturers among staff, but only among lecturers. Class
relationship constraints subsume key-uniqueness, relation- and inter-relation-aggregate con-
straints [14].

3.1.4. Navigational constraints

So far, we have demonstrated CoLan expressions concerning only simple attributes, i.e.
attributes whose values are simple objects, like integers, strings, etc. Complex attributes are
those that ‘point’ to other objects by storing their object identifier (henceforth OID). These
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complex attributes establish relationship links between classes. A complex predicate involves
the comparison of complex attributes. Those constraints that involve complex predicates are
called navigational, because they are defined on a class but they constrain the values that
instances of other classes can have. Using function composition we can follow these chains of
instances that are linked together with binary relationships. The following constraint is an
example of a navigational constraint:

forall 1 in lecturer
age of supervised student of 1<35

The ‘host’ class of the above constraint is lecturer, but the constraint itself does not
inhibit values only for that class, but also for the class postgrad, because the slot
supervised_student contains OIDs of instances of class postgrad. Therefore, the
constraint is really about the slot age of the instances of class postgrad, but only for the
ones related to instances of «class lecturer through the relationship
supervised student.

Note that since supervised_student is a set-valued slot, there should exist a second,
universally quantified variable ranging over elements of this set:

forall l in lecturer
forall s in supervised student of 1
age of s<35

However, this is not necessary in CoLan, since a predicate over a set implies that the predicate
is applied to each element of the set, e.g.:

age of supervised student of 1<35=
forall s in supervised student of 1
age of s<35

Navigational constraints are more general than either functional dependency or referential
integrity constraints in relational databases [14]. More complex navigational constraints can be
expressed by using complex attributes both in the quantification and the predicate parts. This
use of constraints produces very complex relationships and restrictions among instances of
different classes:

forall 1 in lecturer
forall s in supervised student of 1
research interest of tutor of s=research interest of 1

The above constraint is a recursive one, because it relates class lecturer with itself
through class postgrad and the complex attributes supervised student of lecturer
and tutor of postgrad. However, fully recursive constraints, e.g. transitive closure
constraints, cannot currently be expressed in Col.an.
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3.1.5. Constraints with mathematical operations

Finally, CoLan allows the user to express constraints with complex predicates using
mathematical operations, i.e. addition, multiplication, etc. For example, one can state
constraints like the following:

forall e in employee
salary of e+commission of e>=10000

These constraints allow combinations of instance attributes or even attributes of different

instances to be related. Thus they resemble tuple constraints of relational databases [14].
We have tried to demonstrate the flexibility of CoLan through examples of graded

complexity. The complete syntax of CoLan in BNF notation is shown in Appendix A.

3.2. Operational semantics of CoLan expressions

CoLan expressions have clear (and obvious) declarative semantics, which are those of
normal set theory with quantifiers, but complex operational (or update) semantics. For
example, consider the attribute constraint:

forall 1l in lecturer
age of 1>25 and age of 1 <70

The above has obvious declarative semantics and the following operational semantics:
® If a new lecturer is created make sure that his/her age is within the range (25, 70);
® An existing lecturer cannot have his age updated beyond the limits.

Thus, a single CoLan expression has consistent but differing operational semantics
depending on the attempted update. This happens because CoLan implementation is based on
incremental checking through atomic transactions constituted by single messages sent to
individual instance objects, and not by examining database states. This approach exhibits
certain features:
® The code generation task is complicated, as different pieces of code must be generated for

each method;

e Constraint checking is more efficient, since constraints are only checked incrementally,
taking into account the previous consistent status.

3.3. Quantifiers in CoLan

CoLan uses three kinds of quantifiers that are very important in the description of
constraints. These are the universal, the existential and the numerical quantifiers (Table 1).
These three categories of quantifiers are really only two, since the existential quantifiers
exists and not exists can be re-stated using one of the other categories. More
specifically, the exists quantifier is equivalent to the numerical quantifier exist at least
1. The not exists quantifier is equivalent to the exist at most O numerical quantifier or



212 N. Bassiliades, PM.D. Gray | Data & Knowledge Engineering 14 (1994) 203-249

Table 1
CoLan quantifiers
name CoLan symbol logical symbol
universal forall <vars YV <var>
cxistential exists <var> 3 <var>
non-existential not exists <vars —3 <var>
numerical exist <predicate> o
<number> <var>

it can be transformed into the universal forall quantifier, provided that the predicates of the
predicate part are negated, as in FOL.

The purpose of quantifiers is to define the range of instances of a class over which the
restrictions of the predicate part hold. Using numerical quantifiers one can have a very fine
control over the database and express very specific constraints. For example, the phrase ‘Two
research assistants at most should share a phone,’ is easily expressed in CoLan, as:

forall r in ra
exist at most 1 r2 in ra
such that phone of r2=phone of r

Range quantifiers are not yet implemented in CoLan, but the system can be easily extended
to transform a constraint with a quantifier exist at least n & at most m into two
complementary constraints, relying on the AND semantics of constraint checking.

The universal and existential quantifiers are equivalent to the quantifiers of predicate
calculus, but the numerical quantifiers are not expressible in logic. However, while quantifiers
in FOL can be used to express incomplete knowledge and reason about it, CoLan quantifiers
are used only to restrict the possible states that a database can have after an update. For
example, consider the following constraint:

exists e in employee
such that position of e="'"'MANAGER''

The operational semantics of the above constraint is that the number of managers in the
database should not fall below one, i.e. it means that the database should have at any time at
least one specific instance with the prescribed property. The same expression in FOL just
means that there exists a manager in the database, but it is not like an OODB, where we need
to create an object explicitly for each manager, so that we know who they all are. Instead,
FOL can reason based on incomplete information.

The use of such that in CoLan expressions is optional. It is mainly used as a syntactic
convenience for the constraints with numerical quantifiers. For example, the following
constraints are very clearly stated with the use of such that, while their meaning is confusing
if we omit it:

® exist at least 3 s in staff
such that job of s="'"'Security'"'
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® forall p in postgrad
exists 1 in lecturer
such that research interest of l=research_interest of p

On the other hand, simple CoLan expressions with only universal quantifiers do not need
the use of such that:

® forall u in undergrad
year of u>0 and year of u=<4
® foralll in lecturer
forall s in staff
phone of 1 () phone of s

We note that a constraint with a universal quantifier can always be transformed into one
with the numerical quantifier not exists, provided the predicate part is negated and the
such that keyword is added:

® not exists u in undergrad
such that year of u=<0 or year of u>4
® forall l in lecturer
not exists s in staff
such that phone of 1=phone of s

Finally, we note an exception to the above rule of using such that, when a quantified
variable is further restricted by a predicate (or an embedded quantified expression). In such
cases, the keyword such that is obligatory, even with the universal quantifier:

® forall s in staff
such that status of s='"honour'’
not exists s1 in students_advised of s
such that status of s1 () '"honour''

® forall s in student
such that enrollment of s='"'part time''
year of s=<6

In the last example, such that is used for the restriction of the domain from students to
part-time students only, while the actual constraint is about the year of study of those
students. The latter is not accompanied by the such that keyword, since it is inside the
scope of a universally quantified variable.

3.4. Equivalencies to logic form

In this section we demonstrate how CoLan relates to first order logic (FOL) using some
simple examples. We show how to express universal implications using forall and not exists,
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and existential statements using exists. We note that some constraints such as the numerical
quantifiers of Section 3.1 cannot be expressed in FOL. Finally, we compare CoLan to ALICE,
a constraint description language based on FOL [30].

CoLan expressions consist of two parts, the quantification part and the predicate part. The
former quantifies over variables and binds them to a domain. This domain might be a class or
a set-type slot of a class. In FOL we express that a variable is bound with an entity of a
domain through a unary relationship, i.e. with a predicate of arity one. For example, the
CoLan expression:

forall 1 in lecturer
P(1)

is translated into FOL thus:

V1 lecturer(l)—P(1l)

The predicate part of CoLan includes comparisons between values of slots of the same or of
different entities. This is not feasible in pure, function-free FOL, therefore we cannot directly
compare the values of the slots. In most constraint languages that are based on a restricted
function-free FOL, binary relationships (i.e. predicates with arity two) must be first used to
“retrieve” the properties of an entity and then be compared through comparison predicates.
For example, the predicate:

age of 1>50
is translated into FOL as an implication [19, 20] and not as a conjunction:

age(a, 1)—gt(a, 50)
because it reads in English as: ‘If A is the age of L then A is greater than 50°.

The only way that an implication can be proven false is for the premise to be true and the
conclusion to be false. That is when the constraint is really checked and it fails. Thus the

complete FOL expression for the constraint:

forall 1l in lecturer
age of 1>50

is the following:
V1, a lecturer(l) nage(a, 1)—gt(a, 50)
More complex constraints are the ones that join different classes. These constraints require

variable sharing between different binary relationships of at least two quantified variables.
Consider the constraint:
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foralll in lecturer
not exists s in staff
such that phone of 1=phone of s

This translates into pure FOL:

Vl, p 1lecturer(l) Aphone(p, 1)——3s, pl staff(s)Aphone(pl, s)
neq(p, pl)

or,

Vl, s, p, pl lecturer(l) nphone(p, 1)astaff(s) Aphone(pl, s)—
—eq(p, pl)

If Datalog with function symbols is allowed instead of pure, function-free FOL, then the
above reduces to the more concise expression:

lecturer(l) anstaff(s)—-eq(phone(l), phone(s))

Although these expressions are obvious to mathematicians, our experience is that naive
users find them more difficult to read than the CoLan expressions. In fact we have decided not
to include an explicit implication operator in CoLan, because it is more natural in ordinary
language to use not exists following a universal quantifier. Thus, the choice between the
full functional style of CoLan (with the pseudo-natural front-end), the formalism of Datalog
with function symbols and the pure FOL is dictated by the intended user.

We now compare CoLan with ALICE, a “declarative constraint language for the expression
of complex, logic-based constraints in an OODB environment” [30]. ALICE is used for
expressing constraints against schemas described using CORAL semantic data model [29]. Its
expressions are much like first order logic expressions and they are designed to be translated
into FOL. For example consider the following constraint expressed in ALICE:

“A member of the staff with a status of ‘honour’ can only advise honour students’.

all S in staff (where S.advisor status="'"honour'")
implies: (all S1 in F.students_advised implies:
(S1.status=""honour''))

We can see that the above expression is not easy for a naive user, for whom implies is hard
to use and understand, compared to the following equivalent CoLan expression:

forall s in staff
such that status of s='"honour''
not exists sl in students_advised of s
such that status of s1 () ' "honour''

or even more concisely (see section 3.1.4):
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forall s in staff
such that status of s='"honour''
status of students_advised of s="'"honour'"'

Therefore, CoLan is more powerful than FOL and ALICE in certain aspects such as
numerically quantified statements and evaluation of functions. FOL and ALICE can capture
more meaning by expressing very complicated situations (using very complicated expressions),
but it is not clear that the average user can comprehend this extra subtlety. Logicians will
obviously prefer Datalog and ALICE formalisms, while scientists, engineers and others for
whom CoLan is intended will find the functional style easier to use.

4. Background to ADAM

ADAM is an OODB management system that views data as objects and their properties as
slots, just like in a frame-based system [24]. ADAM follows completely the object-oriented
paradigm, concerning the use of methods and message-passing between objects as the only
way of communication between the objects and the user [13]. ADAM differs from other
OODBs because it handle events, rules, methods and data in a uniform approach [7]. ADAM
was originally developed using Quintus Prolog and C, in Aberdeen University [13, 22].

In ADAM, objects are divided into meta-classes, classes and instances. When the system is
compiled, the meta-class called meta_class already exists. All subsequent classes are
created by sending messages to meta-classes such as meta_class.

The use of meta-classes in ADAM is a very flexible and powerful way for extending the
facilities of ADAM system incrementally [23, 25]. To be more specific, there are meta-classes
that create new classes when messages are sent to them. The ADAM system has a predefined
meta-class named meta_class that provides the default ADAM behaviour for creating new
classes. Should the user want to extend this default behaviour, then he/she can easily re-direct
the messages to user defined meta-classes that override method new of the original
meta class. There are also meta-classes whose sole purpose is to create mixin classes that
hold definitions for commonly used methods. Mixin classes do not have any instances nor any
slots, but they serve as method depositories. Every new top-level user class that is created
should be connected to mixin classes through ‘is-a’ links, in order to inherit these methods.

Everything in ADAM is done using the message-passing paradigm of SmallTalk [11]. The
syntax of messages in ADAM is the following:

message=>object

In response to messages sent to objects, methods are invoked which perform the operation
denoted by the message. Methods can vary from simple slot retrieval or update operations to
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complex procedures or even programs. Method bodies in ADAM are arbitrary pieces of
Prolog code.

4.1. Expressing constraints in ADAM

Constraints are expressed and checked in ADAM by altering the default method defini-
tions, just as in C++ and other object-oriented languages. This approach is very awkward
because one has to translate the semantics of the constraint to subsequent Prolog code and
then to replace the method definitions for updates and modifications inside the classes and
meta-classes of the ADAM database. It is complicated because one has to be very careful with
the meta-classes that he/she alters and the inheritance problems that overriding can cause.

To demonstrate the complexity of generating constraint checking in ADAM by the user, we
give the following example. Consider the university schema of Appendix B. An example of a
constraint could be the following:

“Lecturers should not share their phone with any other members of the staff”.

We need to check this constraint whenever a phone number is inserted into slot phone of an
instance of class lecturer, and so we override the default method put_phone in class
lecturer with the following call:

:— put_method ([ % Create a new method for inserting values in slot phone of lecturer
% Method name(visibility, I/O argument types, I/O argument variables)
(put_phone(global, [], [integer], [], [Phone]):-

% Are there any instances with the same phone number in class staff?
(get_by_phone([Phone], )=>staff—
% 1If yes the constraint is violated! Print a message and fail!
(write('There cannot be two lecturers
with the same phone number!'),
nl, fail);
% Otherwise evoke the default method at the superclass of the current class
put_phone([Phone])=>super))
1)=>1lecturer.

However, this is not the only piece of code to create to ensure the consistency of the
database. Methods update_phone and new should also be altered to exclude every potential
modification of the database that would lead to an inconsistency. Code should be generated
for the corresponding methods of class staff, too, to inhibit a staff instance from violating
the constraint. A single constraint here affects at least six methods.

The case of extra constraints on the same method is even more complicated. Consider for
example the constraint that lecturer phones have numbers that begin with 2. The piece of code
that ensures this for method put_phone of lecturer is the following:
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:— put_method(]
(put_phone(global, [], [integer], [Phone]) :-
((Phone <2000; Phone>=3000)— % Is the phone number outside the range?
(write('Phone numbers of lecturers must begin with 2!'),
nl, fail); % 1f yes the constraint is violated! Print a message and fail!
put_phone([Phone]) > super)) % Otherwise evoke the method at superclass
1)=>lecturer.

However, should the above goal is executed, then the previous code for enforcing the
unique-phone constraint is lost/overridden. In order to enforce both constraints, one has to
retrieve the old method body, inject the apropriate piece of code to the appropriate place and
replace the old method with the new one. But the latter is complicated and error-prone, even
for the database designer.

Obviously ADAM needs a user-friendly high-level constraint specification language with an
efficient implementation, because otherwise constraints are expressed in a Prolog program
whose semantics are hidden between the lines of a method description (which is a major
problem for object databases [27]). Hence, constraints are not so clearly stated for the rest of
the users apart from the programmer.

5. CoLan structure
5.1. Design philosophy

There are two conflicting arguments about the implementation of constraints. The former
[8] says that constraints should be separate objects with their own structure, and the class
descriptor should only refer to them through their object identifiers. The latter says that the
former is too slow when implemented, so it handles constraints as meta-data of the class
descriptor and it refers to them using their code translation. The latter is easier to implement
and it performs better but the former is more general and fiexible as it allows more control of
constraint behaviour.

An intermediate approach is to handle constraints as distinct objects for maintenance
purposes but to cache code that ensures constraint checking inside the class to which it applies.
To be more specific, when a CoLan expression is inserted in the schema, its high level
description along with other properties of the constraint are stored as separate objects, as
instances of class constraint. The generated code is stored within the class it applies to and
is retrieved by calling a special predicate at run-time.

The main difference between our system and a system such as ABEL [8] is that in ABEL’
the constraint expression is translated into an active rule [7, 9] and the rule is stored and
treated as a separate object, not the constraint itself, while in CoLan constraints are objects
but only from the system’s point of view. Thus the user in CoLan sees the constraint just as a
simple property of a class declaration.

* ABEL is an extension of ADAM with active rules, relationships, versioning, constraints, etc.
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5.2. Constraint inheritance and checking

Constraints in an OODB are integrity rules that hold between data and inhibit some
transactions in the database. We believe that constraints defined on a class should be inherited
by all its subclasses without any option to override them with a more specific version or even
cancel them completely. As Brachman says in his critique of frames [3]: “Cancellation
inheritance is disastrous”. Thus constraints should be like definitional properties attached to
classes and therefore must not be overridden [8, 25]. In this respect the inheritance strategy of
constraints in CoLan has to be completely different from that of methods, which can be
specialised and/or completely overridden.

In this paper we assume that there are no exceptions to this rule, i.e. every object should
satisfy all inherited constraints, and hopefully no contradictions occur. In cases where
constraint contradictions, overriding etc., are allowed, then these must either be declared
explicitly by the database designer [2] or else inferred by a logic-based constraint analysis tool
[4].

In ADAM, inheritance of a default method definition is achieved by delegating the message
received by an instance of a class to its superclass. However, the database designer must
remember to include this call to the superclass when selectively re-defining part of a method,
otherwise the default behaviour will be lost/overridden.

To overcome this in CoLan, the system ensures inheritance and checking of all the
constraints, using a special predicate called check _constraints, which cannot be bypassed
(see Appendix E). When an update message is received by an instance of a class, a call to this
predicate is made. This predicate is responsible for inheriting and checking constraints defined
in that class or its superclasses consecutively. Inheritance proceeds in a top-down fashion, i.e.
first constraints defined at the highest superclass of the target class are checked and then
constraints defined in the immediately lower level, etc., until constraints defined at the target
class are checked. Actually, what is inherited is not the high level description of the constraint
but the appropriate piece of generated code that ensures the validity of the corresponding
constraint. When the piece of code is obtained, either from the target class or from a
superclass, it is applied in the context of the current update and the recipient object.

If the piece of Prolog code succeeds, i.e. the update does not violate the constraint, then the
algorithm backtracks to get another piece of code that corresponds to another constraint. If all
constraints are inherited and checked successfully, the update is accepted and the default
method that responds to the update message is executed. If one of the constraints is violated,
then no further constraints should be checked, because the update is invalid anyway. In this
case the update is rejected and the default method is not invoked. An informative error
message is displayed and the original call fails.

5.3. Constraint storage and maintenance

Constraints may be inserted and/or deleted in the schema at any time in the life cycle of the
database and not only during the initialisation stage. The only problem associated with
constraint insertion is that currently there is no initial state checking, when the constraint first
enters the database, therefore there is no guarantee that the database already satisfies the new
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constraint, but this extension is straightforward. Meanwhile, we have adopted a temporary
solution that facilitates incremental loading of data (see Section 6.2.3).

Constraint insertion is realised by sending a message put_constraint to the class to
which the constraint applies. The CoLan expression is parsed, the parse tree is optimised and
is fed to the code generator. The generated pieces of code affect certain methods of the class
and are attached to the class. For example, the following constraint:

forall p in person
age of p>0 and age of p<120

generates code for slot age and more specifically for methods put_age and update_age,
which might violate the constraint. The code fragments for the above two methods are stored
inside the slots (or class variables) put_constraints and update_constraints of class
person, respectively.

Thus, if an update is applied to a slot which has no constraints then there is a slight
overhead to pay in checking for absence of relevant constraints in the constraint list in these
class variables. This check in fact could be made at constraint installation time. The significant
point is that we do not waste time running code fragments which do not apply to the slot in
question.

Meanwhile, an instance of class constraint is created that keeps the high-level
description of the constraint and the links to the actual produced code. The pieces of code do
not lose their identities after their generation, because they keep their links with the constraint
that generated them. As constraints are objects, they have distinct identifiers like every other
object in the system. This identifier is stored within every piece of code generated by the
constraint.

The rationale for such a complex relationship between constraints and classes they apply to,
is revealed by constraint deletion (see Example 4 in Appendix C). When the user wants to
delete a constraint, he/she sends a delete_constraint message to the class the constraint
belongs to. If the constraint does belong to the recipient class, then CoLan finds its identifier
and deletes every piece of code that relates to the constraint, using the identifier attached to
those pieces of code. The deletion of code includes not only the recipient class, but also every
other class that is involved in the constraint. The latter are stored in the slot classes of the
constraint-object. Finally, the actual constraint-object is deleted from the database.

A simple extension to CoLan could inhibit constraint checking of selected constraints
without deleting them, simply by changing the value of a switching slot in the constraint-
objects and temporarily disabling them. This requires though that a constraint check on
existing data is performed immediately after re-enabling a temporarily disabled constraint.
Constraints can also be replaced by other constraints, but this also needs an initial state check
as mentioned earlier.

In Appendix E we include details about how the method invocation approach to constraint
checking has been accomplished in ADAM, using the powerful concept of meta-classes. In
fact, any OODB system that supports meta-classes can incorporate more or less the CoLan
constraint checking sub-system.



N. Bassiliades, P.M.D. Gray | Data & Knowledge Engineering 14 (1994) 203-249 221
6. Constraint compilation and code generation for CoLan

This section discusses the generation of actual constraint enforcement code from CoLan
specifications. In Appendix C we have included an extended script of interaction with CoLan,
which demonstrates the flexibility, friendliness and usefulness of both the language and its
implementation. Appendix D gives some examples of code fragments generated by the
constraint compiler.

6.1. Performance considerations

The code-generation time for a constraint is about 5 seconds on a SUN3 workstation under
Quintus Prolog v.2.5 and ADAM v.2.2 [1]. However, this time is not very important, since
constraints are created only once and the produced code is directly used at run-time. Note that
the insertion of constraints to the schema assumes that the constraint is satisfied by existing
data. Once the constraint is translated into the appropriate pieces of Prolog code and the
appropriate methods are altered, the database cannot fall into an inconsistent state because
each update that could violate a constraint is ‘guarded’ by one or more pieces of code that
check its validity.

This is one of the major performance benefits of using method invocation to check
constraints. Constraints are checked only when needed and in the appropriate context. Only
applicable constraints are checked, because code is cached and therefore indexed according to
the class the constraint refers to. A similar approach to checking only applicable constraints is
used in most triggered-based systems [5, 15]. However, these systems are based on the
relational model, and thus several fundamental differences can be found. Specifically, in
relational systems only triggers {INS, DEL} are used, while in OODB systems every
recognisable method name constitutes a trigger [7]. This complicates matters in CoLan,
compared to constraint checking systems for relational databases.

In contrast to a constraint checking sub-system that relies on an active rule interpreter [7],
the method invocation approach does not affect those parts and methods of the database that
do not have to do with constraints. These, for example, include all the retrieval methods (e.g.
get, get_age, etc.). The latter play an important role in query answering, therefore CoLan
does not affect the query evaluation speed of ADAM.

On the other hand, an active rule interpreter has been reported [7] to generally degrade
ADAM’s performance by a factor of two. This is a consequence of the fact that an active rule
mechanism must be incorporated in the message-sending and method-execution mechanism,
as a side-effect of method invocation. Therefore, even if a message does not constitute a
detectable event, the detour from default method execution to check whether the message is
an event or not, slows down the system. Thus in terms of performance, active rules are not a
very good solution for constraint checking in ADAM, unless they are used anyway to provide
features other than constraint checking [25].

A design aim is to improve performance of CoLan wherever possible, mainly at run-time.
Parse tree transformation techniques to optimise generated code are described later.
However, the main performance improvement comes through the avoidance of global
computations where local checks could suffice to accept or reject an update.
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6.2. Code generation

According to the formal syntax of CoLan (Appendix A), a general CoLan expression is
defined as:

Q, var, in ent, [such that expr,(var,)]
Q; var; in ent; [such that expr;(var,, ..., var;)]
Q, var, in ent,_ [such that expr, (var,, ..., var,)]
[[such that] c(var,, var,, ..., var_)]

where 1 ranges from 1 to n and:

® Q; is a quantifier, either the universal forall, or a numerical exist rel_op N, where
rel_op is one of the following: >, >=, <, =<, =, \=, and N is a non-negative integer.
Note that not exists means exist=<0 (see Section 3.3).

® var, is a variable that ranges over the entity ent;.

® ent; are entities and they might either be named classes of the OODB schema, or else
subsets of a class computed by functions (simple or composed) of variables that have been
declared earlier:

ent =class;
ent;=function(var;), j<i

An exception occurs for i = 1. The ent, entity can either be a class or a function (simple or
composed) of a class, since there are no previously defined variables. However, when the
parse tree optimiser detects a parse tree with ent; bound to a function of a class it
transforms it (see Section 6.3) to a new expression with an extra universally quantified
variable at the outer loop, ranged over the class. The original ‘first’ variable now ranges
over the function of the new variable. Thus, we can safely assume that ent, is always
bound to a class.

® expr;(var;) are optional CoLan sub-expressions, that restrict the values that the
variables var; can take over the domain ent;. If they are missing, they are considered as
tautologies, 1.e. true under each interpretation. The expressions expr; may be simple
predicates, i.e. comparisons applied to constants or functions of variables (see last example
in Section 3.4), or else they can be embedded quantified expressions (see inverted
constraint example in Section 6.4.1):

expr;(var,:ent,, ..., var;:ent,; )=simple pred;(var,, . . ., var,)
expr,(var,:ent,, ..., var,:ent;)=
°Q; “var; in ‘ent;
such that °simple pred;(var,, ..., var;, °var;)

where the index ‘e’ identifies the embedded expression and the notation x: type is used to
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permit type-checking of variable x over type type. Simple predicates are conjunctions or
disjunctions of comparisons among simple or composed functions of variables and/or
constants:

simple pred;(var,, . . . , var;)=simple predicate;(var,, . . . , var;)
simple pred;(var,, . . . , var,)=simple predicate;(var,, . . . , var;)
{and|or} simple pred;(var,, . .., var;)
simple_predicate,(var,, ..., var;)=
operand,(var,, . .., var;) rel op operand,(var,, ..., var;)
operand;(var,, . . . , var;)=constant
operand;(var,, . .., var;)=3k=i, func(var,)

where j € {1, 2}, constant is a number or string and func(x) is a simple or composed
function of variable x.
® c is a simple predicate representing a constraint, and not an embedded quantified
expression. If c is missing, then it is considered a tautology. Note that the use of such
that is optional, since it is just a syntactic convenience that follows the last quantified
variable with a numerical quantifier, but not with the universal quantifier.
Now, we define a series of predicates pred; in order to denote the meaning of a
syntactically correct CoLan expression:

pred;(var,:ent,, ... ,var;_;ient, ,)=

Qpred(Q;, S;(var,, ..., var;,)), i=n (D)
pred,,,(var,:ent,, ..., var,:ent_)=c(var,, ..., var,) (1a)
where:

® pred; is a predicate that denotes whether the nested constraint that begins from variable
var; is satisfied by instances of i-1 entities that appear before ent; in the CoLan
expression. pred; contains i-1 free variables.

® S, is a ZF expression [28], i.e. a bag of boolean values, that correspond to the satisfaction
(or not) by each of the instances of the class ent; of all the restrictions introduced after the
i-th variable. S; also contains i-1 free variables.

S;(var,:ent,, ..., var,_,ient; )=
{{pred,,,(var,, ... ,var;)) |
var;<ent,; var;#var,; ... ; var, #var;_,; p;(var,, . .., var;)} (2)

® The inequalities in expression (2) are needed to check that the instance denoted by variable
var; is not a specialisation of or identical to any of the objects from var, to var;_, and
thus to avoid comparing an object with itself (see Section 3.1.3).

® The notation (P(...)) stands for the boolean value of the predicate P under the
interpretation of a given tuple of argument values.

® p. is a predicate that corresponds to the restrictions placed on the instances of entity ent;,
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through the expression expr;. As expr; can either be a simple predicate or an embedded
expression, p; is defined as follows:

p;(var,:ent,, ..., var;:ent; )=simple p;(var,, ..., var,)
p;(var,:ent,, ..., var;:ent;)=Qpred(°qQ;, °S;(var,, . . ., var;))

where °S; is the ZF expression that corresponds to the embedded quantified expression:

°S;(var,:ent,, ... ,var;:ent;)=
{(*simple_p;(var,, ..., var;, °var;)) | *var,; < °ent,}

® The predicate Qpred checks the cardinality of a ZF expression S, according to the
quantifier Q:

1. If Q=""forall'', then Qpred(Q, S)=(#FALSE(S)=0)
2. If Q=""exist rel op N'', then Qpred(Q, S)=(#TRUE(S) rel op N)

The notation #ST denotes the cardinality of the set (or bag) ST. Functions FALSE and
TRUE are themselves defined as ZF expressions:

TRUE(S)={x|x<S; x=true}
FALSE(S)={x|x<S; x=false)

We may notice that for i =1, equations (1) and (2) are re-written as:

pred,=Qpred(Q,, S,) (1b)
S,={(pred,(var,))|var,«ent,; p,(var,)} (2b)

In order to evaluate pred,, S, must be evaluated over all instances of ent,. However,
assuming the database state satisfies pred, before an update, then only the value of
pred,(var,), where var, is the message recipient object, will be added to S, by the
update. If Q, is ''forall'' then we can safely ignore all var,’s in S, apart from the
current (incremental checking). On the other hand, if Q, is a numerical quantifier, then S,
must be re-calculated unless counter optimisation is used (see Section 6.2.2).

6.2.1. Methods affected by constraints

The expressions (1) and (2) are an intermediate step to Prolog code fragment generation.
Actually, several pieces of code are produced, one for each different function whose update
could possibly violate the constraint. Specifically, the code generator produces code for each
function in pred, that is directly attached to class ent,. In order to determine which these
are, the generator scans the ZF-expressions and collects all simple functions of var,, looking
inside expr;’s, ent;’s and c. If there are composed functions of var, the generator will
isolate the inner-most function. Furthermore, methods new and/or delete are also affected
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by the constraint. This technique produces code only for class ent,. However, methods of
other classes, that are related to ent, through the constraint, must also be dealt with. This is
taken care of by constraint inversion.

Quantifiers also affect the number and nature of methods that could possibly violate a
constraint. An example will make this statement more clear:

exists e in employee
such that position of e="'"'MANAGER''

The above constraint insists that at least one instance of class employee should be a
manager. The constraint does not “‘care” if more than one managers exist, therefore methods
that can only introduce more managers, like new, put_position, etc., could not possibly
violate it. The constraint needs code only for methods that could reduce the number of
managers in the database, like delete, delete _position, etc. ColLan system avoids
producing unnecessary code by combining the operational semantics of the quantifier and the
affected method (Table 2). In the column ‘‘semantics” the two words “new” and ‘‘delete”
denote the following types of methods:

® new, put_(slot) and update (slot) for “new” semantics, and
® delete, delete_(slot) and update (slot) for “delete” semantics.

Some CoLan expressions may exhibit both the above properties, i.e. they may be violated
both by “delete” and “new” type of methods. These for example are the ones that have the
exist exactly quantifier:

exist exactly 1 s in staff
such that position of s=''Head of Department'"'

In the above example, both a deletion and a creation of an instance that satisfies the
predicate part would cause a violation. Therefore, code must be generated for all the methods
that alter: a) the slot position of an instance of class staff, or b) the warchouse of class
staff.

Table 2

Operational semantics of CoLan quantifiers
Quantifier Semantics
forall new

at most, no more than, =< new

less than, <« new

at least, no less than, »=|delele

more than, > delete

exactly, only, = new, delete
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6.2.2. Code generation for one-variable constraints

We will now demonstrate how code is generated based on pred;’s and S;’s defined above.
We will only consider CoLan expressions with one and two variables, since the code for the
general case would look very incomprehensible and is not currently implemented.

We first consider a one-variable CoLan expression (syntax discussed in Section 3.3):

Q, var, in class,
[such that] c(var,)

The predicate pred, for such an expression is given by (1b). If the quantifier Q, is the
universal one, then the code generated for the above constraint is:

((get values(c, Var,',Values’),
c(Values'))— true;
(print error, fail))

where Var,' is bound to the message recipient object, get values(c, Var,', Values') is a macro
for a piece of code that retrieves in Values’ those slot values of the instance Var,’ of class,,
to be used in predicate ¢ and print_error is a system predicate that informs the user about
constraint violation. A concrete example for the above case is given in Appendix D — Example
1. Note that we do not iterate over instances of class, since a check of the constraint in the
context of the message recipient object Var,’ suffices. Thus, the ZF-expression S, is not
constructed at all.

The source of the slot values returned by the macro ger_values may vary and it depends on
the actual method for which the code fragment is generated. More specifically, some of these
values are available via retrieval methods of instance variables, while some others are
available through the parameters of the method. Since several methods are affected by a
single constraint, the sources of these values differ for each code fragment. Example 5 in
Appendix D demonstrates how the same constraint affects two methods and how the values
for the predicate are obtained via the method parameters or the instance variables of the
message recipient object.

If the quantifier Q, is numerical, then the code generated for the one-variable constraint is:

((get values(c,Var,’,Values’),
c(Values'))—
(findall(Var,, (get(Var,)=>class,,
get values(c, Var,,Values),
c(Values)),
TrueS,),
length(TrueS,, Length),
check length(Q,, Length))— true;
(print_error, fail));

true)
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It is obvious that instead of the bag S, we construct the set TRUE(S, ) as a list of OIDs of
class,; using findall. Then the length of this list is checked against the numerical
quantifier Q,. Notice that before going into the findall loop we check if the instance Var,’
of the current update is relevant to the constraint. If not, then the constraint is trivially
satisfied (see Example 2 in Appendix D).

Using findall consistently provides simplicity and uniformity, because every constraint
has a similar structure, however, this may prove inefficient, since for constraints with a small
upper limit in the quantification part one can save time by only looking for this many
instances. Thus, in future we may sacrifice uniformity and substitute the exhaustive search
with other predicates for efficiency. What we will gain though is minimising average case
complexity, because the worst case complexity will still remain O(n).

Another possible optimisation to avoid re-computation is to store counters of instances that
already satisfy the constraint. The stored counter will be checked when an update is attempted
on an instance that matches the predicates of the constraint. If the updated value of the
counter would violate the predicate of the numerical quantification, then the update is
rejected, otherwise it is accepted. This technique has been used in the P/FDM implementation
of CoLan [10}], to improve performance. However, this technique requires extra code to
update the counters, even for methods that could not violate the constraint. Furthermore, its
use is limited only to one-variable constraints. To demonstrate this, consider the following
constraint:

forall r in ra
exist at most 2 rl in ra
such that phone of r=phone of rl

In order to enhance the performance of checking the above constraint, no simple counter
can be introduced, because the number of research assistants that share a phone is different
for each distinct phone number. Thus there must exist as many counters as distinct phone
numbers and we have a space versus time tradeoff.

6.2.3. Incremental satisfaction of numerically quantified constraints

There is a problem with constraints requiring the existence of an exact or minimum number
of objects satisfying certain conditions. Clearly such constraints cannot be satisfied in an empty
database. We could deal with the problem by only allowing such constraints to be added once
the database is in a state to satisfy them. We decided instead to take the approach of allowing
the database to be inconsistent with such constraints, but to print a warning. Where an update
moves the number of objects closer to the exact number or the minimum threshold then we
allow it (with a warning). Otherwise we disallow it. Once the database does satisfy the
constraint then we enforce it strongly with no exceptions. This is a pragmatic convenience
when loading data incrementally, but does not affect the principles of CoLan. Its effects are
obvious and well-defined for constraints with numeric quantifiers.

For example, consider the constraint:
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exist at least 2 s in staff
such that position of s=''Secretary''

The insertion of the above constraint into an empty database would just produce a warning
and the constraint is accepted. When the database is populated by inserting two secretaries.
CoLan does not complain. Once the lower limit of two secretaries is reached, though, CoLan
would not allow the reduction of the number of secretaries below two. The same considera-
tions apply to the exist exactly quantifier.

6.2.4. Code generation for two-variable constraints

When there are two variables in a CoLan expression, then the code generator is confronted
with four cases corresponding to all the combinations of universal and numerical quantifiers
for the two variables. Here we will only consider the case where the first variable is universally
quantified and the second is numerically quantified (Example 3 in Appendix D or last example
in Section 3.4; syntax is discussed in Section 3.3):

forall var, in class,
[such that expr,(var,)]
Q, var, in ent,
such that c(var,, var,)

The code for the predicate pred, of the above constraint is:

((get_values(p,, Var,’, Values'),
p,(Values’),
pred,(Var,')) — true;
(print_error, fail)) 3)

Note that predicate pred, includes a nested call to predicate pred, which corresponds to
the following code fragment:

(findall(Var,, (get_entity(ent,, Var,),

Var \=Var,,

get values(c,Var,’, Var,, Values),

c(Values)),

TrueS,),
length(TrueS,, Length),
check length(Q,, Length)) > true;
(print_error, fail)) 4)
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where get_entity(ent,, Var,) is also a macro that returns in variable Var, the OID of the actual
instance of entity ent,. If ent, is a named class, then this macro is nothing more than the
call: get(Var,) =>class,, which iterates over the instances of class,. On the other hand,
if ent, is a function of variable var,, then the macro retrieves the appropriate OID through
chained function calls. Examples 3 and 4 in Appendix D demonstrate the difference in the
actual generated code.

For more than two variables, the generated code consists of a series of nested calls, as
expressions (1)—(4) imply. However, there are other problems associated with constraints
with more than two variables, like the lack of transactions (see Section 7.3), that led us not to
include such constraints in this first implementation of CoLan.

6.3. Re-write rules

CoLan makes extended use of re-write rules to provide its full functionality. This is because
the code generator of CoLan is designed to accept a limited number of parse tree patterns and
to output a basic set of code fragments that correspond to the parse tree. This makes code
generator simple to program, debug and extend. Rewrite rules are production rules of the
form:

'""If (Pattern) then (Transformed-Pattern)''

The (Pattern) is a parse tree template that reflects a general type of constraint to be
re-written. The (Transformed-Pattern) is the new parse tree that is returned from the
re-write rule. In order to transform the former to the latter some actions should be performed,
that are specific to the nature of the transformation.

An example of the use of re-write rules in ColLam is transformations between equivalent
CoLan expressions whose translation to Prolog is more efficient than the original one, i.e.
optimisation. The transformation is accomplished using re-write rules. A very simple re-write
rule used to model a logical equivalence of CoLan expressions, is the following:

If there are two variables and both are universally quantified
then change the quantifier of second variable to a ' 'not exists'
negate all the predicates of the predicate part

' one and

The above re-write rule follows from the optimisation technique that it is more efficient to
check for a single violation of the rule than an exhaustive check that all instances satisfy it.

6.4. Constraint inversion

Constraint inversion is a way to rewrite a constraint so that it can be checked efficiently for
an update on the state of a class member other than that in the first quantifier. In Ode [16] the
constraint is copied verbatim into other classes and attempts are then made to transform it for
greater efficiency. Below we describe our approach to the same problem and the interesting
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research issues that it raises. Constraint inversion will be better demonstrated using an
example. Consider the familiar constraint:

forall 1 in lecturer
not exists s in staff
such that phone of 1=phone of s

As we can see in Fig. 1, class staff is a superclass of class lecturer, so code generated
for the latter is not going to be inherited by the former. Thus, if a member of the staff is
created having the same phone number as a pre-existing lecturer, then because checking code
is stored only in class lecturer, the update is going to be accepted! Consistency of the
database requires code to guard class staff, too. CoLan system ensures this by generating a
related (inverted) constraint to attach to class staff.

Constraint inversion is based on the operational semantics of constraints. The code
generated for the above constraint looks as if it was created for the following CoLan
expression:

forall s in staff
not exists 1 in lecturer
such that phone of s=phone of 1

Since the not exists quantifier relates to the universal one, in this case inversion is simply
the swap of positions of universal quantifiers, which is allowed by FOL. However it is not
always easy to find CoLan expressions that would generate the appropriate code for the
inverted constraint. Constraints that involve existentially or numerically quantified variables
can be inverted, but the declarative semantics of the corresponding ColLan expression are not
so easily stated, because the positions of an existential and a universal quantifiers are not
interchangeable, as the following example demonstrates:

forall 1l in lecturer
exists s in staff

’ ’ \\ .7 S~ S
postgraduate undergraduate

N s
N7

‘E ———- isa

Fig. 1. University database schema.
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such that phone of 1=phone of s

This constraint means that each lecturer shares his/her phone with at least one member of
the staff. The opposite is not always true, i.e. a member of the staff may or may not share
his/her phone with a lecturer. Thus, the following constraint is not the correct inverse form of
the original constraint:

forall s in staff
exists 1 in lecturer
such that phone of s=phone of 1

What we are looking for, is a CoLan expression that has the following operational
semantics: “If a member of the staff shares the same phone with a lecturer, and there is no other
member of the staff with the same property, then that member of the staff cannot change his/her
phone.” This operational semantics can be achieved by the following algorithm:

When a deletion of a member of the staff is attempted, then:

Check if the member of the staff shares phone with a lecturer.

If no, then succeed and accept the deletion.

If yes, then check if there exists another member of the staff with the same phone number.
If yes, then succeed and accept the deletion.

Otherwise fail and reject the deletion, because the lecturer will not share phone with a
member of the staff after the deletion, as the original constraint claims.

Similar algorithms hold for phone deletion and update. However, it is not easy to find a
CoLan expression to reflect the above operational semantics, so the operational semantics
must be encoded directly in Prolog and stored with class staff. The inverted form is still
bound to the original constraint, since the latter is much more simple to read and understand.

il o

6.4.1. Limitations on constraint inversion

Constraint inversion is a difficult task that made us refrain from implementing full CoLan
expressiveness. For example, constraints with two variables are restricted to expressions with
their first variable universally quantified, because inversion of constraints with the first
variable numerically or existentially quantified introduces certain theoretical and/or im-
plementation problems. For example, consider the following constraint:

exists s in staff
such that forall 1 in lecturer
phone of s=phone of 1

which insists that at least one member of the staff has the same phone with all the lecturers
and also implies that all the lecturers have the same phone. The nearest we can get with
inversion is something like:

forall 1l in lecturer
such that not exists 11 in lecturer



232 N. Bassiliades, P.M.D. Gray /| Data & Knowledge Engineering 14 (1994) 203-249

such that phone of 11=phone of 1
exists s in staff
such that phone of s=phone of 1

Alas, the above expression does not ensure the original constraint, because a new lecturer
with a different phone number from the rest can be inserted, provided there is one member of
the staff with the same phone number!

The complexity of constraint inversion, even for only two variables, led us not to include
such constraints in the abilities of this first CoLan implementation, in order to first fully
research the rules for implementing them. We are not implying that the inversion problem is
unsolvable, but that it is quite complicated and needs careful examination. For more than two
variables the problem is much harder, since all variables must be moved to the beginning of
the constraint, bearing in mind that universal quantifiers can freely interchange positions,
while numerical quantifiers cannot without altering the structure of the constraint.

7. Future developments of CoLan

Some features of CoLan require further research, such as: (a) Expressing dynamic
constraints; (b) Using relational operator semantics for optimisation; (c) General cases of
constraint inversion, etc. However their implementation does not seem to require major
improvements of CoLan. For example, we will give some hints on how the first two of the
above features could be incorporated in ColLan, in Subsections 7.1 and 7.2.

On the other hand, there are some deficiencies of the CoLan system that have mainly to do
with the underlying system, namely ADAM. In subsections following 7.2 we will try to outline
these points.

7.1. Expressing dynamic constraints in CoLan

The incremental nature of constraint checking in CoLan, leaves room for expressing and
implementing dynamic constraints. Consider the following CoLan expression:

forall p in person
new of age of p>=age of p

In the above expression a function new is applied to the age of a person that results in a
different value for age, than the one mentioned on the right-hand side of the predicate
expression. This is the new value introduced to the database during an update. Since
constraints in CoLan are of preventive nature, i.e. they are checked only before an atomic
update takes place, then it is viable to distinguish between the value introduced by the
update-message and the value already stored in the slot age of the recipient instance. If
constraints were checked after the update then old values would be lost and state transition
constraints could not be checked, unless differential files are used.
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The declarative semantics of the above expression is: “Age of persons never decreases’ and
the operational semantics reads:

If an update on the age of a person is attempted,
then the new age should be greater or equal to the old age.

The new function is necessary for the parser to distinguish between the old and the new values
and for the user to specify them. Other expressions that involve comparison between two
different slots of the same instance do not need an explicit new function, since the constraint
will in turn apply to both the new and the old values:

forall e in employee
salary of e>commission of e

The above constraint (which is enforceable in the current CoLan implementation), with
respect to the new function, is equivalent to the following two constraints:

forall e in employee

new of salary of e>commission of e
forall e in employee

salary of e>new of commission of e

The current implementation does not include dynamic constraints, but it seems there is no

problem in introducing the new function in simple cases, due to the incremental nature of
constraint checking in CoLan.

7.2. Transitive properties of relational operators

One way to avoid global constraint checking is by exploiting the transitive properties of the
relational operators >, <, etc. The transitive property of a relational operator (e.g. >) can be
expressed as follows:

(a>b)a(b>c)>(a>c)

The following example will illustrate how the above property can be used to save time of
constraint checking by avoiding global computations:

exist less than 5 m in manager
such that salary of m> 10000

If the following ADAM update is entered:

update_salary([15000, 20000]) = 13#manager.
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we can avoid checking the constraint globally, if we notice that the new value 20000 is greater
than the old one 15000, which is greater than the lower limit of the constraint (10000).
Therefore, the constraint was already satisfied and there is no need the re-check the database
for all the managers with salaries greater than 10000, since this manager was already one of
them (15000>10000) and the update does not try to add one more more-than-10000
manager.

In the current implementation of CoLan the transitive properties of relational operators are
not considered and there is scope for optimisation as just illustrated.

7.3. Lack of transactions

There are problems with constraints about relationships among instances of the same or
different classes. For example, the following constraint:

forall c in company
forall d in department
exists s in supplies
such that c=company of s and d=department of s

is the CoLan equivalent of the following constraint, in English:
“Every company supplies every department with at least one item’.

The problem of implementing such a constraint is that the existence of an instance at each
one of the three classes company, department and supplies depends on the existence of
an instance at both the other classes. For example, inserting a new instance at company
requires the existence of instances at class department and class supplies that form the
ternary relationship described by the constraint. However, we cannot require the pre-
existence of such instances, because similar constraints hold for the other two classes. We
cannot overcome this cyclic problem, unless we delay constraint checking until all the
participant instances of the relationship are created. This requires an architecture with a form
of transaction which delays constraint checks until several updates have been made [10].
Currently this facility is not available in ADAM.

There are similar problems with the strictness of numerical quantifiers and most importantly
with the exists exactly one. For example, the following constraint:

exist exactly 1 s in staff
such that position of s="''Head of Department''

does not allow the Head of Department to change ever, since in order to do so, the slot
position of the former Head of Department must be updated with another string and the
same slot of the new one, must be updated to the string “Head of Department”. Again this is
caused by a lack of transactions.
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7.4. Universal constraints

Another restriction of CoLan is that the variables of the quantification part must range over
an entity-class or an attribute of an entity-class. Thus CoLan cannot express general
constraints about simple objects or undefined attributes. For example, we cannot state
theorems about integers or restrictions for an attribute named salary, regardless of the class
on which it is defined.

The main reason why general constraints cannot be implemented is fundamental for
ADAM. Integers, strings, etc., are not distinct objects in ADAM as they would be in e.g.
SmallTalk and slots are not considered as objects but only as value depositories. Thus, general
constraints cannot be directly attached to distinct classes and therefore, the method invocation
approach of CoLan cannot be used for them. Instead code for general constraints would have
to be stored separately as a general purpose procedure. However, this is not allowed in
object-oriented systems since it violates the encapsulation of objects. Furthermore, general
procedures would have to be searched and executed every time an update is about to happen,
because the context of their activation is not determined by the class they belong to. This
would cause a frequent waste of computational power.

8. Conclusions

In this paper we have described the CoLan language and its implementation. More details
on the technical aspects of CoLan can be found in [1]. CoLan incorporates a constraint
description and maintenance system that translates CoLan language expressions into Prolog
code. This code is attached to specific methods of specific classes of a schema and is stored in
the corresponding slots of the schema for future use. Each constraint is stored as a separate
object and its object identifier (constraint identifier) is used to link it to the generated code.
When an update is attempted the system is responsible for retrieving the appropriate pieces of
code and checking the validity of the update. If the update satisfies every applicable constraint
then it is accepted, otherwise an informative error message is printed and the update is
rejected.

The CoLan language has been implemented and used to enforce constraints against a
schema defined using the OODB ADAM, which is built on top of Prolog. Prolog is a very
convenient language for generating and transforming code and it works well when generating
triggers from declaratively expressed CoLan constraints. However, CoLan is not dependent
on Prolog, and it could be implemented in a high-level language which can treat procedures as
data, such as SmallTalk. It is not intended for use with deductive databases. Instead, it is
strongly influenced by Daplex, the query language of FDM [26].

CoLan contains a mixture of first order logic and functional programming features and
supports the use of quantified variables including universal, existential and numerical
quantifiers. These variables range over a finite known universe, such as a set of object
identifiers of stored objects, or a subrange of integers. The functional aspects of CoLan
include the use of function application on variables that represent instances of the quantified
variables. Function composition is also supported both in the quantification part and in the
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predicate part of an expression. CoLan is quite general as a language and its syntax leaves
room for future extensions both to the language and the CoLan system as a whole. The
language is expressive and user-friendly, so that it can capture most of the semantic constraints
that hold between the data of a schema. Our intended end users are scientists working with
object databases, and they find the functional syntax clearer and easier to comprehend than
the first-order logic style which is appropriate to deductive databases.

CoLan could also be incorporated in the P/FDM system [12], i.e. the Prolog implementa-
tion of the Functional Data Model (FDM) [26], since CoLan is closely related to Daplex, the
query language of P/FDM. The CoLan expressions could be permanently stored along with
the other metadata, and Prolog code could be activated at transaction-time. We are currently
pursuing this [10], using a richer transaction model which overcomes the problems with
ADAM described in Section 7.3.

There is plenty of future work to be done to extend CoLan. As we have already discussed,
what is missing from CoLan is the facility to express constraints in terms of relationships or
arbitrary degree with user-defined semantics. Essentially, CoLan needs a relationship handling
background in order to express its method definitions for complex semantic constraints. Such
relationships have been studied by Diaz [8, 9] who developed the ABEL system in ADAM.
Thus a future project could be the translation of CoLan constraints into ABEL rules. CoLan
could then become an alternative form of constraint description to the constraint equations
used in the original ABEL system [9].

An alternative in ADAM is to use active rules, so that CoLan can turn from a passive filter
for updates into a dynamic transaction system based on semantic constraints. The update
would be allowed but the action propagation facility of ABEL active rules would be used to
try and find appropriate data and operations on them in order to bring the database back into
a consistent state, as in [31]. This facility for a repair mechanism is needed for large data
intensive applications, with complex interacting constraints.

ABEL combined with a fuller constraint language in the form of CoLan could form an
excellent object-oriented core for a new expert systems architecture, since ABEL (and
ADAM) can model a lot of the default and automated behaviour that makes a system look
‘intelligent” from the user’s viewpoint. Active rules [7] would serve as an extension to
production rules in this architecture where much of the knowledge is stored not in a ‘central’
program but inside the appropriate classes. Objects would do most of the work by sending
messages to each other, so that the expert system would just co-ordinate the actions of the
various objects by triggering them and maintaining the high-level flow of control. Such a
system should ensure high level semantic expressiveness and the ease of maintenance and
evolution that is so desirable in advanced expert systems.
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Appendix A: Syntax of CoLan

(constraint)::=(quantification) [such that] [{(predicates)]
(quantification)::={(quant _exp) [{quantification}]
(quant_exp)::=(quant _var) [such that] [(predicates)|(constraint}]
(quant_var)::={quantifier)(var) in {(compound_class)
(quantifier)::=forall | [not] exists | exist (numerical_quantifier)
(numerical_quantifier)::=(numerical expression){number)
(numerical_expression)::=(numerical symbol)|{numerical _words)
(numerical_symbol)::=>|>=|<|=<|=
(numerical words)::=only | exactly | more than | no less than |

at least | less than | no more than | at most
(compound_class)::=(slot) of (compound_class)|{class)
(predicates)::={(conjunction) [or (predicates)]
(conjunction)::=(predicate) [and (conjunction)]
(predicate)::=(multi operand){relational connector)(multi operand)
(multi_operand)::=(operand)|{complex operand)
(operand)::=(slot operand)|{constant)
(slot_operand)::=[(slot) of](var)|(slot) of {slot operand)
(complex_operand)::=(operand){operation){operand)
(operation)::=+|-|* |/
(relational connector)::==|(}| > | < |>=|=<|1is in| not in
(var)::=atom, (slot)::=atom, {class)::=atom, (number)::=integer
(constant)::=1integer | string | plog

Appendix B: Example university schema in ADAM notation

:~ new( [person, |

slot(slot_tuple(cname, global, single, total, string)),
slot(slot_tuple(sname, global, single, total, string)),
slot(slot_tuple(age, global, single, optional, integer)),
key([sname, cname])

]1)=>colan class,

new([staff, [is _a([person]),
slot(slot_tuple(phone, global, single, optional, integer)),
slot(slot_tuple(research interest, global, single, optional, string)),
slot(slot tuple(project, global, set, optional, string)),
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slot(slot_tuple(position, global, single, optional, string))
}11)>colan class,
new([ra, [is_a([staff]),
slot(slot tuple(project supervisor, global, single, optional, staff))
}1)=>colan class,
new([lecturer, [is a([staff]),
slot(slot_tuple(supervised student, global, set, optional, postgrad))
11)=>colan _class,
new([student, [is _a([person]),
slot(slot_tuple(year, global, single, total, integer)),
slot(slot_tuple(tutor, global, single, optional, staff))
11)=>colan _class,
new( [undergrad, [ is a([student]) ]1])=>colan class,
new( [postgrad, [is a([student]),
slot(slot_tuple(subject, global, single, total, string)),
slot(slot_tuple(supervisor, global, set, optional, lecturer))
11)=>colan class,
new([pgra, [is_a(postgrad, ral),
slot(slot_tuple(percentra, global, single, optional, integer))
]1)>colan class.

Appendix C: Sample interaction with CoLan system
In the next few pages we have included a script file of a sample interaction with CoLan
system. The examples are based on the university schema defined in Appendix B. Our

comments on the interaction are written in italics. All the user’s inputs are beginning with
Prolog’s prompt ‘?-".

Example 1. Insert a constraint in the schema sending a message to the appropriate class.
?7- put_constraint(['forall p in person

age of p>0 and age of p<120'])=>person.
yes

Create a new instance of class person.

?- new([_, [cname([ 'Bruce']), sname([ 'Dickinson’']) ]])=>person.
yes

Try to give an invalid age to the person that has been created!

?7- get(A) >person, put_age([130])=>A.
Error! Message 'put_age' violates the constraint:
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""forall p in person age of p>0 and age of p<120""'
which is defined at class 'person'.
no

Try to give an acceptable age.

?- get(A) > person, put_age([100])=>A.
A=0#person

Try to change the age by introducing an invalid one!

?- update_age([100, 150]) > O#person.

Error! Message 'update_age' violates the constraint:
'"forall p in person age of p>0 and age of p<120""'
which is defined at class 'person'.

no

Example 2.

?- put_constraint(['forall 1 in lecturer
not exists s in staff
such that phone of 1=phone of s'])=>1lecturer.
yes

Which constraints are defined at class lecturer? (only one)

?- get_constraint(A) > lecturer.
A="forall 1l in lecturer not exists s in staff such that phone of 1=phone of s';
no

Create a new lecturer.

?-new([_, [cname([ 'Bruce’]), sname([ 'Dickinson']), phone([1111])]]) > lecturer.
yes

Try to create a new member of the staff with the same phone number as the lecturer created
before. Notice that the constraint is enforced due to constraint inversion (see Section 6.4).
Furthermore, the constraint is inherited from class staff to class pgra.

?-new([_, [cname([ 'Dave']), sname([ 'Murray']), subject(['guitar']),
year([2]), phone([1111]) ]])=>pgra.
Error! Message 'new' violates the constraint:
'""foralll in lecturer not exists s in staff such that phone of 1=phone of s'' which
is defined at class 'staff’.
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no

Example 3. This is a very complex constraint!

?7- put consrtraint([ 'forall l in lecturer
not exists s in supervised student of 1
such that research interest of 1 ()
research interest of tutor of s’'])=1lecturer.
yes

Create the appropriate instances to demonstrate how the constraint can be violated.

?- new([Tutor, [cname(['0zzy"']), sname(['Osbourne']), phone([1111]),
research_interest(['singing']) ]])=>staff,
new( [PGRA, [sname(['Alice']), cname([ 'Cooper']), age([35]),
tutor([Tutor]) ]]) >pgra,
new([ , [cname(['John']), sname([ 'Demayo']), research interest(['bass’]),
supervised student([PGRA])]])=>1lecturer.
Error! Message 'new' violates the constraint:
""forall 1 in lecturer not exists s in supervised_student of 1 such that research_
interest of 1 () research interest of tutor of s"''
which is defined at class 'lecturer’.
no

Only the first two instances have been created, thus the third violated the constraint and its
creation has been rejected.

?- get(A) > person, display=>A.

Display of O#staff Display of l#pgra
instance of: staff instance of: pgra
Slot values: Slot values:

key: [Osbourne, Ozzy] key: [Alice, Cooper]
sname: Osbourne age: 35

cname: Ozzy sname: Alice
phone: 1111 cname: Cooper
research_interest: singing tutor: O#staff
A=0#staff; A=1#pgra;

no

Example 4.

?7- put constraint({'exist at least 2 p in person
such that age of p>100'])=>person.
yes
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The above constraint imposes a lower limit on the number of instances that satisfy it, so in order
to demonstrate it we create two instances and then we try to delete one of them. Note that the
system assumes constraint is satisfied before insertion (its not!) and only checks on deletion.
This is discussed in Section 6.2.3.

?-new([_, [cname(['Rob']), sname(['Halford']), age([105])]]) =>person,
new([_, [sname([ 'Ronny']), cname([ 'Dio"']), age([110])]}])=>staff.

yes

?- get_by cname(['Dio'], A)=>person, delete=>A.

Error! Message 'delete' violates the constraint:

‘'exist at least 2 p in person such that age of p>100""

which is defined at class "person’'.

no

If the user tries to delete the age of an instance then the constraint is also violated!

?- get_by cname([ 'Dio'], A) >person, delete_age([_])>A.
Error! Message 'delete_age' violates the constraint:
''"exist at least 2 p in person such that age of p>100""
which is defined at class 'person'.

no

lllegal update because the deletion of the old age violates the constraint and the insertion of the
new one does not “restore” it.

?- get_by cname([ 'Dio'], A) > person, update age([_, 95]) >A.
Error! Message 'update age' violates the constraint:
""exist at least 2 p in person such that age of p>100""
which is defined at class 'person'.

no

The deletion of the old age violates the constraint, but the new age is consistent with the
constraint, so the update is accepted!

?- get_by _cname([ 'Dio'], A) > person, update_age([_, 109]) >A.
A=1#staff

Delete the constraint. Code fragments will be deleted from every relevant slot.

?- delete constraint(['exist at least 2 p in person
such that age of p>100']) = person.
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Now we can safely delete the instances.

?- get(A) > person, delete=>A.
A=0#person;

A=1l#staff;

no

Example 5. Insert a constraint to demonstrate the peculiar exists exactly quantifier.

?— put_constraint{['exist exactly 2 p in person
such that age of p>100']) = person.
yes

Re-create the instances! Notice that the system does not complain although constraint is not
pre-satisfied (see Section 6.2.3).

?-new(|_, [cname([ 'Rob']), sname([ 'Halford']), age([105])]])=>person,
new([_, [sname([ 'Ronny']), cname(['Dio']), age([110])]]) >staff.
yes

Try to insert a new instance. The new constraint insists that exactly two instances should satisfy
it!

?- new([_, [cname(['Tony']), sname(['Iommie']), age([110])]])=>staff.
Error! Message 'new' violates the constraint:

"'"exist exactly 2 p in person such that age of p>100""

which is defined at class 'person'.

no

Now try to delete an instance that satisfies the constraint.

?- get_by_cname([ 'Dio'], A) > person, delete=A.
Error! Message 'delete' violates the constraint:
'"exist exactly 2 p in person such that age of p>100""
which is defined at class 'person'.

no

We think that the above examples demonstrate our work adequately.

Appendix D — Example code fragments

We will now present some examples of Constraint Compilation into Prolog. The code
illustrated is some times simplified for illustrative purposes. The code that we give is for
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various methods affected by the corresponding constraint. The methods are named by the
Prolog functor starting put_, update_, etc.

Example 1.

forall 1l in lecturer
age of 1>25 and age of 1 <70

The above constraint has the very simple translation in Prolog for method put_age:

put _age(. .., [Age]) :-
(not(Age>25); not(Age<70))—
(error message(...), fail);
age<Age.

Therefore, the above constraint’s Prolog equivalent is translated as:
If not lecturer’s age within range
then print an error message and reject the update
otherwise update the age of the recipient object.

Example 2.

Existentially quantified constraints need more complex code, because we have to count the
number of instances that satisfy certain criteria and test it according to the quantifier. For
example consider the constraint:

exist at most 2 p in person
such that age of p>100

which has the following translation for method put_age:

put_age(. .., [Age]) :-
(Age>100—
(findall(Inst, (get(Inst)=>person,
get_age(Agelnst)=>Inst,
Agelnst>100),
List),
length(List, Length),
NewLength is Length + 1,
(not(NewLength = <2)—
(error_message(....), fail);
true));
true),
age<«Age.
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A notable thing is the check for Age > 100 before the global check is performed and the
trivial satisfaction of the constraint if this is not so.

Example 3.

Constraints with two variables produce a little more complex code, as they require the two
variables to be different, when they range over the same entity-classes or over classes that are
‘is-a’ related. The following constraint is a typical example:

forall r in ra
exist at most 2 rl in ra

such that phone of r = phone of rl

The translation of the above constraint is:

put_phone(. .., [Phone]):-
message recipient(Id),
findall(Inst, (get(Inst)=>ra,
Inst \==1d,
get phone(PhoneRa)=> Inst,
Phone== PhoneRa),
List),
length(List, Length),
not(Length=<2)—
(error message(....), fail);
phone < Phone.

The interesting bit here is the check Inst\==1d that ensures that the two variables stand
for different instances.

Example 4.
This constraint also has two variables, but unlike the above, the second variable depends
upon the first one:

forall 1l in lecturer
not exists r in research assistant of 1
such that research interest of 1 ()
research interest of tutor of r

The difference between the code generated for this and the previous constraint is inside the
findall loop:
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put research interest(. .., [RI]):-
message recipient(Id),
findall(RA, ( get_research _assistant(RA)=>1Id,
get_tutor(Tutor)=>RA,
get research interest(RI1)=>Tutor,
RI ()RI1),
List),
length(List, Length),
not(Length<1)—
(error_message(. . .), fail);
research interest «<RI.

Example 5.

Finally, this example demonstrates how the values of the slots involved in the predicates are
obtained. In section 6, these values have been collectively obtained by the macro
get_values_for_p,. Consider the following constraint:

forall s in student
age of s>year of s

which produces the following code fragments for methods put_age and put_year of class
student, respectively:

put_age(. .., [Age]):-
message recipient(Id),
(get_year(Year)=>1d,
not(Age>Year))—
(error_message(...), fail);
age<Age.

- put_year(. .., [Year]):-
message_recipient(Id),
(get_age(Age)=>1d,

not(Year<Age))—
(error message(. . .), fail);
year < Year.

Notice that the source of the values for the predicate may be the method parameters and/or
the instance variables of the message recipient object.
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Appendix E — Using meta-classes to support constraint checking

In CoLan, constraint checking is embedded inside the corresponding methods, as we
demonstrated in the Section 5. In order to include such a call inside any method that could
possibly violate a constraint we had to employ the powerful concept of ADAM meta-classes,
that can be used by a programmer to extend ADAM without needing to alter its source code
[25].

We introduce two meta-classes: colan class and colan meta_class. In fact,
colan_class is an instance of the meta-class colan meta_class (Fig. 2). The intro-
duction of such a high level meta-class (itself an instance of meta_class, the default ADAM
meta-class) was necessary because constraints can be inserted at class creation time and not
just by using put_constraint. When a user-defined class is created, message new is sent to
colan class, which searches in its meta-class for the appropriate method definition. The
method new defined on colan _meta_class extracts the list of constraints defined along with
the user-defined class, invokes the default ADAM class-creation method (defined at
meta class), and then uses the already described put_constraint method of
colan_class to insert the constraints to the newly created class.

E.1. Creating a new instance

Constraints can be violated when new instance objects are created (i.e. when new data is
inserted). Therefore, we must ensure constraint checking when message new is sent to a class
to create a new instance. The search for the definition for method new for a class begins with
the meta-class colan_class, whose instance is the class in question. This definition for new
in colan_class first inherits and checks all the constrains, as described, and then invokes
the default instance creation method from the mixins class mixin, etc.

keyed_meta_class
'

\

colan_meta_class

]

- colan@

3
colan_object AD_:}M
~ CoLan
— e J

-~
—— instance_of -t _@

e — e isa User's schema

Fig. 2. Pre-defined CoLan & ADAM Meta-classes.
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E.2. Deleting an instance

In ADAM instances are deleted by sending them the message delete. The search for the
method body begins at the class whose instance is the message-recipient object. Unfor-
tunately, the definition of delete is not stored in any of the classes of the schema but is
inherited from the class object. The class object is the superclass of all the classes. When a
class does not have an explicit superclass, ADAM makes it a subclass of class object by
default. Therefore, we need a way to override this default delete method defined at class
object. The only way to do this without destroying ADAM’s default definitions is to insert a
specialisation of class object between class object and every class of the schema. The
purpose of this class, called colan _object, is to re-define method delete to include a call
to check _constraints (Fig. 2).

E.3. Updating the internal status of an instance

The rest of methods that can violate a constraint are the ones that affect the internal state of
an instance, i.e. methods that put, delete, or update the value of a slot of an instance. Thus
the call to the predicate check_constraints must be a part of the first occurrence of every
method definition, for all the classes and all the slots. The meta-class colan class is
responsible for altering every class method that accesses instance variables, and it either
includes this call at the beginning of the first occurrence of every class method body when a
class is created, or it includes a call to inherit the superclass’ method.

Note that the call is included only in the method body of the first occurrence of the method
in the class hierarchy. Subsequent subclasses inherit the superclass method definition and
therefore the call to check_constraints. This is necessary in order to avoid redundant
checks of constraints.

But this does not allow for the re-definition of a method by a user, later in the life-cycle of
the database. The user might forget to include the call to check_constraints, which is the
one that guarantees the consistency of the database. In order to overcome this problem, we
had to alter the behaviour of those meta-class methods that are responsible for maintaining
the usual class methods. These are the methods put _method, replace method and
delete method whose default definition is stored in a mixin called sm beh [8]. The
meta-class colan_class is ‘is-a’ related to the sm_beh mixin (Fig. 2), so in order to override
the default behaviour of these meta-methods we had to include overriding definitions in the
colan_class class descriptor. The fact that we were able to do this is a tribute to the
extensibility of ADAM through meta-classes.
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