March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science
Vol. 00, No. 00, Month 200x, 1-20

RESEARCH ARTICLE

Reinforcement Learning Agents Providing Advice in Complex
Video Games

Matthew E. Taylor®* , Nicholas Carboni®, Anestis Fachantidis®, Ioannis Vlahavas®, and
Lisa Torreyd

& Washington State University, Pullman, WA, USA,
YPHD Virtual Technologies, Morris Plains, NJ, USA;
¢ Aristotle University of Thessaloniki, Thessaloniki, Greece;

d8t. Lawrence University, Canton, NY, USA
(Received 00 Month 200z; final version received 00 Month 200z)

This article introduces a teacher-student framework for reinforcement learning, synthesizing
and extending material that appeared in conference proceedings [22] and in a non-archival
workshop paper [6]. In this framework, a teacher agent instructs a student agent by suggesting
actions the student should take as it learns. However, the teacher may only give such advice a
limited number of times. We present several novel algorithms that teachers can use to budget
their advice effectively, and we evaluate them in two complex video games: StarCraft and
Pac-Man. Our results show that the same amount of advice, given at different moments, can
have different effects on student learning, and that teachers can significantly affect student
learning even when students use different learning methods and state representations.

Keywords: Reinforcement Learning, Agent Teaching, Pac-Man, StarCraft

1. Introduction

Using reinforcement learning (RL), agents can autonomously learn to master
sequential-decision tasks. In these tasks, an agent must develop a control policy for
taking actions in an environment. RL agents have traditionally been trained and
used in isolation, but research is beginning to produce ways for them to interact
productively with other agents and with humans.

This work focuses on how an RL agent could serve as a teacher for a task it has
mastered. We begin with another RL agent in the role of the student, but we prefer
teaching approaches that could potentially be used with human students as well.
This limits us to human-understandable teaching methods, prevents teachers from
assuming any familiarity with a student’s internal workings, and prevents students
from simply starting with the teacher’s knowledge. Furthermore, it requires teach-
ers to be able to instruct students that may learn and perceive their environment
differently.

As a motivating example for RL agents as teachers, consider the fast-growing
industry of computer games. One measure of a successful game is how many humans
choose to learn to play it. Modern games often have built-in training sessions to
help them; currently, this is additional content created by game developers. Instead,
perhaps RL agents could learn to play these games autonomously and then teach

*Corresponding author. Email: taylorm@eecs.wsu.edu

ISSN: 0954-0091 print/ISSN 1360-0494 online
© 200x Taylor & Francis

DOI: 10.1080/09540090XXXXXXXXXXXX
http://www.informaworld.com

March 4, 2014

Connection Science 14TandF postAccept’'3

2 M. E. Taylor et al.

human players. This could reduce the amount of developer time required to produce
training content.

There are many possible ways to help agents learn [3, 20], but few are also
applicable to human students. One that is applicable is action advice: as the
student practices, the teacher suggests actions to take. We advocate this method
because it requires minimal similarity between teachers and students — only a
common action set. They may use different learning algorithms, and they may have
different ways of representing the state of their environment. This is important for
the long-term goal of having human students, but it is also important to enable
agents with different implementations (e.g., created by different companies) to
teach each other without significant re-engineering.

Another assumption we make for this type of teaching is that teachers cannot
give unlimited quantities of advice. One reason for this restriction is that human
students would have limited patience and attention. However, it is also true that
some domains limit communication between agents. Furthermore, a teacher that
over-advises a student could actually hinder its learning, if the differences between
them are significant.

This article studies how an RL agent can best teach another RL agent using
a limited amount of advice. The teacher observes the student and can give ad-
vice a fixed number of times, but cannot observe or change anything internal to
the student. We propose a set of teaching algorithms: early advising, alternate
advising, importance advising, mistake correcting, and predictive advising. We
evaluate these algorithms experimentally in two domains: StarCraft and Pac-Man.
The results show that the same amount of advice, given at different moments, can
have different effects on student learning, and that teachers can significantly af-
fect student learning even when students use different learning methods and state
representations.

This article extends work in [6] and [22] by proposing two new measures for
importance advising, variance-based importance, and the absolute deviation im-
portance, applying them to the Pac-Man domain. Moreover, this work applies
standard importance advising, its two new measures, and the mistake correcting
algorithm in the complex domain of Starcraft.

2. Reinforcement Learning

In reinforcement learning, an agent learns through trial and error to perform a task
in an environment. As the agent takes actions, it receives feedback in the form of
real-valued rewards. RL algorithms use this information to gradually improve an
agent’s control policy in order to maximize its total long-term expected reward.

At each step, the agent observes the state s of its environment. Using its policy
, it selects and performs an action a, which alters the environment state to s’. The
agent observes this new state as well as a reward r, and it uses this information
to update its policy. This cycle repeats throughout the learning process, which is
often broken into a sequence of independent episodes.

A common way to represent a policy is with a Q-function Q(s,a), which esti-
mates the total reward an agent will earn starting by taking action a in state s.
Given an accurate Q-function, the agent can maximize its rewards by choosing
the action with the maximum Q-value in each state. Learning a policy therefore
means updating the Q-function to make it more accurate. Even in the early stages
of learning, the agent chooses actions with maximum Q-values most of the time,
but to account for potential inaccuracies in the Q-function, it must perform occa-
sional exploratory actions. A common strategy is e-greedy exploration, where with

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 3

a small probability €, the agent chooses a random action.

In an environment with a reasonably small number of states, the Q-function can
simply be a table of values with one entry for each state-action pair. Discrete RL al-
gorithms make updates to individual Q-value entries in this table. However, in some
larger environments, the states cannot be enumerated. In such cases, the states (or
the state-action pairs) are described by features {fi, fo,...}. The Q-function is
then an approximation, and a common form is a linear function Q(s,a) = >, w; f;.
Learning a policy then means updating the weights {wq, ws, ...}.

For the experiments in this paper, we use Sarsa, Sarsa()), and Q(\) with linear Q-
function approximation. These are well-known RL algorithms that can incorporate
advice with minimal modification. Since they already allow for exploratory actions,
they can simply treat advice like a particularly lucky form of exploration. These
algorithms have four parameters: the exploration rate ¢, the learning rate «, the
eligibility-trace parameter A, and the discount factor v. We report parameter values
in each task for reproduceability, but we direct readers elsewhere for a detailed
discussion of the algorithms [18].

The weights {w,ws,...} need to be given initial values. The usual choices are
optimistic, so that weights are adjusted downwards over time, or pessimistic, so
they are adjusted upwards. We find that this choice is important in the context of
teaching with advice. With optimistic initialization, agents focus their attention on
unexplored actions, which means that they delay repeating advised actions. With
pessimistic initialization, agents have no such habit and can benefit much more
from advice. The experiments in this article therefore use pessimistic initialization.

3. Teaching on a Budget

Suppose that an RL agent has learned an effective policy m for a task. Using this
fixed policy, it will teach another RL agent that is beginning to learn the same task.
As the student learns, the teacher will observe each state s the student encounters
and each action a the student takes. The teacher may perceive the states differently
than the student does. In n of the states, the teacher may advise the student to
take what it sees as the correct action: 7(s).

How should the teacher spend its advice most effectively? Calculating an opti-
mal strategy is unlikely to be feasible beyond the simplest of RL problems. We
instead take an experimental approach to this question, proposing and testing sev-
eral heuristic algorithms for deciding when to give advice.

3.1. Farly Advising

It seems clear that students should benefit more from advice early on, when they
know very little. Applying this intuition, our first approach has the teacher give
advice in each of the first n states the student encounters. This approach, which
we call early advising, is Algorithm 1. It serves as our baseline.

3.2. Alternating Advice

With early advising, the advice budget is spent quickly in a limited part of the
state space. To address these potential shortcomings, our second approach has
the teacher give advice once every m steps for the first nm states the student
encounters. This approach, which we call alternate advising, is Algorithm 2. It
allows the student to explore more of the state space in the vicinity of the teacher’s
policy before the advice budget is exhausted.

March 4, 2014

Connection Science 14TandF postAccept’'3

4 M. E. Taylor et al.

Algorithm 1 Early Advising

1: procedure EARLYADVISING(7,n)
2 for each student state s do
3 if n > 0 then
4: n<n-—1

5: Advise 7(s)
6 end if
7 end for
8. end procedure

Algorithm 2 Alternate Advising

1: procedure ALTERNATEADVISING(7, n,m)
2 step <~ 0

3 for each student state s do

4 if n > 0 and step mod m = 0 then
5: n+<n-—1

6 Advise m(s)

7 end if

8 step < step + 1

9: end for

10: end procedure

Algorithm 3 Importance Advising
1: procedure IMPORTANCEADVISING(7, n, t)
2 for each student state s do

3 if n >0 and I(s) >t then

4: n+<n-—1

5: Advise 7(s)
6

7
8:

end if
end for
end procedure

3.3. Importance Advising

When all states in a task are equally important, early advising and alternate ad-
vising could be effective strategies. However, we hypothesize that in some tasks,
some states are more important than others, and saving advice for more important
states would be a more effective strategy. Consider that games often have calmer
and tenser moments. In certain situations, the right move can win the game or the
wrong move can lose it; in others, any move is acceptable and none are disastrous.
This is an intuitive definition of state importance, which we will soon quantify with
a function I(s).

A teacher that is conscious of state importance could give advice only when it
reaches some threshold ¢. We call this approach in Algorithm 3 importance advising.

Because our teachers are RL agents with Q-functions, they have a natural way
to calculate I(s). Recall that a Q-value Q(s,a) is an estimate of the rewards
ultimately achievable by taking action a in state s. If the Q-values for all the
actions in s are the same, then it does not matter which one is taken, and s is
unimportant. However, if some actions in s have larger Q-values than others, then
it does matter, and s has some importance. We therefore propose the following
definition of state importance:

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 5

I(s) = max Q(s,a) — mgn Q(s,a)

This measure was first introduced by Clouse in his work on apprenticeship learn-
ing [8], but it was used there to approximate a learner’s confidence in a state.
Here, we compute I(s) with the teacher’s fully-learned Q-function rather than the
student’s partially-learned one, and in this context it is a better indicator of state
importance than agent confidence.

Moreover, in this text we propose two additional novel importance measure to
respond to the limitations presented by the first measure. The novel measures con-
sider range of the Q-values for a given state — the range of Q-values is a biased
estimator of their dispersion and is lossy because it does not provide any infor-
mation on the actual distribution. For instance, the Q-values could be uniformly
distributed, or all of them but one may be very close to their maximum, and the
difference between the highest and lowest Q-values could be the same in both cases.

The first novel importance advising measure proposed here uses the variance
statistic instead of the range to measure the importance of a state. The variance
(02) is a natural formulation of the inherit risk of a decision and is considered a
more robust and less biased statistic than the range. This version of the algorithm
computes the variance of the teacher’s Q-values in the current state and compares
it to a threshold. Variance-based importance is defined as:

where |A| is the number of actions in the action set A and Q(s,a) is the mean of
the Q-values for the given state s.

The second novel importance measure is based on the absolute deviation of the
Q-values, which is considered more suitable than the standard deviation when
normality guarantees do not hold. The absolute deviation importance measure
addresses two potential problems of the variance-based importance measure. First,
because the deviations of Q-values from the mean Q-Value are squared, this gives
more weight to extreme values (i.e., more importance to states with some extreme
action values). Second, tuning the threshold for a squared value is more difficult
and sensitive to small changes. The absolute deviation-based importance measure
is defined as:

|A]

(5) ,A|Zrczsa Q.0

3.4. M:istake Correcting

Even if a teacher saves its advice for important states, it may end up wasting
some advice in states where the student had already intended to take the correct
action. Advice can only have an effect when used in states where the student
would otherwise have made a mistake. If teachers could restrict their advice to
these states, they should be able to improve upon the above methods.

However, one of our key assumptions in this work is that teachers have no direct
access to student knowledge. To make it possible for teachers to spend advice
exclusively on mistakes, students would need to announce their intended actions

March 4, 2014 Connection Science 14TandF postAccept’'3

6 M. E. Taylor et al.

Algorithm 4 Mistake Correcting
1: procedure MISTAKECORRECTING (7, n, t)

2 for each student state s do

3 Observe student’s announced action a

4 if n >0 and I(s) >t and a # 7(s) then
5: n<n-—1
6

7

8
9:

Advise 7(s)
end if
end for
end procedure

Algorithm 5 Predictive Advising
1: procedure PREDICTIVEADVISING (7, n, t)

2 for each student state s do

3 Predict student’s intended action a

4 if n >0 and I(s) >t and a # 7(s) then
5: n<n-—1
6

7

8
9:

Advise 7(s)
end if
end for
end procedure

in advance and give teachers an opportunity to correct them. This introduces
additional communication into the framework that may not be convenient in all
situations, but the approach serves as a useful upper bound. We call this approach,
in Algorithm 4, mistake correcting.

3.5. Predictive Advising

Although teachers cannot directly access student knowledge, they may be able to
infer student policies from their behavior. A teacher observes the states a student
encounters and the actions it takes. Using these observations as training data, the
teacher can train a classifier to predict student actions, and use these predictions in
place of student announcements. We call this approach, in Algorithm 5, predictive
advising.

This approach approximates mistake correcting, but has the advantage of not re-
quiring additional communication from the student. If a teacher’s action predictor
performs perfectly, predictive advising becomes equivalent to mistake correcting.
When it makes inaccurate predictions, the teacher sometimes wastes advice, mak-
ing predictive advising more like importance advising. Inaccurate predictions can
also make the teacher miss opportunities to give useful advice, which importance
advising would not have missed.

Many algorithms for supervised learning could potentially be applied to this
classification task. In this article we use a Support Vector Machine, as implemented
in the SVM-Light software package [9]. Action prediction can be addressed as a
partial ranking problem: given the student’s state (as the teacher sees it), the
teacher attempts to predict which action the student will rank more highly than
the rest. SVM-Light’s ranking SVM is well-suited to this problem.

Each observed state-action pair generates one training example. Suppose a
teacher observes a state s with k features, and sees the student choose one of
3 possible actions. The corresponding training example generated for the ranking

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 7

SVM would be structured as:
2 fl(sval)a f2(87a1)7) fk’(sval)
L fi(s,a2), fa(s, a2, ...y fr(s,a2)
1 fl(sva?))a f2(83a3)7 ey fk(sva?))

In this example, each action is represented by one line of features. The numbers
in the left column specify pairwise ranking constraints between actions. Because
action aj is higher than ay and a3, the SVM applies the constraints Q(s,a;) >
Q(s,a2) and Q(s,a1) > Q(s,as3). Because actions as and az have the same values,
no constraints are generated between them. This reflects the teacher’s knowledge,
which is only that the student chose a; over the other actions.

The output of the ranking SVM, when queried on a state s, is a set of real
numbers, one for each action available in s. The predicted student action in s is the
one with the highest number. We keep most of the SVM-Light parameters at their
default values, except for the margin/error tradeoff C, which we experimentally
tuned to 1000.

The teacher trains a new SVM after each episode, using training examples from
the previous episode. Average SVM training times are approximately one second.
This is an inconspicuous delay between episodes, but it could be disruptive during
episodes, which is why we do not update the SVMs more often.

Note that this classification task is inherently challenging for several reasons.
First, students are constantly learning and will likely produce inconsistent training
data because their behavior is non-stationary. Second, students sometimes take
random exploration steps, which means the data will be noisy. Third, the student’s
state representation can be different from the teacher’s, which means the hypothesis
space of the classifier may not even contain the student’s policy. Despite these
challenges, our results will show that useful predictions are achievable in some
scenarios.

4. Experimental Domains

We evaluate these teaching algorithms in two complex, stochastic experimental
domains. Due to space limitations, we cannot fully describe all the details of our
implementations. However, all of our code is available at the corresponding author’s
website.!

4.1. StarCraft

StarCraft is a popular real-time strategy game that simulates a war between two
armies. Successfully playing it involves juggling many (sometimes conflicting) prior-
ities, including resource collection, building and unit construction, and technology
upgrades. This work focuses on a more manageable subgame involving one-on-one
combat between two units. Figure 1 shows the center of the board used in experi-
ments. This map consists of one island on which the two units fight. There is also
a barrier through which they cannot pass.

A Terran Marine and a Zerg Zergling begin the episode at fixed start locations.
The primary difference between these units is that the Marine is a ranged unit and
the Zergling is not; the Zergling must be within close range of its enemy to attack.
The Marine is the learning agent, while the Zergling is controlled by the standard
game Al: it is stationary until the Marine is close enough to be seen, or until the

Thttp://eecs.wsu.edu/~taylorm/13ConnectionScience.html

March 4, 2014

Connection Science 14TandF postAccept’'3

8 M. E. Taylor et al.

Figure 1. The screenshot on the left shows the 1-vs.-1 StarCraft map and highlights the area from which
the Marine can harm the Zergling without immediate retaliation. The figure on the right shows the Pac-
Man maze.

Marine shoots at it. The episode ends when one of the units dies, or a maximum
of 1000 actions have been executed by the agent.

If the Marine could simply run around the barrier and kill the Zergling imme-
diately, then our problem would be trivial. However, if the Marine were to get
too close he would surely die; hit point and damage values are set so that in a
close-range fight the Zergling will always win. The ideal policy for the Marine is
therefore to attack the Zergling from over the barrier and kill it before it is able to
reach him.

The agent represents the current state using six state variables:

(1) the agent’s X position,

2) the agent’s Y position,

) the straight line distance to the enemy,

) the difference in hit points between the agent and the enemy,
) a boolean value for whether the enemy is stationary, and

(6) and the angle of the enemy relative to the agent.

(

(3
(4
(5

The agent receives a reward of -0.3 on every step.! At the end of an episode
(when the agent does not exceed 1000 actions), we calculate the difference in the
health of the agent and the enemy as the reward for the final step of the episode.
Episodes often last the full 1000 actions during initial learning because the agent
never engages the enemy; in this case the agent accumulates a total reward of -300
due to the step penalty. Some agents converge to a policy which suggests walking
directly towards the enemy to kill themselves and lose the episode as quickly as
possible, avoiding the penalty for taking a large number of steps. This strategy
results in a total reward of roughly -15. In the best-case scenario, the agent will
kill the enemy from behind cover without being hit, and receive a total reward of
roughly 20.

In any state the agent can execute one of seven actions. For one time step the
agent can:

(1) take no action,

(2) attack the enemy,

(3) move towards the enemy,
(4) move south,

1Even though there is a penalty for every step, there are cases where taking no action can be advantageous
(e.g., when the enemy is moving).

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 9

(5) move north,
(6) move east, or
(7) move west.

The attack command will cause the Marine to shoot the enemy if it is within
range, or move towards the enemy if is not. Because the Zergling will quickly kill
the Marine if the Marine does not begin its attack from cover, the attack action
and the move towards enemy action often result in the agent’s death during early
experimentation, making it particularly difficult for the agent to learn to correctly
attack the enemy.

StarCraft, like most strategy games, has a “fog of war” setting that deliber-
ately obscures units and structures from the players’ views. In our experiments,
we disabled this setting. If the fog of war were enabled, and the Marine had not
yet moved close enough to the Zergling, the actions for attacking the enemy and
moving towards the enemy would have no effect.

The agent learns using Sarsa with a fixed exploration rate of 0.05 and a fixed
learning rate of 0.15, tuned by running multiple trials with approximately 10 differ-
ent parameter settings. A CMAC [2] tile coding is used for function approximation,
where each of the 6 state variables are tiled independently with 32 tilings.

4.2. Pac-Man

Pac-Man is a 1980s arcade game in which the player navigates a maze like the one in
Figure 1 (right), trying to earn points by touching edible items and trying to avoid
being caught by the four ghosts. We use an implementation of the game provided
by the Ms. Pac-Man vs. Ghosts League [16], which conducts annual competitions.
Ghosts in this implementation chase the player 80% of the time and move randomly
the other 20%.

Pac-Man episodes all occur in the same maze. The agent has four actions —
move up, down, left, and right — but in most states only some of these actions are
available. The agent can (roughly) maintain its position by toggling quickly between
two opposite actions (i.e., selecting the move right action and then immediately
selecting the move left action). Four moves are required to travel between the small
dots on the grid, which represent food pellets and are worth 10 points each. The
larger dots are power pellets, which are worth 50 points each, and also cause the
ghosts to become edible for a short time, during which they slow down and turn to
fleeing instead of chasing. Eating a ghost is worth 200 points and causes the ghost
to respawn in the lair at the center of the maze. The episode ends if any ghost
catches Pac-Man, or after a maximum of 2000 steps.

This domain is discrete but has a very large state space. There are 1293 distinct
locations in the maze, and a complete state consists of the locations of Pac-Man,
the ghosts, the food pellets, and the power pills, along with each ghost’s previous
move and whether or not it is edible. The combinatorial explosion of possible states
makes it essential to approach this domain through high-level feature construction
and Q-function approximation.

Useful high-level features tend to describe distances between Pac-Man and other
objects of interest. Action-specific features are more useful than global features.
For example, a global feature might be “the distance from Pac-Man to the nearest
food pellet.” Making this feature specific to action a, it becomes “the distance from
Pac-Man to the nearest food pellet after Pac-Man executes a.”

When using action-specific features, a feature set is really a set of functions
{fi(s,a), fa(s,a),...}. All actions share one Q-function, which associates a weight
with each feature. A Q-value is Q(s,a) = wo + >, w; fi(s,a). To achieve gradient-

March 4, 2014

Connection Science 14TandF postAccept’'3

10 M. E. Taylor et al.

descent convergence, it is important to have the extra bias weight wy and also to
normalize the features to the range [0, 1].

We create agents with different state representations in this domain by defining
two distinct feature sets. One feature set consists of 16 features that count objects
at a range of distances from Pac-Man. The other consists of 7 heavily-engineered
distance-related features. These features are not fully documented here for space
reasons, but their implementation is available in the on-line appendix.

A perfect score in an episode would be 5600 points, but this is quite difficult to
achieve (for both humans and agents). An agent executing random actions earns an
average of 250 points. The 16-feature set described above allows an agent to reach
an average of 2600 points per episode, successfully eating most of the pellets and
the occasional edible ghost. The 7-feature set allows an agent to learn to catch more
edible ghosts and achieve a per-episode average of 3800 points. We therefore refer to
the 16-feature set as “low-asymptote” and the 7-feature set as “high-asymptote.”

5. Teaching Results

This section demonstrates improvements in student learning via teaching in the
StarCraft and Pac-Man tasks. First, we train agents independently in these tasks,
and select the best-performing agents to be teachers. Then, we have students learn
the tasks, with advice from the teachers. The learning curves for the students are
what we show here.

To smooth the natural variance in student performance, each learning curve is
an average over multiple independent trials of student learning. In Pac-Man, each
curve is an average of 30 independent trials. In StarCraft (for which simulation is
much slower) there are 15 independent trials, but the points on the learning curves
are further smoothed by averaging over a 5-episode moving window.

While training, an agent periodically halts its training to run evaluation episodes,
in which no learning, exploration, or teaching occurs. In StarCraft, every other
episode is an evaluation episode. In Pac-Man, we run 30 evaluation episodes after
every 10 learning episodes. In both cases, the learning curves only reflect student
knowledge, not teacher knowledge.

We consider one learning method to be better than another if its learning curve
has a steeper slope or a higher asymptote. Agents that use different learning algo-
rithms, state representations, or parameter settings can differ in both of these ways.
Our experiments focus on the impact of teaching algorithms, keeping other learning
and experimental parameters fixed. The parameters and thresholds of the learning
algorithms in the next sections were tuned through preliminary experimentation.

To measure learning speed in a holistic way, we compute areas under learning
curves. The total rewards are compared using t-tests on their areas with a = 0.05.
When we report that the difference between two curves is significant, it means
there is at least 95% confidence that one curve has higher total reward.

5.1. StarCraft

This section examines teaching in the StarCraft task with only 50 pieces of action
advice. To evaluate the effects of teacher quality, we do so with two different teach-
ers. One is a "good” teacher, trained for 500 episodes to achieve an average reward
of 16.2, with a standard deviation of 6.7. The other is a ”poor” teacher, trained for
only 200 episodes, achieving an average reward of -10.7, with a standard deviation
of 13.

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 11

1 vs. 1 Starcraft, Good Teacher

50
(]
8 or
2
Q.
w
g
o -50
[
=
(]
o
.g -100 I
8 \
(0]
(o)) "] . .
€ 450 Mistake correcting, range
(4 Mistake correcting, variance —e—
< Importance Advising, range
Importance advising, variance —=—
Alternating advice ——#—
-200 Early advising —=—
‘ ‘ ‘ ‘ ‘ Noadvice ——
0 50 100 150 200 250 300 350 400

Training Episodes

Figure 2. StarCraft learning with a good teacher.

5.1.1. Using a Good Teacher

Figure 2 shows how a good teacher can impact the learning of a StarCraft stu-
dent. The Average Teacher Performance line shows the average performance of
the teacher. The No Advice curve shows the average performance of independent
Sarsa agents without teaching. The other curves show that early advising, alternate
advising, importance advising, and mistake correcting all outperform independent
learning. Typically, all of these algorithms lead the Marine to consistently kill the
Zergling from behind cover before it was wounded.

Standard error bars are shown every 10 episodes on the No Advice curve to give
an idea of the variation in student performance. In the other learning curves, the
error bars are similar, and are omitted for readability. Early advising produces a
statistically significant improvement over independent learning. This is also true
for alternate advising and importance advising (with a threshold of t = 24), but
there is no significant difference between these algorithms and early advising.

For variance-based importance advising, the variance threshold was set to ¢t =
75 and the results showed a statistically significant improvement over No Advice
both in the total reward and the reward after 400 training episodes. However, no
statistically significant difference was observed compared to the above methods
teaching methods.

Finally, consider the Mistake Correcting algorithm, using both the range and
the variance statistic. Mistake correcting provides advice only when the student’s
intended action is different from the teacher’s action and the state is considered
important. For the range statistic, the threshold was set to t = 15 and for variance,
t = 45. Both versions of mistake correcting showed a statistically significant per-
formance improvement (p < 0.05) compared to all the other methods presented in
this experiment, and also compared to No Advice. Although the variance method
shows better performance than the range method, the difference is not statistically
significant at p < 0.05

March 4, 2014

Connection Science 14TandF postAccept’'3

12 M. E. Taylor et al.

1 vs. 1 Starcraft, Poor Teacher

50
(]
8 or
2
Q.
L
g
o -50
©
=
(]
o
2 -100
5
(0]
o)) / . .
S 450 td Mistake correcting, range
(4 s Mistake correcting, variance —e—
< Importance Advising, range
Importance advising, variance —=—
Alternating advice ——#—
-200 Early advising —=—
‘ ‘ ‘ ‘ ‘ _Noadvice —+— |
0 50 100 150 200 250 300 350 400

Training Episodes

Figure 3. StarCraft learning with a poor teacher.

5.1.2. Using a Poor Teacher

Figure 3 shows how a poor teacher can impact the learning of a StarCraft stu-
dent. Because this teacher’s performance is significantly worse than the teacher in
the previous section, we expected student performance to significantly decrease.
However, we found the relative ordering of the algorithms to be very similar. At
the 95% confidence level the same statistically significant differences were found
between the algorithms as those of using a good teacher. However, no statistically
significant difference were found between the early advising, the standard impor-
tance advising (i.e., range importance measure) and the variance-based importance
advising.

When the students follow the teacher’s advice, they achieve a reward very similar
to that of the poor teacher. However, when the agents execute their learned policy
(as graphed in Figure 3), the agents eventually reach a higher performance than the
teacher because they have learned to quickly kill themselves. This local maximum
is better than continually wandering around the state space until the episode ends,
but is much worse than correctly killing the enemy. Because the agent stumbles
upon this sub-optimal local maximum, it actually makes learning the optimal policy
much harder.

It is important to note the significantly worse performance of alternate advising
using a poor teacher. One intuition is that a poor teacher (i.e., a teacher with
Q-values that have not converged) increases the importance of having an advising
criteria such as those of importance advising and mistake correcting. However, early
advising does still perform well. This behavior exposes the fact that a teacher’s
ability may affect which teaching method is most effective.

5.2. Pac-Man

In this section, we test teaching in the game of Pac-Man. Because experiments
run significantly faster than in StarCraft, we can run experiments for many more
episodes and be assured asymptotic performance is reached. Thus, we do not expect

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 13

2500 | T
/M\% Aw\ S e ong wa
© 2000 | / ST IR _
S i s 1
; -) : E
© L[]
g 1500 | } 3
o -
2 e
o 1000 /]
& [7]
> N Mistake correcting —— |
= [is Predictive advising h
< 500 Ji Importance advising ==+
o Early advising e
. No advice
0 P S TR AN TR SR T T T S SR TR N T S S S N S S S
0 200 400 600 800 1000

Training episodes

Figure 4. Pac-Man learning with similar students and teachers using Sarsa with the low-asymptote feature
set.

teaching to change the asymptotic performance of students, but we do look for it
to improve their learning speed.

With the exception of early advising, all of our teaching approaches have a pa-
rameter ¢, the threshold above which a state is considered important. To explore
how t affects performance, we try 10 values for each teacher, uniformly distributed
across that teacher’s I(s) range. For each teacher-student pair, we report the most
effective value for ¢.

Pac-Man teachers are given an advice budget of n = 1000, which is roughly half
the number of steps in a single well-played episode. Since independent learners
take between 400 and 800 training episodes to learn this game, Pac-Man students
are only receiving advice during a small fraction of their training steps. The RL
parameters that all Pac-Man agents use are € = 0.05, « = 0.001, v = 0.999, and
A=0.9.

First, we present experiments where the teacher and student use the same algo-
rithm and feature set. In Figure 4, both agents use Sarsa(\) and the low-asymptote
16-feature set; t = 50. Differences between curves are significant for all pairs except
mistake correcting and predictive advising.! In Figure 5, both agents use Sarsa(\)
and the high-asymptote 7-feature set; t = 200. Differences between curves are
significant for all pairs except early advising and independent learning.

Although these teachers are giving advice in only a small fraction of the training
steps, some of them have significant effects on student learning. Advice has a higher
overall impact on students with the 16-feature set because these students have a
simpler policy to learn. Early advising provides a large benefit with the 16-feature
students, but not with the 7-feature ones. Importance advising is slightly but con-
sistently better than early advising, and the best ¢ thresholds are above 0, which
confirms that saving advice for important states can be effective. Mistake correcting
consistently outperforms importance advising, which confirms that saving advice
for mistakes is also effective. Predictive advising also outperforms importance ad-

IPredictive advising was easier to implement in Pac-Man than in StarCraft. This is because the Pac-Man
simulation runs in Linux, rather than Windows, and there are many fewer actions in Pac-Man, making
prediction easier. Implementing prediction in StarCraft is left to future work, although we expect results
in the Pac-Man domain.

March 4, 2014

Connection Science 14TandF postAccept’'3

14 M. E. Taylor et al.
4000 7T T T
S I Nl 1
g 3500 - i
o i
(3] L
©
2 3000]
2 _
(]
o i
% -
E’ 2500 L PI\/Iist_ak_e correcting ——]
< I AL redictive advising
L 7 Importance advising ==+=----
- £ Early advising
il No advice
2000‘...I....I....I....I....
0 200 400 600 800 1000

Training episodes

Figure 5. Pac-Man learning with similar students and teachers using Sarsa with the high-asymptote
feature set.

vising, and for the 16-feature students it even matches mistake correcting. These
results suggest that mistake correcting is the best choice if it is feasible, and if not,
predictive advising is the best alternative.

The good performance of predictive advising in Figure 4 is not due to perfect ac-
tion prediction. In fact, prediction accuracy is lower (79%) than in Figure 5 (86%).
But prediction errors are less costly when teaching low-asymptote students be-
cause they benefit more from any advice schedule. For the same student, increased
prediction accuracy corresponds to better performance with predictive advising.
However, the impacts of wasted and delayed advice are not the same for all stu-
dents.

5.2.1. Increased Differences Between Student and Teacher

Our next experiments investigate the effects of having the teacher and student
use different learning algorithms. This factor would be irrelevant if all algorithms
converged to the same optimal policy, but in practice this is not the case. Q(\)
and Sarsa(\) produce asymptotic policies for Pac-Man whose performances differ
by approximately 200 points. They also learn at different speeds; for the sake of
variety, we exaggerate this difference by using A = 0.7 in Q()) to slow it further.

In Figure 6, a Q(A) teacher advises a Sarsa(\) student; ¢ = 20 and prediction
accuracy is 80%. Differences between curves are significant for all pairs except
early advising and importance advising. Figure 7 shows the performance when
the algorithms are reversed; ¢ = 100, and prediction accuracy is 81%. Differences
between curves are significant for all pairs except mistake correcting and predictive
advising. All of these agents use the 16-feature set.

Although these students use different algorithms and progress at different rates
than their teachers, the differences do not appear to hinder teaching. Advice has
a higher overall impact on students that use Sarsa(\), probably because advice is
treated as exploration, and Sarsa(\) takes exploration into account more than Q(\)
does. These results suggest that the learning algorithm of the student has more
impact on the effectiveness of teaching than the learning algorithm of the teacher
does. While some students may respond better to advice than others, teachers can
effectively advise students that learn differently.

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 15

2500 ~————T———T———T]
2000
1500

1000

Mistake correcting ——
Predictive advising

Average episode reward

500 Importance advising =-+-:--]
Early advising e
No advice
0 PRI SR TR AN TR SR ST T S T TR T N T S S S N S S S
0 200 400 600 800 1000

Training episodes

Figure 6. A Q-learning teacher advises a Sarsa student, both using the low-asymptote feature set.

3000 [T 7T]

:— {‘\}-,w‘»'...t'—'~ s SO ~"$E

- 2500 | Fﬁ/,i:y? nﬁw\g\,xqﬁcﬁxﬁ_

S r ”.' o X '-‘.::

¢ _ RELES

& 2000 [N

() L o

ho} L

2 1500 | 1

2 _

() L

o) C

& 1000 | o , .

o r i Mistake correcting ——

z r & Predictive advising 1

500 * Importance advising ===+---- .
L ; Early advising e]
DA No advice .
O'.".’"..I....I....I....I....

0 200 400 600 800 1000

Training episodes

Figure 7. A Sarsa teacher advises a Q-learning student, both using the low-asymptote feature set.

Finally, we present experiments where the teacher and student use different fea-
ture sets. We expect this to be the most challenging type of difference because it
causes large differences in the asymptotic performance of teachers and students. It
is not obvious that advice will be helpful across this divide, and there is even the
risk that it might be harmful.

In Figure 9, a high-asymptote 7-feature teacher advises a low-asymptote 16-
feature student; ¢ = 100. Differences between curves are significant for all pairs.
In Figure 9, the feature sets are reversed and ¢t = 250. Mistake correcting and
predictive advising are significantly different from each other and the rest, but the
other three approaches are statistically equivalent. All of these agents use Sarsa(\).

Although these teachers perceive their environment differently than their stu-
dents, some of them still provide significant benefits on student learning. These
effects are not always as strong as when teachers and students used the same

March 4, 2014

Connection Science 14TandF postAccept’'3

16 M. E. Taylor et al.
2500]
: DA o
© 2000 [i]
= I
; -
o I
g 1500 []
o
%) i
o3 i
o 1000]
& i
o i Mistake correcting ———
z o Predictive advising]
< 500 o Importance advising =«+=----
i Early advising
No advice
0 PR T S S AN SN SN TN SN NN TN SO TR S N SN T SR SO N SO S S’
0 200 400 600 800 1000

Training episodes

Figure 8. A teacher with a high-asymptote representation advises a low-asymptote student, both using
Sarsa.

400 ————F——— 71— 71T
3 VO i achiias:
B i e dEPPRIT
g 3500 - t?* 1
o L i
() L
©
2 3000 |- .
2 _
()
° i
g -
o) I Mistake correcting ——
z 2500 - ' Predictive advising 7
L Importance advising =-+-----
- Early advising e
- No advice
2000 PR SR I S SR TR A I SR R S SR A S SR S SR HN RO S S
0 200 400 600 800 1000

Training episodes

Figure 9. A teacher with a low-asymptote representation advises a high-asymptote student, both using
Sarsa.

state representation, but some of them remain quite useful. Unsurprisingly, high-
asymptote teachers have larger effects on low-asymptote students than vice versa.
But low-asymptote teachers do have positive impacts on high-asymptote students
(with mistake correcting and predictive advising), and these students then go on
to outperform their teachers, as they should given their higher inherent capability.
None of these teachers have negative impacts on students.

The high-asymptote agents have substantial difficulty predicting the actions of
the low-asymptote agents (accuracy 61%). This causes predictive advising to per-
form slightly below importance advising in Figure 8. There is no such difficulty in
the reverse scenario (i.e., Figure 9, which has an accuracy 86%). Prediction accu-
racy across feature sets is likely to depend on the specifics of the features. However,
these results suggest that teachers can effectively advise students that perceive the
world differently.

March 4, 2014

Connection Science 14TandF postAccept’'3

Connection Science 17

3000 ————————————————————
2500
2000

1500

Average Score

1000

500 Variance-based Importance t=9000 ——— -
3 Importance t = 100 1
Importance t =250 ------- 1

abs. deviation Importance t =60 -~

=T No advice
0 P P P R MR
0 200 400 600 800 1000
Training Episodes

Figure 10. This figure shows results of teaching Pac-Man with different definitions of state importance.

The rate at which teachers spend their advice is partly controlled by the impor-
tance threshold ¢. When teaching 16-feature students, the best teachers give most
of their advice within the first 10 episodes of student training, because the low-
asymptote students benefit most from advice very early in their learning. When
16-feature teachers advise 7-feature students, they also do best to spend their ad-
vice quickly, before the high-asymptote students surpass them. However, when
7-feature teachers advise 7-feature students, they can perform better by giving
less frequent advice over longer periods. The best settings of importance advising,
mistake correcting and predictive advising spread their advice over 20, 100 and 60
episodes respectively.

5.2.2. Alternative Importance Metrics

One important open question is how to best define state importance. While
this question will be fully discussed only in future work, we tested the two other
importance metrics, as discussed in Section 3.3.

Figure 10 shows a Q-learning student using the low-asymptote feature set and
Importance advising. Two different threshold values for the standard state impor-
tance metric are compared to the two additional importance measures. However,
neither of the new metrics showed a statistically significant difference (p > 0.05)
with the normal state importance definition (for a threshold of 100). It is impor-
tant to note the poor performance of importance advising using the range statistic
and a high threshold of 250. The high threshold allows less (or no) advice to be
given and the performance of the student approaches that of learning without a
teacher. On the other hand a very low threshold in an importance metric will allow
giving most of the advice early so that the student’s performance approaches that
of Early Advising.

5.3. Results Summary

Experimental results conducted in two complex domains lead us to the following
conclusions about teaching with an advice budget.

March 4, 2014

Connection Science 14TandF postAccept’'3

18 M. E. Taylor et al.

(1) Student learning can be improved by receiving small amounts of advice
from a teaching agent.

(2) Advice can have greater impact when it is used in more important states,
where “importance” can be defined in multiple ways.

(3) Advice can have greater impact when it is spent on correcting student
mistakes.

(4) When teachers can successfully predict student mistakes, they can spend
their advice budget more effectively.

(5) Teaching can improve student learning even when agents have different
learning algorithms or state representations.

(6) Students can benefit from advice even from teachers with less inherent
ability, and then go on to outperform their teachers.

6. Related Work

There is a growing body of work on improving reinforcement learning by leveraging
knowledge from outside sources. We distinguish our work by focusing on methods
that 1) are directed by an agent serving as a teacher, 2) aim to help a student
maximize an environmental reward, 3) can potentially be used with human students
(i.e., do not require unlimited communication, direct knowledge access, or identical
state representations), and 4) and are applied to large, non-trivial tasks.

Transfer learning in RL [20] has an agent use knowledge from a source task
to aid its learning in a target task. Agents performing transfer often have direct
access to source-task knowledge, such as the source-task policy. In contrast, our
work assumes student agents have strict limits on access to teacher knowledge.

Experience replay [12] has a student train on the recorded experiences of a
teacher. This requires the student and teacher to have identical state represen-
tations, which is a limitation our methods avoid.

Apprentice learning [8] has a student ask a teacher for advice whenever its confi-
dence in a state is low. Similarly, advice exchange [14] has peers ask for advice from
each other based on heuristics of self-confidence and trust. Our work diverges from
these by having a teacher decide when advice will occur, rather than a student.

Our own prior work involves observing a teacher performing a task repeatedly
and then summarizing the behavior via rules using the student’s state description.
This method successfully allows the student and teacher to have different state
representations (i.e., use different state features). Using this method, a student
agent has effectively improved learning both from an agent teacher [19] and from
a human teacher [21]. The current work differs by using advice as the teaching
approach rather than rules.

Learning from Demonstration [3] (LfD) is a paradigm in which a student agent
watches another agent (or a human) and learns the teacher’s policy. The main
problem is one of generalization: how can the student learn to act in situations
where it has not seen an explicit demonstration? In LfD, and the related approach
of imitation learning [15], a student typically focuses on mimicking a teacher, not
maximizing an external environmental reward. In contrast, our work assumes that
the agent lives inside a well-defined MDP and should act to maximize a reward,
with the help of a teacher.

A similar contrast applies to inverse reinforcement learning [1, 4, 13, 24] (IRL).
Here, a student agent observes a teacher and tries to infer the teacher’s reward
function. Once estimating the teacher’s reward function, the student autonomously
learns to maximize it. IRL typically focuses on cases where the student cannot
observe rewards, and the teacher is typically a human who has domain knowledge

March 4, 2014

Connection Science 14TandF postAccept’'3

REFERENCES 19

about what constitutes a “good” policy. Our work assumes rewards are directly
available to the student.

There is some work on teaching in non-RL settings, such as classification [7], or
with collaborative teams of RL agents [17], whose problem settings differ somewhat
from ours. There is also some recent theoretical work on when to teach a sequence
of states and actions [23] and how to provide optimal demonstrations [5], but these
approaches are currently limited to small, finite, MDPs. Lastly, there is a growing
body of work that examines how a human wants to teach an agent in a sequential
decision making task [5, 10, 11], and how an agent should be designed in order to
take advantage of this insight; our work does not address human teachers.

7. Conclusions

As more problems become solvable by agent-based methods, it is important for
agents to be able to work together, even if they are implemented differently. It is
also important for agents and humans to be able to interact productively despite
their substantial differences. RL agents are good at learning control policies for
specific tasks, and it would be useful for them to be able to serve as teachers for
those tasks.

This article poses the problem of having trained RL agents serve as teachers
in ways that are effective for many types of students. We present teaching algo-
rithms that use small amounts of action advice to speed up student learning, even
when students learn and represent states differently. Our experimental results show
that significant benefits, as measured by areas under student learning curves, are
achievable with these algorithms.

There are many potential directions for future work. For example, action pre-
diction might be improved by using an efficient incremental classifier. The concept
of state importance could also use further exploration: perhaps there exist bet-
ter domain-specific ways to measure state importance, or effective strategies for
automatically selecting and adjusting importance thresholds.

Larger steps in future work could extend the problem to include multiple teach-
ers and/or students. It would also be useful to examine agents with broader ranges
of learning algorithms, including human students. Domains like Pac-Man and Star-
Craft would be particularly suitable for these kinds of experiments. It is our hope
that this study will provide a solid foundation for additional work on these exciting
questions.

8. Acknowledgments

The authors thank the reviewers for their comments and insights. This work was
supported in part by NSF I15-1149917.

References

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proc. of the International Conference on Machine Learning, 2004.

[2] J. S. Albus. Brains, Behavior, and Robotics. Byte Books, Peterborough, NH,
1981.

[3] B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469 — 483,
2009.

March 4, 2014

Connection Science 14TandF postAccept’'3

20

[4]

[22]

[23]

[24]

REFERENCES

M. Babes-Vroman, V. Mari, K. Subramanian, and M. Littman. Apprenticeship
learning about multiple intentions. In Proceeding of International Conference
on Machine Learning, 2010.

M. Cakmak and M. Lopes. Algorithmic and Human Teaching of Sequential
Decision Tasks. In AAAI Conference on Artificial Intelligence, 2012.

N. Carboni and M. E. Taylor. Preliminary results for 1 vs. 1 tactics in
StarCraft. In Proceedings of the Adaptive and Learning Agents workshop (at
AAMAS-13), May 2013.

D. Chakraborty and S. Sen. Teaching new teammates. In Proceedings of the
Conference on Autonomous Agents and Multi Agent Systems, 2006.

J. A. Clouse. On integrating apprentice learning and reinforcement learning.
PhD thesis, University of Massachusetts, 1996.

T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning. MIT Press, 1999.

F. Khan, X. J. Zhu, and B. Mutlu. How do humans teach: On curriculum
learning and teaching dimension. In Proceedings of Advances in Neural Infor-
mation Processing Systems, 2011.

W. B. Knox, B. D. Glass, B. C. Love, W. T. Maddox, and P. Stone. How
humans teach agents - a new experimental perspective. International Journal
of Social Robotics, 4(4):409-421, 2012.

L. J. Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8:293-321, 1992.

G. Neu. Apprenticeship learning using inverse reinforcement learning and gra-
dient methods. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2007.

L. Nunes and E. Oliveira. On learning by exchanging advice. AISB Journal,
1(3), 2003.

B. Price and C. Boutilier. Accelerating reinforcement learning through implicit
imitation. Journal of Artificial Intelligence Research, 19:569-629, 2003.

P. Rohlfshagen and S. M. Lucas. Ms Pac-Man versus Ghost Team CEC 2011
competition. In Proc. of the Congress on Evolutionary Computation, 2011.
P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2010.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT
Press, 1998.

M. E. Taylor and P. Stone. Cross-domain transfer for reinforcement learning.
In Proceedings of the International Conference on Machine Learning, 2007.
M. E. Taylor and P. Stone. Transfer learning for reinforcement learning do-
mains: A survey. J. of Machine Learning Research, 10(1):1633-1685, 2009.
M. E. Taylor, H. B. Suay, and S. Chernova. Integrating reinforcement learning
with human demonstrations of varying ability. In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multiagent Systems, 2011.

L. Torrey and M. E. Taylor. Teaching on a budget: Agents advising agents
in reinforcement learning. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, 2013.

T. J. Walsh and S. Goschin. Dynamic teaching in sequential decision making
environments. In Conference on Uncertianty in Artificial Intelligence, 2012.
B. Ziebart , A. Maas, J. A. D. Bagnell, and A. Dey. Maximum entropy in-
verse reinforcement learning. In Proceeding of AAAI Conference on Artificial
Intelligence, 2008.

