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Abstract

Rare events analysis is an area that includes niefioo the detection and prediction of events, .g.
network intrusion or an engine failure, that ocmfrequently and have some impact to the system.
There are various methods from the areas of statiahd data mining for that purpose. In this &tic
we propose PREVENT, an algorithm which uses imandactional patterns for the prediction of
rare events in transaction databases. PREVENTgsnaral purpose inter-transaction association
rules mining algorithm that optimally fits the demais of rare event prediction. It requires only 1
scan on the original database and 2 over the tamefl, which is considerably smaller and it is
complete as it does not miss any patterns. We geaie mathematical formulation of the problem
and experimental results that show PREVENT's edficy in terms of run time and effectiveness in
terms of sensitivity and specificity.

Keywordsrare events, prediction, data mining, sequencengi

1. Introduction

In most studies so far, association rules havebeen appreciated for their predictive
capacity, because they typically associate everitisinvthe same transaction, being
essentially intra-transactional. Inter-transactgssociation rules are a relatively new kind
of association rules, that can embed temporal inddion, being able thus to facilitate

prediction. The prediction of rare events from data particularly interesting problem,

because the result not only has to be accuraté bigo has to be delivered in time. By
the term “rare events” we mean events of a cedaimain that do not happen often or
regularly but they have a special meaning or playnaportant role in the system and

they are usually hard to predict. Examples of seadnts are network intrusions, engine
failures, earthquakes and meteorological events asdail and heat waves.
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Event prediction is very similar to time series giction. Classical time series
prediction, which has been studied extensively iwitthe field of statistics, involves
predicting the nexh successive observations from a history of pasembsions [11].
These statistical techniques involve the buildiigmathematical probabilistic models,
which are based on specific data, since they anagly dependent on various theoretical
assumptions regarding the underlying nature ofatian (probability distributions etc.).
However, this is not our case. First, we are irgiere in extracting knowledge from a
very broad class of large transaction databasekouti any prior information on the
variability of the data and therefore without hayito state theoretical assumptions.
Second, our main goal is not to build certain maudical models, but to discover
patterns, which are related to certain criticalreseand which are going to provide us an
alarm for the early identification of such events.

In this paper we propose PREVENT, a novel algoritonthe production of frequent
inter-transactional itemsets, based on a well knpvefix tree, namely the FP-Tree [10].
We extend and complement our work in [18], in wh&lshort, preliminary version of
this work was presented. Although PREVENT is a galRgurpose inter-transactional
pattern mining algorithm, we also believe thatptimally fits the demands of the rare
events prediction application domain. Our approatifiers from other temporal
association rule induction approaches largely at the use inter-transactional patterns
instead of rules and we adopt a general framewarkhfe task of prediction, where the
prediction is delivered within a specific time wowl. Moreover, it requires only 2
database scans, outperforming Apriori-based appesator the production of frequent
inter-transactional itemsets and it is completdtatoes not miss patterns. In order to
measure its efficiency we tested it over a numbedaiasets, including a real world
meteorological dataset for the prediction of heaves and a daily electric energy
consumption dataset.

The paper is organized as follows: The next seqir@sents a review of the literature
regarding temporal association rules and sequepditdérns. In section 3 we provide the
mathematical formulation of the problem, includindefinitions and theoretical
background of our approach, the algorithm we prepas well as a discussion about its
computational complexity and performance. In suttisa 3.4 we explain why we use
patterns instead of rules. In section 4 we presenexperiments we conducted in order
to test and verify the performance of the proposlkggrithm. Finally, in section 5 we
present our conclusions and propose our ideasiftver work.

2. Related Work

In this section we present a brief descriptionh® telative bibliography. First, we refer

to the association rules and pattern mining appresithat gave us the inspiration for our
approach. Then, in section 2.2 we provide a shantey of other approaches (mostly
supervised ones) dealing with the rare class ptiediproblem. Finally, in section 2.3 we

discuss some problems and open issues regardthis teroblem.
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2.1. Association Rules and Sequential Patterns for Pretthin

Having a temporal database, we can mine for vartgpes of association rules. One
approach is to cluster the data based on time laga discover association rules from
each cluster, in order to track how the model ckangver time [9]. Traditional
association rule analysis was extended to sequenti@g, where the members of the
series are sets of individual items, called itesysétom some underlying domain
(alphabet). Given a sdét of events, an event sequersés a sequence of pairs, (9,
wheree € E andt is an integer, the occurrence time of the everypée. Unlike time
series, sequences do not require any explicitioalship with time, only that the itemsets
are totally ordered. According to Agrawal and Snikgs] the goal of sequence mining is
to find all maximal length sequences with suppdtvee a certain threshold. Their first
work was a level-wise Apriori-based algorithm [2#id several variations were later
proposed. Probably their most influential algoritlerGSP [15], which adopts a sliding
window technique in order to extract the frequestfuences.

The basic difference between a time series andesegy then, is that a time series is

a list of ordered values, while a sequence istafisrdered itemsets or values. Sequence
mining aims to discover patterns such a8K{{ B}, { C, D}}, where {A}, { B} and {C,
D} are itemsets in different transactions, withinser-defined time window. Finding the
most frequent maximal patterns is a particularlgfulstask that provides the user with
valuable insight about the temporal nature of taadHowever, the predictive power of
sequential association rules is questionable. Smguanalysis or sequential pattern
mining was extensively studied initially by Agrawet al. [6, 7], where the notions of
sequence and subsequence were defined.

An episode rule [8] is a generalization of assdmmatules applied to sequences of
events. An event sequen8és an ordered list of events, each one occurrirmgparticular
time. Thus, it can be viewed as a special typénod series. Given the above definitions,
an episode is a partial order of event types. Episodes cawvideed as directed acyclic
graphs. There are serial, parallel and non-semi@l aon-parallel episodes. Episode
mining algorithms are searching for episodes osag® rules within a sliding window of
user-defined size. What is captured here is theodeah relationship among events that
occur within the same window, e.@C tomes afteA andB within a window of sizev".

Temporal association rules typically search for relations among items in
transaction data sets, facilitating temporal refahips, such asA‘usually occurs some
time afterB". The thirteen temporal relationships defined beA [17] (before, after,
during, contains etc.) are usually supported.

Although transactions occur under certain contextsh as time, space, customers,
etc., such contextual information has been ignbeszhuse this task is intra-transactional,
as in standard association rule learning. Assaxiatiles aggregate information from a
large number of transactions into a rule for a lsingansaction: “In the millions of
transactions of a supermarket, there is a 60% pilityato find beers and diapers in the
same transaction”. However, rules like "If the peof IBM and SUN go up, Microsoft's
will most likely (80% of the time) goes up 2 dayger” [3] cannot be captured by the
intra-transactional approaches. This kind of ruésoaiates itemsets among different
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transactions, along the axis of of a dimensiortaibaite. The contextual information here
is time, which is the dimensional attribute. Thegles are called inter-transactional and
they can be single or multi dimensional.

Inter-transactional association rules were intreduén [1] and [2]. The authors
extend the notion of inter-transactional assoamtioles to the multidimensional space
and propose EH-Apriori, an Apriori-based algorithfor, mining such rules. The authors
also propose the use of templates and conceptrtiea as a means to reduce the large
number of the produced rules. A new set of algoréths introduced in [3], called FITI
(an acronym for "First Intra then Inter"), whichtparforms EH-Apriori. In [4] and [5],
the authors use inter-transactional associatiaesridr prediction on meteorological and
stock market data, correspondingly.

Two approaches that mostly resemble the inter-&@tion association rules mining
approach are the ones proposed by Agrawal et §]iand Mannila et al. in [8]. More
information on how inter-transactional associatioles differ from these can be found in
[3]. A really concise and informative survey on fmral knowledge discovery in general
can be found in [14].

2.2. Other Approaches on Rare Event Analysis

Except from the aforementioned approaches, evestigiion has also been treated
extensively by classification. In the machine léagnand statistical literature there is an
abundance of rare event prediction approachesngapéd or unsupervised. The former
ones require that the data be labeled in ordeuiid b model that is easy to understand,
while the latter analyze each event to determing &imilar it is to the majority. There
are plenty of outlier detection approaches, stedib{35, 36], distance-based [37, 38],
density-based [39], clustering [40], neural netwaridd SVM-based [41, 42]. Machine
learning has treated the rare event predictionlprotas a “class imbalance” problem or
as “cost-sensitive classification”. One solutionoimler to overcome the class imbalance
problem is the use of “data record manipulatiorchtéques. Such techniques involve
downsizing (undersampling) the majority class [¢#]Joversampling the rare class [43].
SMOTE (Synthetic Minority Over-sampling TEchniqdp] is a popular oversampling
method that creates synthetic examples of the iitynclass based on a majority voting
among the nearest neighbors. Another solution &-sensitive classification, where a
cost is assigned to misclassified instances, agwprd a cost matrix. AdaCost [48] (a
cost-sensitive boosting method) and MetaCost [2@] worth mentioning examples
which can be used for mining rare classes with miggtlassification cost. AdaBoost [47]
is a popular algorithm that allows to combine a bamof weak rules into a stronger
(more accurate) classifier. Additionally, emergimmatterns (an extension to the
association rules paradigm) have been used in ¢oderine for a rare class. These are
patterns whose support increases significantly dwee [46]. Other approaches to rare
event prediction are the temporal analysis of ements that includes surprising patterns
in time series [49], temporal sequence associatiphf and [51] where Vilalta & Ma
combine event types in order to build a rule-baseiem for prediction.
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An informative study on how different classifiereHave with respect to class
imbalance and how certain solutions affect theausacy can be found in [29], where
Japkowicz et al. show that among three differeassifiers, namely C5.0, Multi-layer
Perceptrons (MLPs) and Support Vector Machines (SNI8VMs are the least sensitive
but they are not necessarily more accurate tharothers. Their accuracy varies for
different problem types and concept complexitidse Authors conclude that SVMs seem
to be quite robust and accurate in a large vanéfyroblems but they largely depend on
the selection of the right kernel function andvissiance and they also have really high
training times, which makes them impractical foramge of applications. This last
drawback holds for Neural Nets and MLPs as well.

Fawcett et al. [25] introduce a problem class dabetivity monitoring, which
involves the monitoring of a series of a large gapon of entities for interesting events
that require action. They introduce the use of VigtiOperating Monitor Characteristic
(AMOC) curve, a modified ROC curve, to accommodaties that relate to activity
monitoring. Torgo et al. [26] propose a new spiliticriterion for regression trees for the
prediction of extreme and rare values of a contisuarget variable. In order to avoid the
discretization of the continuous variable and tthes resulting loss of information, the
authors utilize thé= measure [28] in order to choose the best splittiriggrion at each
node and they achieve noticeable results in sortesets, although in some other ones
the model’s precision is not satisfactory.

This paper extends and complements the work intediun [18]. The approach
presented here is different from the other appresgitoposed so far because it is based
on the inter-transaction association rules fram&wautilizing the computational
advantages of FP-Growth, an efficient, state ofatigintra-transaction association rules
mining algorithm. At the same time, we adopt aruiiinte prediction framework,
described in section 3.2, in order to mine for lggatterns instead of rules or global
models, which is usually the case with most classibn approaches. The result is a fast
algorithm that fits the demands of the discreteneyediction task, although it can be
used as a general purpose inter-transaction a$isociaules mining algorithm.
PREVENT is a low computational cost algorithm timtalso complete (no predictive
patterns are missed). Additionally, PREVENT's meduiature allows for the utilization
of other algorithms and features such as increrignta

2.3. Open Issues in Rare Event Prediction

Despite the ongoing research on rare class cleatifn, there are still open issues
that still need to be investigated by the reseaocthmunity. In the last decade, a number
of workshops and tutorials [53, 54, 56] have tiiecdddress them. An important issue is
the selection of the appropriate sampling methaglol®versampling the minority class
enlarges the training set increasing thus theitrgitime and inserting artificially created
data may potentially leading to overfitting, whiledersampling the majority class may
lead to loss of information. How much to oversampiaundersample is usually decided
empirically. Smart resampling techniques, such BKOBE [45] have shown effective
results, often being capable of eliminating redumdiaformation.
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Another issue is how class distribution affectsssifier performance. Weiss et al.
[55] attempt to shed some light on which data itistion is the most appropriate,
conducting extensive experiments on a decision leamer (C4.5) using a 26 datasets
and proposing an algorithm that takes under coreide the cost of training examples
procurement.

In ICML 2003 several papers tried to investigatevh@rious approaches compare to
each other. However, the conclusion is that diffetechniques are shown to be effective
on different applications, depending on the contekteach problem. Evaluation of
imbalanced data classifiers is another issue WRSE curves seem to be the most
prevalent approach, however it has been pointed5ijtthat a single point on a ROC
curve is optimal only if costs are the same foealhmples.

3. ThePREVENT Algorithm

PREVENT (Prediction of Rare EVENTS) is a generalrppge inter-transaction
association rule mining algorithm, which combindsantages such as the embedding of
explicit temporal information and low computationadst, requiring only 2 database
scans. It is often useful to know exactly when tpext something to happen (e.g. "five
days later") instead of a fuzzy temporal windowg(¢some day within 1 week") or a
sequence (e.g. B and C will happen after A). PREVEDhlike other approaches, is not
concerned with the discovery of rules but seardbepatterns that contain the temporal
information required for the task of prediction. \&@eopt an intuitive framework for the
task of prediction, which involves the definitioha prediction (or monitoring) window
where the prediction can be useful to the user.

3.1. Problem Formulation — Definitions

In our setup we have the following notions:

e The set oftems|={i {, i,, ...,i,} representing the possible activities we want to
keep record of (e.g. items sold in a store or reses to requests by a server).

e Thedimensional variabld describing the time properties associated withtdras.
We assume that the variable takes ordinal valyg®senting intervals of equal
length (e.g. day, week, month etc.). Note thatvhisable can be defined to
represent various other ordinal measurements sutdngth, height, etc. It is also
possible to have many of these variables (timé¢adi®, etc.), simultaneously
describing our data, but in our context we consaddy one. Without loss of
generality we denote the valuesTofy integers 0, 1, 2, ...

e Thetransactionswhich are records of the fordh(t) wheret is a value of the time
variable T and J(t)cl. So, each transaction is represented by a seeméic
activities froml recorded in time.

e The transaction databaseontaining all the transactions recorded over suglly
long) period of time.

e The transaction sequencea time-ordered sequence of transactions, denbyed
S=J(ty), J(t2), ..., J(%), which includes transactions recorded in the time
interval [t1, t,].
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e Thetarget itemi* el, which represents an activity that we are paridulinterested
in predicting, e.g. failure of a system to responetwork fault, etc. Such an item
occurs infrequently with respect to the other iteamhdle its occurrence is much more
critical than the others'. We also denotetbyhe time interval when the target item
occurs.

e Thetarget transactionsvhich are transactions containing the target itBiote that
for our work here we do not need to consider taitgets at all but more generally
target transactions, since a target transaction maag the meaning of an infrequent
combination of items that we are interested to ioted

Therefore, the problem we consider here is to @enter-transactional patterns that can
be used as alarm messages in order to predicathetttransactions within a reasonable
period of time before the critical target item occuFor this purpose we associate with
every target transactialft*):

e A prediction period which is a time period preceding the target taatien of fixed
length defined astf-m, t*-w] where m is the monitoring timeand w is the
warning time We assume that >w .

e A target - preceding windowVv*, which is a block ofm-w+1 continuous time
intervals included in the prediction period of taeget transaction. Thus, the window
consists of all the time intervals froti-m to t*-w. Note that it is not necessary
for each interval to contain a transaction. Theservals within a window are called
target - preceding subwindovef W*. We use non-negative integers to denote the
subwindows. So, we denote the subwindow in thertréigg of the prediction period
by W*(1), and the following ones by*(1),...,W*(m-w+1). We also use the
same indices to denote the items in each subwin@bws, if the item, (1 < k <
v) occurs intarget - preceding subwindow W) (1 < x < m-w+1), it will be
denoted byi(x). Such items are calleextended itemsWe denote the set of all
possible extended items as follows:

*={i(X): 1 <k<v, 1<x<m-w+l}.,

e A target megatransaction M&1* defined as the set of all extended items within
W+, i.e.

M*={i(X): 1keW*(x)}

e A measure of inter-transaction pattems

*

F
supportof F: S= N’ 1)

*
whereN* is the number of all the target megatransactiorthé database anbll g

is the number of all targetnegatransactionghat contain the seE. We can
characterize a set &gquentif s exceeds a lower bound, defined by the user.

The purpose of the search is to find all frequetd sf extended items that contain the
temporal information required for the predictioskaThose are temporal patterns that
contain the target event and therefore can be fosqaediction.
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3.2. Algorithm Description

The general strategy we follow to predict rare ¢évéakes into account the fact that it
is highly important that a prediction is given imé. Therefore, we assume that there is a
time period preceding a target evefyt when the prediction can be usefpteddiction
period or monitoring window. This period starts with a time point that desothe
beginning of the period when the user is interestdthving a prediction and ends with a
time point after which it is too late and the pridin has no practical meaning (warning
time). The concept is illustrated below and hamb@eposed in [16], where Weiss et al.
present an event prediction technique, based oetigaaigorithms.

Prediction period X

t-m t-w t
Fig. 1. The prediction period.

In PREVENT, we perform one scan over the databassder to capture and store
only the transactions associated with those periasiag a sliding window. The number
of such periods (windows) stored is equal to thenlmer of occurrences of the target
event, which, in our case is rare. In other woveks capture the corresponding monitoring
window of every occurrence of the target eventriheo to extract the desired knowledge.
While capturing those windows, a database transitiam takes place in order to map the
relative temporal information of every item withihe window. The transformation is
done according to the definitions given in sect®fh, based on the inter-transactional
association rules framework. An example of suchdi@mation is depicted in the
following figure.

Example. Assume that the size of the monitoring window isa®isactions and the set of
literals in the database {a, b, c, d, e, f, g}The corresponding set of possible extended
items and their integer mapping are depicted irtdbé&e below.

Tid Transactions XTid Extended Transactions Pattern Patterns
1 abdcg 1 18:6010:C0:008665 3 Mining  _&Casfs
2 g,cd Transform 2 &fiabycdrascsksfs FP_Growth
3 aef > 3  abicithacklaefs —

4 a,b,cd target item: f min_sup=0.9
5 a,c,kf
6 aef

Fig. 2. A data transformation example.
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The original transaction database is transformaaltine extended transaction set. The
transformed database contains a number of exteindesiactions equal to the number of
occurrences of the target iteimnEach such transaction consists of the exten@easitof
every moving window instance. For memory efficienmyrposes, we map every item
instancei; to an integer and keep the index in order to be &blbacktrack later to the
original data. An example of such mapping is tHefang:

Table 1 Integer mapping example.

Set of Q a & by by by ¢g ¢ C dy dy d; & € & fo f1 fo gy O @
Extended Items

Integer 0 1 2 3 4 4 6 7 8 9 1a1 12 13 14 15 16 17 18 19 20
Mapping

The following step is the mining of the frequemnitsets from the transformed data.
We utilize FP-Growth [10], a frequent itemset munialgorithm. FP-Growth builds an
FP-tree (Frequent Pattern-tree), which is an exeéngrefix tree structure that stores
crucial information about frequent patterns. FR-tis actually an efficient way to
compress the original database into a much smattecture that is cost-effective to
mine. Each tree node contains a frequent item §iétrof length 1). Each transaction
contributes at most one path to the FP-tree, witlgth equal to the number of frequent
items in that transaction. Quoting from [10]: “Ttiee nodes are arranged in such a way
that more frequently occurring nodes will have éetthances of sharing nodes than less
frequently occurring oneOur experiments show that such a tree is highippart,
usually orders of magnitude smaller than the oabofatabase.lts major advantage is
that it reduces the number of database scans ya®anlorder to construct the FP-tree.

FP-Growth, a divide and conquer algorithm, is usethine the patterns from the FP-
tree. It scans the FP-tree once to build a smékpabase for each frequent iteneach
consisting of the set of transformed prefix pathsyoFrequent pattern mining is then
recursively performed on the small pattern basatiefh bases are usually much smaller
than the original FP-tree. While Apriori-based agmhes require a large number of
repeated scans and the generation of a very largber of candidate sets, which often
reaches the levels of a combinatorial explosion;GF@wth requires only 2 database
scans to create the FP-tree. Then it reduces tidgmn of mining the frequelktitemsets
into a sequence & frequent 1-itemset mining problemSP-Growth avoids the costly
generation of candidate itemsets that Apriori-basgggroaches require. Especially in our
setup, where the number of different (extendedjnsteis usually quite large, the
application of an Apriori-based algorithm would k&tremely costly. The steps of
PREVENT are outlined in figure 3, while furtheranfnation on FP-Growth can be found
in [10].
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1. Move a sliding window across the transactions of th e database until the
next occurrence of the target item is found (1st da tabase scan).
a. For every such occurrence, capture the correspondin g monitoring
window, transform it as described above and store i tin a new

database file.
b.  Store the integer-mapping index.
2. Build the FP-Tree (1st scan over the transformed da tabase)

3. Extract the extended frequent itemsets (predictive patterns — 2nd scan
over the transformed database).

4. Using the integer-mapping index, convert the extend ed items, from
integer numbers into their original form.

Fig. 3. The PREVENT Algorithm

3.3. Algorithm analysis and discussion

When speaking about computational complexity witthie data mining context, what is
mostly important is the number of database scar®n/the main memory is not enough
to fit the data, main memory based operations msgymificant compared to operations
that require hard disk access. The major advantdgmur algorithm is that it requires
only 1 scan over the original database, regardidsthe size of the database or the
number of literals; during this pass (sliding wimgahe original database is transformed
into the set of extended transactions, which issicErably smaller. Then, FP-Growth
performs a pass over the transformed databasedier ¢o build the FP-Tree and then
another pass in order to mine for the patterns.

Moreover, the main memory structures used are samadl pose no additional
overhead. What is important here is the shrinkexgdr achieved by the transformation
of the original database. In [10] the authors cléivat while the shrinking factor of the
first FP-tree normally ranges from 20 to 100, therking factor from this FP-tree to the
pattern bases is expected to be hundreds of tangerl The size of the sliding window is
m*MaxTransactionSizeand the size of the integer mapping index(Nonitoring
Window Size)*(Size of the set of extended itebwth of which easily fit into the main
memory. Since there are often a lot of sharingedient items among transactions, the
size of the tree is usually much smaller thaniitgioal database and that of the candidate
sets generated in the Apriori-based approaches.

One the most desired features of all data minimgrithms is incrementality. The
modular nature of PREVENT allows for the use of amgremental association rules
mining algorithm after the first step. The good sewthat there are incremental FP-tree
based algorithms, such as CATS [21] that can bd diectly, so that we don’t have to
miss its computational advantages.
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3.4. Using Predictive Patterns Instead of Rules

According to the prediction framework describedhia previous sections, given that the
warning time is alwaysv time points before the target evefyt we propose an efficient
method for mining predictive patterns within thegiction time period. Alternatively to
the original inter-transactional association rylasadigm, we propose the use of patterns
instead of the typical If-Then rules for the preiio task. A temporal inter-transactional
pattern contains all the necessary informationepikérom the notion of causality, which,
even using rules as a representation form, cause/e and hard to prove anyway.

Generally, if-then rules are a form of represeatsgtithat have specific advantages,
such as the fact that are easily understood bylpgtiey are modular (each rule fits a
portion of the data) and they relate events inowsricontexts such as time, space,
probability and causality. Rules can be used facdption (e.g. “if someone is a doctor
then he/she holds a university degree”) as wefoagprediction (e.g. “if a customer is
married then he/she will buy a family car”). Howevé is very common within the
context of prediction to (consciously or subcongslg) convey causal content. Temporal
precedence is normally assumed essential for defioausality and it is one of the most
important clues that people use to distinguish alafusm other types of associations.

However, the fact that one event occurs after arottoes not prove a causal
relationship between them. Almost three centurige é1748), David Hume in his
greatest philosophical workAh Enquiry Concerning Human Understandingtipported
that causality does not really exi$t¥e may define a cause to be an object, followed by
another, and where all the objects similar to thetf are followed by objects similar to
the second’ In other words, Hume supported that causalityosactually knowable but
imagined by our mind to make sense of the obsemdkiat A often occurs together with
or slightly before B. All we can observe are caatigins, not causations. We quote
Mazlack on association rules [12]n“fact, with association rules all that is discose is
the existence of a statistical relationship. Theéuna of the relationship is not specified
[...] Associations describe the strength of joinb-accurrences. Sometimes the
relationship might be causal; for example, if someeats salty peanuts and then drinks
beer, there is probably a causal relationship. @e ther hand, it is unlikely that a
crowing rooster causes the sun to fise

We believe that using association rules for préslictwhen we can push inter-
transactional temporal information into frequeshisets, is of no obvious use, especially
when causality is not a notion we really try to enimere. The inter-transaction frequent
itemsets contain all the information required, withthe risk of erroneously implying a
causal relationship.

Frequent itemset mining is an inherently unsupedsiprocedure, which aims to
discover informative knowledge from data in exptorg fashion. Embedding inter-
transactional dimensional (temporal) informatiotithose co-occurrence patterns can
be a useful tool to discover prediction-relatedoinfation, in cases where the data
collected are far from Gaussian, even multimodabnsider now a typical inter-
transactional association rule, such A&;)—>X(t,), where X(t,) is the target event,
A(t;...t) is a set of extended items (events occurringnag fointst;..t) and t>t,. In the
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proposed approach we perform prediction using tequient extended itemsets derived
from the prediction periods of. Since we are interested only in the rules thaebain
the consequent, extracting only the frequent exdnilemsets from the monitoring
windows would be enough for predicting the targetrg. This makes the whole process
simpler and faster.

4. Implementation and Perfor mance Results

We implemented our algorithm in C++ and testedgaiast a number of data sets of
different sizes. There were two types of data, vealld and synthetic. The real world
data were meteorological, containing the hourly sneaments of temperature, humidity
and THI (temperature-humidity index) from 1954 L@898. The synthetic datasets were
used for uniformly measuring the run time of PREVIEAhd verifying its completeness.

In some contexts, the search for exact pattern hmatcould be considered as a
drawback, because minor distortions, such as dlilattannot be captured. Very often,
especially in real world sequences, such as mdtapeal, such effects are common and
those patterns missed by exact matching algoritomdd result in loss of valuable
knowledge. As a result, “loser” patterns, which énafrequency near the user specified
minimum threshold, might be possible “winners’tibse patterns that are similar to them
could somehow be considered to their overall fraguecount. We suggest two solutions
to this problem that we plan to investigate iniear future.

One approach to this problem is to adopt a diffeqesttern space, using time
intervals instead of time points. This way we coutiize the 13 temporal relationships
between two intervals defined in [17] (e.g. durigntains, starts, etc.). For example,
assume that we have<A**B*C>, a possible winner pattern (“*” standsrféany single
literal”) and the search algorithm encounters depat =<AIJKBLMC>. In our cases
would be ignored in the frequency count, althougtontains <A**B**C>, which could
be considered as a distorted instancer.oHowever, according to Allen’s temporal
interval relationships this can be captured by mlationship ¥ startss’. Therefore,
enabling our algorithm to use such conditions cquriovide a solution to this problem.
The work in [22, 23] are examples of using intesvial pattern mining.

Another solution to the same problem would be aeréig not only the exact
matches but also the patterns that are similaa¢h ether under a certain distance metric.
Sequence similarity has been extensively studigdrims of time series mining (discrete
or continuous) and within the field of molecularoloigy (e.g. protein sequence
similarity). In the previous example, pattem&nds are similar, under some distance
measure. Various distance measures among thosesaajn the literature can be used,
depending on the domain of application.

4.1. Synthetic Data Experiments

The synthetic data were generated with MATLAB, adom to a set of probabilistic
pseudo-random parameters, such as the frequenye oare event, the Monitoring and
the Warning Time. The performance of the algoritkiepends on the size of the
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monitoring window, the number of different itemdathe frequency of the target event.
Below, we present an experimental setup that he$alfowing configuration: There are
eleven different items in the database, including target item. Th&lonitoring Time
was set to 6 and thé/arning Timeto 2, which means that, according to thew+1
formula, the size of thdonitoring Windowis 5. Therefore, the transformed database
contains 55 different extended items. The targehefrequency was set between 9% and
10%, therefore, the transformed database contaamgmoximately0.1*DatabaseSize
Mega Transactions. The experiments were takenRendéium 4, 2.6 GHz computer with
512MB of RAM and a SCSI hard disk. The apriori ismplentation we used was taken
from [32]. For both approaches, the times measureldde only the production of the
frequent itemsets, not the association rules. Eiduillustrates the performance of our
algorithm with respect to the numberMéga Transactionsf the transformed database.

Table 1 Experimental results on synthetic data

DB Siz_e Mega Transactions Run Time (seconds)
(transactions) PREVENT Apriori-based
10000 923 0.39 0.33
50000 4457 1.082 1.21
100000 8943 1.761 2.18
500000 44715 7.46 11.12
1000000 89430 14.24 24.43
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Fig. 5. Run time against the number of Mega Traimes

Our approach is complete due to the completenessFR{Growth. In our
experimental setup, a frequent extended itemsetrgigrom time point 0 and ending at
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time point 4 can predict an event that will happetime point 6. For example, given that
the target item ig, a frequent extended itemset suchas ¥, b,, d;} can be used for the
prediction ofx at time point 6 with some level of support.

4.2. Real World Data Experiments

In our experiments we used two real world datagets, meteorological (heatwaves) and
one for electrical energy consumption.

The first dataset contains the hourly measuremartsmperature, humidity anbHl|
from 1954 until 1998 in the area of Thessalonikie&e. THI expresses the discomfort
that people feel during a heat wave. The data wiedly provided by Prof. T. Karacostas
of the Department of Meteorology and Climatology Afistotle University of
Thessaloniki, Greece. There are fiMdl levels [13]:

Table 2 Temperature-Humidity Index levels

THI Class Description
69<THI< 75 Mild Few people feel uncomfortable
75<THI <80 Moderate About one half of all peoplelfercomfortable
80<THI< 84 Serious Nearly everyone feels uncomfdeiab
84<THI <92 Severe Rapidly decreasing work efficiency

THI> 92 Extreme Extreme danger

We tried a number of different setups, accordingdme general guidelines provided
by the meteorologists. The target event is the weoge of a Serious, Severe or Extreme
heat wave. The hourly data were grouped in 6 hediog averages and discretized into
3-5 classes. The temperatuig {s in degrees Celsius and the monitoring windoavts
14 6-hour periods before the heat wave and endedubperiods before. There were 172
serious (or worse) heat waves in a period of apprately 44 years (approximately 1%
probability). Regarding the usefulness of the poedlpatterns, although preliminary, the
domain experts empirically evaluated them as dutieresting and worth investigating.
Unfortunately, the domain is too hard to model,eesgly when only two attributes are
available (temperaturd and humidity H), so the patterns were not particularly
informative. Below we provide a sample of the paiseproduced, with reference to the
target event, which occurs at time point 0.

(i) (T > 27, 5 periods before), (T > 27, 3 periods befosupport=0.91
(i) (50 < H < 75, 5 periods before), (T > 27, 5 periods befo(€),> 27, 3 periods
before), support=0.77
(iii) (40<H<65, 5 periods before), (T>27, 5 periods beforer2@, 3 periods before),
support=0.75
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Like other pattern mining approaches, PREVENT iugslsearch for local patterns
instead of global models. In association rules attern mining the notion of accuracy is
substituted by other statistics that express stheoginterestingness of a pattern, such as
the confidence (which is here defined accordingipwever, in event prediction it is
always expected to measure the effectiveness afchnique in terms of prediction
accuracy. In highly imbalanced datasets, metrich s1$ the specificity and the sensitivity
are considered more appropriate than accuracy €Ttiaes metrics are popular in medical
research but lately they are also gaining popwlaiit machine learning [33, 34].
Sensitivity, also known as “recall” in InformatidRetrieval, and Specificity are defined
as follows:

TruePositives

Sensitivity=
¥ TruePositives FalseNegativ: (3)

TrueNegatives (4)
TrueNegatives FalsePositivi

Specificity=

The second dataset contains daily electric energgiyetion measurements (KWhs)
from 6 different sources: Hydroelectric, Nucleagal; Petroleum, Alternative sources
(eolic, solar, etc). The measurements were take3pain, for the whole year 2003 [52].
The predicted variable is the average cost of th&%hKin euros. The data were
preprocessed (discretized) in order to transforenctbntinuous domain into discrete. All
7 variables were discretized using the “unsupedvaéribute.Discretize” class of the
WEKA machine learning library; the 6 input variablevere split into 3 bins
(high/medium/low) while the class variable was ded into 2 bins (high/low). The
following table contains the bins that each inpattiable was divided and the letters that
were assigned to them. Our goal is to predict wioeaxpect a high KWh cost. There
were 32 days that the cost of the KWh was high. ther evaluation we performed a
standard 10-fold cross validation procedure.

Table 3 Variable discretization for the electriesgy dataset

Hydroelectric
a=(inf-87266.2] | b=(87266.2-146650.6] | c=(1466508-i
Nuclear
d=(-inf-138875] | e=(138875-162990] | =(162990-inf)
Carbon
g=(-inf-100635.666667] h=(100635.666667-167734.3333 i=(167734.333333-inf)
Petroleum
i=(-inf-22662.166667] |  k=(22662.166667-45324.333338] |=(45324.333333-inf)
Natural gas
0=(-inf-28150.733333]|  p=(28150.733333-56301.466667] q=(56301.466667-inf)
Alternative
r=(-inf-8990.333333] |  s=(8990.333333-12673.666667] =(12673.666667-inf)
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Table 4 Predictive patterns for the electric enefgtaset

Pattern Sensitivity ~ Specificity
1 carbon_1 =h and petroleum_3 = h and alternativeh3cost 3=h 0,666667 0,990385
2 petroleum_3 = h and alternative_3 = h, cost 3=h 0,666667 0,980769
3 carbon_1 =h and petroleum_3 =h, cost 3=h 0,666667 0,971154
4 nuclear_ 2 =h and gas_2 =1and hydro_3 =1, costh3 0,666667 0,971154
5 petroleum_3 =h, cost 3=h 0,666667 0,961538

In order to measure the effectiveness of PREVENThveasure the sensitivity and
specificity of each pattern. Table 4 summarizesrédwilts, displaying the best patterns,
according to their specificity and sensitivity seer The sensitivity and specificity
minimum thresholds were set to 65% and 95% cormedipgly and PREVENT returned
the 5 rules shown in Table 4. The letters h, m kethnd for high, medium and low
values correspondingly, while the numbers 1, 2 Zuidicate the first, second and third
day of the prediction window. One can see the Vegh levels of specificity achieved
(96%-99%) that show the very low false positiveerathile the moderately good values
of sensitivity (66,7%) means that some true posgimnight be missed. In other words, in
this case study, PREVENT is very unlikely to fayselassify a low cost KWh day while
it is possible to miss some of the high cost ones.

5. Conclusionsand Further Research

In this paper we proposed PREVENT, a novel datanmgiapproach for predicting rare
events in transaction databases in a fast andcéxpianner. Our approach is based on
the inter-transactional association rules framewankd utilizes a state-of-the-art
algorithm for classical association rules miningmely FP-Growth, in order to produce
predictive patterns. It involves a database transftion in order to extract only the
required information before mining for the predieti patterns. We formulated the
problem, proposed a novel algorithm and conductgrb@ments to test and verify its
performance and effectiveness. Our synthetic daperanents showed that it is faster
than apriori-based algorithms. However, the symnthetd meteorological datasets were
not appropriate for testing its effectiveness, soexperimented with another, publicly
available, real world dataset in order to test PEEV’s sensitivity and specificity. It is
within our plans to further experiment and evalutite heat waves data, in a closer
collaboration with the meteorologists.

PREVENT features low computational cost, sinceeguires only one scan over the
original database, and two scans over the trangfdrdatabase, which is considerably
smaller. Additionally it is also memory efficientsat uses small memory based
structures, except from the FP-tree, which in em&recases can be relatively large.
However, the FP-tree approach is a well establisibedplete and one of the most
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efficient approaches in the literature, which is tleason it was selected. The overall
approach is complete due to the completeness dfdfaent itemset algorithm.

For future research, a priority issue is improvihg sensitivity of our approach.
Then, we plan to investigate the idea of dealintp\ilation and/or translation effects in
sequences, which are very common in sequencesasuttie meteorological ones. Such
effects can be discovered by interval-based appesad22, 23]. Additionally, we
consider conducting a large series of real worlgeexments on various meteorological
data, and extend our approach for distributed datedy such as web databases.
Moreover, we are currently experimenting on biotagidata, namely the prediction of
the Translation Initiation Sites in genome sequeiige].

Finally, we would like to kindly thank the three amymous reviewers for their
valuable comments and their insightful contributtnthis work.
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