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Abstract 
Rare events analysis is an area that includes methods for the detection and prediction of events, e.g. a 
network intrusion or an engine failure, that occur infrequently and have some impact to the system. 
There are various methods from the areas of statistics and data mining for that purpose. In this article 
we propose PREVENT, an algorithm which uses inter-transactional patterns for the prediction of 
rare events in transaction databases. PREVENT is a general purpose inter-transaction association 
rules mining algorithm that optimally fits the demands of rare event prediction. It requires only 1 
scan on the original database and 2 over the transformed, which is considerably smaller and it is 
complete as it does not miss any patterns. We provide the mathematical formulation of the problem 
and experimental results that show PREVENT’s efficiency in terms of run time and effectiveness in 
terms of sensitivity and specificity.  

Keywords: rare events, prediction, data mining, sequence mining. 

1.   Introduction 

In most studies so far, association rules have not been appreciated for their predictive 
capacity, because they typically associate events within the same transaction, being 
essentially intra-transactional. Inter-transaction association rules are a relatively new kind 
of association rules, that can embed temporal information, being able thus to facilitate 
prediction. The prediction of rare events from data is a particularly interesting problem, 
because the result not only has to be accurate but it also has to be delivered in time. By 
the term “rare events” we mean events of a certain domain that do not happen often or 
regularly but they have a special meaning or play an important role in the system and 
they are usually hard to predict. Examples of such events are network intrusions, engine 
failures, earthquakes and meteorological events such as hail and heat waves.  
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Event prediction is very similar to time series prediction. Classical time series 
prediction, which has been studied extensively within the field of statistics, involves 
predicting the next n successive observations from a history of past observations [11]. 
These statistical techniques involve the building of mathematical probabilistic models, 
which are based on specific data, since they are strongly dependent on various theoretical 
assumptions regarding the underlying nature of variation (probability distributions etc.). 
However, this is not our case. First, we are interested in extracting knowledge from a 
very broad class of large transaction databases, without any prior information on the 
variability of the data and therefore without having to state theoretical assumptions. 
Second, our main goal is not to build certain mathematical models, but to discover 
patterns, which are related to certain critical events and which are going to provide us an 
alarm for the early identification of such events. 

In this paper we propose PREVENT, a novel algorithm for the production of frequent 
inter-transactional itemsets, based on a well known prefix tree, namely the FP-Tree [10]. 
We extend and complement our work in [18], in which a short, preliminary version of 
this work was presented. Although PREVENT is a general-purpose inter-transactional 
pattern mining algorithm, we also believe that it optimally fits the demands of the rare 
events prediction application domain. Our approach differs from other temporal 
association rule induction approaches largely in that we use inter-transactional patterns 
instead of rules and we adopt a general framework for the task of prediction, where the 
prediction is delivered within a specific time window. Moreover, it requires only 2 
database scans, outperforming Apriori-based approaches for the production of frequent 
inter-transactional itemsets and it is complete as it does not miss patterns. In order to 
measure its efficiency we tested it over a number of datasets, including a real world 
meteorological dataset for the prediction of heat waves and a daily electric energy 
consumption dataset.  

The paper is organized as follows: The next section presents a review of the literature 
regarding temporal association rules and sequential patterns. In section 3 we provide the 
mathematical formulation of the problem, including definitions and theoretical 
background of our approach, the algorithm we propose, as well as a discussion about its 
computational complexity and performance. In sub-section 3.4 we explain why we use 
patterns instead of rules. In section 4 we present the experiments we conducted in order 
to test and verify the performance of the proposed algorithm. Finally, in section 5 we 
present our conclusions and propose our ideas for further work. 

2.   Related Work 

In this section we present a brief description of the relative bibliography. First, we refer 
to the association rules and pattern mining approaches that gave us the inspiration for our 
approach. Then, in section 2.2 we provide a short survey of other approaches (mostly 
supervised ones) dealing with the rare class prediction problem. Finally, in section 2.3 we 
discuss some problems and open issues regarding to this problem. 
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2.1.   Association Rules and Sequential Patterns for Prediction 

Having a temporal database, we can mine for various types of association rules. One 
approach is to cluster the data based on time and then discover association rules from 
each cluster, in order to track how the model changes over time [9]. Traditional 
association rule analysis was extended to sequence mining, where the members of the 
series are sets of individual items, called itemsets, from some underlying domain 
(alphabet). Given a set E of events, an event sequence s is a sequence of pairs (e, t), 
where e ∈ E and t is an integer, the occurrence time of the event of type e. Unlike time 
series, sequences do not require any explicit relationship with time, only that the itemsets 
are totally ordered. According to Agrawal and Srikant [6] the goal of sequence mining is 
to find all maximal length sequences with support above a certain threshold. Their first 
work was a level-wise Apriori-based algorithm [24] and several variations were later 
proposed. Probably their most influential algorithm is GSP [15], which adopts a sliding 
window technique in order to extract the frequent sequences. 

The basic difference between a time series and sequence, then, is that a time series is 
a list of ordered values, while a sequence is a list of ordered itemsets or values. Sequence 
mining aims to discover patterns such as {{A}, { B}, { C, D}}, where {A}, { B} and {C, 
D} are itemsets in different transactions, within a user-defined time window. Finding the 
most frequent maximal patterns is a particularly useful task that provides the user with 
valuable insight about the temporal nature of the data. However, the predictive power of 
sequential association rules is questionable. Sequence analysis or sequential pattern 
mining was extensively studied initially by Agrawal et al. [6, 7], where the notions of 
sequence and subsequence were defined. 

An episode rule [8] is a generalization of association rules applied to sequences of 
events. An event sequence S is an ordered list of events, each one occurring at a particular 
time. Thus, it can be viewed as a special type of time series. Given the above definitions, 
an episode a is a partial order of event types. Episodes can be viewed as directed acyclic 
graphs. There are serial, parallel and non-serial and non-parallel episodes. Episode 
mining algorithms are searching for episodes or episode rules within a sliding window of 
user-defined size. What is captured here is the temporal relationship among events that 
occur within the same window, e.g. "C comes after A and B within a window of size w". 

Temporal association rules typically search for correlations among items in 
transaction data sets, facilitating temporal relationships, such as “A usually occurs some 
time after B”. The thirteen temporal relationships defined by Allen [17] (before, after, 
during, contains etc.) are usually supported.  

Although transactions occur under certain contexts such as time, space, customers, 
etc., such contextual information has been ignored because this task is intra-transactional, 
as in standard association rule learning. Association rules aggregate information from a 
large number of transactions into a rule for a single transaction: “In the millions of 
transactions of a supermarket, there is a 60% probability to find beers and diapers in the 
same transaction”. However, rules like "If the prices of IBM and SUN go up, Microsoft's 
will most likely (80% of the time) goes up 2 days later" [3] cannot be captured by the 
intra-transactional approaches. This kind of rule associates itemsets among different 
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transactions, along the axis of of a dimensional attribute. The contextual information here 
is time, which is the dimensional attribute. These rules are called inter-transactional and 
they can be single or multi dimensional.  

Inter-transactional association rules were introduced in [1] and [2]. The authors 
extend the notion of inter-transactional association rules to the multidimensional space 
and propose EH-Apriori, an Apriori-based algorithm, for mining such rules. The authors 
also propose the use of templates and concept hierarchies as a means to reduce the large 
number of the produced rules. A new set of algorithms is introduced in [3], called FITI 
(an acronym for "First Intra then Inter"), which outperforms EH-Apriori. In [4] and [5], 
the authors use inter-transactional association rules for prediction on meteorological and 
stock market data, correspondingly. 

Two approaches that mostly resemble the inter-transaction association rules mining 
approach are the ones proposed by Agrawal et al. in [6] and Mannila et al. in [8]. More 
information on how inter-transactional association rules differ from these can be found in 
[3]. A really concise and informative survey on temporal knowledge discovery in general 
can be found in [14]. 

2.2.   Other Approaches on Rare Event Analysis 

Except from the aforementioned approaches, event prediction has also been treated 
extensively by classification. In the machine learning and statistical literature there is an 
abundance of rare event prediction approaches, supervised or unsupervised. The former 
ones require that the data be labeled in order to build a model that is easy to understand, 
while the latter analyze each event to determine how similar it is to the majority. There 
are plenty of outlier detection approaches, statistical [35, 36], distance-based [37, 38], 
density-based [39], clustering [40], neural network and SVM-based [41, 42]. Machine 
learning has treated the rare event prediction problem as a “class imbalance” problem or 
as “cost-sensitive classification”. One solution in order to overcome the class imbalance 
problem is the use of “data record manipulation” techniques. Such techniques involve 
downsizing (undersampling) the majority class [44] or oversampling the rare class [43]. 
SMOTE (Synthetic Minority Over-sampling TEchnique) [45] is a popular oversampling 
method that creates synthetic examples of the minority class based on a majority voting 
among the nearest neighbors. Another solution is cost-sensitive classification, where a 
cost is assigned to misclassified instances, according to a cost matrix. AdaCost [48] (a 
cost-sensitive boosting method) and MetaCost [20] are worth mentioning examples 
which can be used for mining rare classes with high misclassification cost. AdaBoost [47] 
is a popular algorithm that allows to combine a number of weak rules into a stronger 
(more accurate) classifier. Additionally, emerging patterns (an extension to the 
association rules paradigm) have been used in order to mine for a rare class. These are 
patterns whose support increases significantly over time [46]. Other approaches to rare 
event prediction are the temporal analysis of rare events that includes surprising patterns 
in time series [49], temporal sequence associations [51] and [51] where Vilalta & Ma 
combine event types in order to build a rule-based system for prediction. 
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An informative study on how different classifiers behave with respect to class 
imbalance and how certain solutions affect their accuracy can be found in [29], where 
Japkowicz et al. show that among three different classifiers, namely C5.0, Multi-layer 
Perceptrons (MLPs) and Support Vector Machines (SVMs), SVMs are the least sensitive 
but they are not necessarily more accurate than the others. Their accuracy varies for 
different problem types and concept complexities. The authors conclude that SVMs seem 
to be quite robust and accurate in a large variety of problems but they largely depend on 
the selection of the right kernel function and its variance and they also have really high 
training times, which makes them impractical for a range of applications. This last 
drawback holds for Neural Nets and MLPs as well.  

Fawcett et al. [25] introduce a problem class called activity monitoring, which 
involves the monitoring of a series of a large population of entities for interesting events 
that require action. They introduce the use of Activity Operating Monitor Characteristic 
(AMOC) curve, a modified ROC curve, to accommodate issues that relate to activity 
monitoring. Torgo et al. [26] propose a new splitting criterion for regression trees for the 
prediction of extreme and rare values of a continuous target variable. In order to avoid the 
discretization of the continuous variable and thus the resulting loss of information, the 
authors utilize the F measure [28] in order to choose the best splitting criterion at each 
node and they achieve noticeable results in some datasets, although in some other ones 
the model’s precision is not satisfactory.  

This paper extends and complements the work introduced in [18]. The approach 
presented here is different from the other approaches proposed so far because it is based 
on the inter-transaction association rules framework, utilizing the computational 
advantages of FP-Growth, an efficient, state of the art, intra-transaction association rules 
mining algorithm. At the same time, we adopt an intuitive prediction framework, 
described in section 3.2, in order to mine for local patterns instead of rules or global 
models, which is usually the case with most classification approaches. The result is a fast 
algorithm that fits the demands of the discrete event prediction task, although it can be 
used as a general purpose inter-transaction association rules mining algorithm. 
PREVENT is a low computational cost algorithm that is also complete (no predictive 
patterns are missed). Additionally, PREVENT’s modular nature allows for the utilization 
of other algorithms and features such as incrementality. 

2.3.   Open Issues in Rare Event Prediction 

Despite the ongoing research on rare class classification, there are still open issues 
that still need to be investigated by the research community. In the last decade, a number 
of workshops and tutorials [53, 54, 56] have tried to address them. An important issue is 
the selection of the appropriate sampling methodology. Oversampling the minority class 
enlarges the training set increasing thus the training time and inserting artificially created 
data may potentially leading to overfitting, while undersampling the majority class may 
lead to loss of information. How much to oversample or undersample is usually decided 
empirically. Smart resampling techniques, such as SMOTE [45] have shown effective 
results, often being capable of eliminating redundant information.  
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Another issue is how class distribution affects classifier performance. Weiss et al. 
[55] attempt to shed some light on which data distribution is the most appropriate, 
conducting extensive experiments on a decision tree learner (C4.5) using a 26 datasets 
and proposing an algorithm that takes under consideration the cost of training examples 
procurement.  

In ICML 2003 several papers tried to investigate how various approaches compare to 
each other. However, the conclusion is that different techniques are shown to be effective 
on different applications, depending on the context of each problem. Evaluation of 
imbalanced data classifiers is another issue where ROC curves seem to be the most 
prevalent approach, however it has been pointed out [57] that a single point on a ROC 
curve is optimal only if costs are the same for all examples. 

3.   The PREVENT Algorithm 

PREVENT (Prediction of Rare EVENTs) is a general purpose inter-transaction 
association rule mining algorithm, which combines advantages such as the embedding of 
explicit temporal information and low computational cost, requiring only 2 database 
scans. It is often useful to know exactly when to expect something to happen (e.g. "five 
days later") instead of a fuzzy temporal window (e.g. "some day within 1 week") or a 
sequence (e.g. B and C will happen after A). PREVENT, unlike other approaches, is not 
concerned with the discovery of rules but searches for patterns that contain the temporal 
information required for the task of prediction. We adopt an intuitive framework for the 
task of prediction, which involves the definition of a prediction (or monitoring) window 
where the prediction can be useful to the user.  

3.1.   Problem Formulation – Definitions 

In our setup we have the following notions: 
• The set of items I = { i 1 ,  i 2 ,  . . . , iν }  representing the possible activities we want to 

keep record of (e.g. items sold in a store or responses to requests by a server). 
• The dimensional variable T describing the time properties associated with the items. 

We assume that the variable takes ordinal values representing intervals of equal 
length (e.g. day, week, month etc.). Note that this variable can be defined to 
represent various other ordinal measurements such as length, height, etc. It is also 
possible to have many of these variables (time, distance, etc.), simultaneously 
describing our data, but in our context we consider only one. Without loss of 
generality we denote the values of T by integers 0, 1, 2, ... 

• The transactions which are records of the form J ( t )  where t is a value of the time 
variable T and J ( t )⊆ I . So, each transaction is represented by a set of certain 
activities from I recorded in time t. 

• The transaction database containing all the transactions recorded over a (usually 
long) period of time. 

• The transaction sequence, a time-ordered sequence of transactions, denoted by 
S = J ( t1 ) ,  J ( t2 ) ,  . . . ,  J ( tn ) , which includes n transactions recorded in the time 
interval [t 1 ,  tn ] .  
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• The target item, i*∈I, which represents an activity that we are particularly interested 
in predicting, e.g. failure of a system to respond, network fault, etc. Such an item 
occurs infrequently with respect to the other items while its occurrence is much more 
critical than the others'. We also denote by t*  the time interval when the target item 
occurs.  

• The target transactions which are transactions containing the target item. Note that 
for our work here we do not need to consider target items at all but more generally 
target transactions, since a target transaction may have the meaning of an infrequent 
combination of items that we are interested to predict.  

 
Therefore, the problem we consider here is to derive inter-transactional patterns that can 
be used as alarm messages in order to predict the target transactions within a reasonable 
period of time before the critical target item occurs. For this purpose we associate with 
every target transaction J(t* ): 
 
• A prediction period, which is a time period preceding the target transaction of fixed 

length defined as [t * - m ,  t * - w ]  where m is the monitoring time and w is the 
warning time. We assume that m > w . 

• A target - preceding window W*, which is a block of m - w + 1 continuous time 
intervals included in the prediction period of the target transaction. Thus, the window 
consists of all the time intervals from t * - m  to t * - w . Note that it is not necessary 
for each interval to contain a transaction. These intervals within a window are called 
target - preceding subwindows of W*. We use non-negative integers to denote the 
subwindows. So, we denote the subwindow in the beginning of the prediction period 
by W*(1), and the following ones by W * ( 1 ) , . . . , W *( m - w + 1) . We also use the 
same indices to denote the items in each subwindow. Thus, if the item ik (1  ≤  k  ≤  
ν ) occurs in target - preceding subwindow W *( x)  ( 1  ≤  x  ≤  m - w + 1) ,  it will be 
denoted by ik(x). Such items are called extended items. We denote the set of all 
possible extended items as follows: 

I * = { i k ( x) :  1  ≤  k  ≤  ν ,  1  ≤  x≤  m - w + 1} .  
• A target megatransaction M *⊆ I *  defined as the set of all extended items within 

W*, i.e. 
M*= { ik(x): ik∈W*(x)}  

• A measure of inter-transaction patterns F:  

 support of F: 

*

*
FN

s
N

=   (1) 

 where N* is the number of all the target megatransactions in the database and *FN  

is the number of all target megatransactions that contain the set F. We can 
characterize a set as frequent if s exceeds a lower bound, defined by the user. 

 
The purpose of the search is to find all frequent sets of extended items that contain the 

temporal information required for the prediction task. Those are temporal patterns that 
contain the target event and therefore can be used for prediction.  
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3.2.   Algorithm Description 

The general strategy we follow to predict rare events takes into account the fact that it 
is highly important that a prediction is given in time. Therefore, we assume that there is a 
time period preceding a target event Xt, when the prediction can be useful (prediction 
period or monitoring window). This period starts with a time point that denotes the 
beginning of the period when the user is interested in having a prediction and ends with a 
time point after which it is too late and the prediction has no practical meaning (warning 
time). The concept is illustrated below and has been proposed in [16], where Weiss et al. 
present an event prediction technique, based on genetic algorithms. 

 

 

Fig. 1. The prediction period. 

 

In PREVENT, we perform one scan over the database in order to capture and store 
only the transactions associated with those periods, using a sliding window. The number 
of such periods (windows) stored is equal to the number of occurrences of the target 
event, which, in our case is rare. In other words, we capture the corresponding monitoring 
window of every occurrence of the target event in order to extract the desired knowledge. 
While capturing those windows, a database transformation takes place in order to map the 
relative temporal information of every item within the window. The transformation is 
done according to the definitions given in section 3.1, based on the inter-transactional 
association rules framework. An example of such transformation is depicted in the 
following figure. 
 
Example. Assume that the size of the monitoring window is 3 transactions and the set of 
literals in the database is {a, b, c, d, e, f, g}. The corresponding set of possible extended 
items and their integer mapping are depicted in the table below.  
 
Tid Transactions  XTid Extended Transactions Pattern Patterns 
1 a, b,d, c, g  1 a1b1c1d1g1c2d2g2a3e3f3 Mining a1c2a3f3 
2 g, c, d Transform 2 a1e1f1a2b2c2d2a3c3k3f3 FP_Growth  
3 a,e,f  3 a1b1c1d1a2c2k2f2a3e3f3   
 4 a, b, c, d target item: f   min_sup=0.9  
5 a, c, k, f      
6 a,e,f      

Fig. 2. A data transformation example. 

Prediction period 

t-m t-w t 

X 
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The original transaction database is transformed into the extended transaction set. The 
transformed database contains a number of extended transactions equal to the number of 
occurrences of the target item f. Each such transaction consists of the extended items of 
every moving window instance. For memory efficiency purposes, we map every item 
instance i t to an integer and keep the index in order to be able to backtrack later to the 
original data. An example of such mapping is the following: 

Table 1 Integer mapping example. 

Set of 
 Extended Items 

a0 a1 a2 b0 b1 b2 c0 c1 c2 d0 d1 d2 e0 e1 e2 f0 f1 f2 g0 g1 g2 

                      

Integer 
Mapping: 

0 1 2 3 4 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 
 
 
The following step is the mining of the frequent itemsets from the transformed data. 

We utilize FP-Growth [10], a frequent itemset mining algorithm. FP-Growth builds an 
FP-tree (Frequent Pattern-tree), which is an extended prefix tree structure that stores 
crucial information about frequent patterns. FP-tree is actually an efficient way to 
compress the original database into a much smaller structure that is cost-effective to 
mine. Each tree node contains a frequent item (itemset of length 1). Each transaction 
contributes at most one path to the FP-tree, with length equal to the number of frequent 
items in that transaction. Quoting from [10]: “The tree nodes are arranged in such a way 
that more frequently occurring nodes will have better chances of sharing nodes than less 
frequently occurring ones. Our experiments show that such a tree is highly compact, 
usually orders of magnitude smaller than the original database.” Its major advantage is 
that it reduces the number of database scans to only 2 in order to construct the FP-tree.  

FP-Growth, a divide and conquer algorithm, is used to mine the patterns from the FP-
tree. It scans the FP-tree once to build a small pattern base for each frequent item ai, each 
consisting of the set of transformed prefix paths of ai. Frequent pattern mining is then 
recursively performed on the small pattern bases. Pattern bases are usually much smaller 
than the original FP-tree. While Apriori-based approaches require a large number of 
repeated scans and the generation of a very large number of candidate sets, which often 
reaches the levels of a combinatorial explosion, FP-Growth requires only 2 database 
scans to create the FP-tree. Then it reduces the problem of mining the frequent k-itemsets 
into a sequence of k frequent 1-itemset mining problems. FP-Growth avoids the costly 
generation of candidate itemsets that Apriori-based approaches require. Especially in our 
setup, where the number of different (extended) items is usually quite large, the 
application of an Apriori-based algorithm would be extremely costly. The steps of 
PREVENT are outlined in figure 3, while further information on FP-Growth can be found 
in [10]. 
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1.  Move a sliding window across the transactions of th e database until the 

next occurrence of the target item is found (1st da tabase scan). 

a.  For every such occurrence, capture the correspondin g monitoring 

window, transform it as described above and store i t in a new 

database file. 

b.  Store the integer-mapping index. 

2.  Build the FP-Tree (1st scan over the transformed da tabase) 

3.  Extract the extended frequent itemsets (predictive patterns – 2nd scan 

over the transformed database). 

4.  Using the integer-mapping index, convert the extend ed items, from 

integer numbers into their original form. 

Fig. 3. The PREVENT Algorithm 

3.3.   Algorithm analysis and discussion 

When speaking about computational complexity within the data mining context, what is 
mostly important is the number of database scans. When the main memory is not enough 
to fit the data, main memory based operations are insignificant compared to operations 
that require hard disk access. The major advantage of our algorithm is that it requires 
only 1 scan over the original database, regardless of the size of the database or the 
number of literals; during this pass (sliding window) the original database is transformed 
into the set of extended transactions, which is considerably smaller. Then, FP-Growth 
performs a pass over the transformed database in order to build the FP-Tree and then 
another pass in order to mine for the patterns. 

Moreover, the main memory structures used are small and pose no additional 
overhead. What is important here is the shrinking factor achieved by the transformation 
of the original database. In [10] the authors claim that while the shrinking factor of the 
first FP-tree normally ranges from 20 to 100, the shrinking factor from this FP-tree to the 
pattern bases is expected to be hundreds of times larger. The size of the sliding window is 
m*MaxTransactionSize, and the size of the integer mapping index is (Monitoring 
Window Size)*(Size of the set of extended items), both of which easily fit into the main 
memory. Since there are often a lot of sharing of frequent items among transactions, the 
size of the tree is usually much smaller than its original database and that of the candidate 
sets generated in the Apriori-based approaches.  

One the most desired features of all data mining algorithms is incrementality. The 
modular nature of PREVENT allows for the use of any incremental association rules 
mining algorithm after the first step. The good news is that there are incremental FP-tree 
based algorithms, such as CATS [21] that can be used directly, so that we don’t have to 
miss its computational advantages. 
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3.4.   Using Predictive Patterns Instead of Rules 

According to the prediction framework described in the previous sections, given that the 
warning time is always w time points before the target event Xt, we propose an efficient 
method for mining predictive patterns within the prediction time period. Alternatively to 
the original inter-transactional association rules paradigm, we propose the use of patterns 
instead of the typical If-Then rules for the prediction task. A temporal inter-transactional 
pattern contains all the necessary information, except from the notion of causality, which, 
even using rules as a representation form, can be elusive and hard to prove anyway.  

Generally, if-then rules are a form of representation, that have specific advantages, 
such as the fact that are easily understood by people, they are modular (each rule fits a 
portion of the data) and they relate events in various contexts such as time, space, 
probability and causality. Rules can be used for description (e.g. “if someone is a doctor 
then he/she holds a university degree”) as well as for prediction (e.g. “if a customer is 
married then he/she will buy a family car”). However, it is very common within the 
context of prediction to (consciously or subconsciously) convey causal content. Temporal 
precedence is normally assumed essential for defining causality and it is one of the most 
important clues that people use to distinguish causal from other types of associations.  

However, the fact that one event occurs after another does not prove a causal 
relationship between them. Almost three centuries ago (1748), David Hume in his 
greatest philosophical work “An Enquiry Concerning Human Understanding” supported 
that causality does not really exist: “We may define a cause to be an object, followed by 
another, and where all the objects similar to the first, are followed by objects similar to 
the second”. In other words, Hume supported that causality is not actually knowable but 
imagined by our mind to make sense of the observation that A often occurs together with 
or slightly before B. All we can observe are correlations, not causations. We quote 
Mazlack on association rules [12]: “In fact, with association rules all that is discovered is 
the existence of a statistical relationship. The nature of the relationship is not specified 
[...] Associations describe the strength of joint co-occurrences. Sometimes the 
relationship might be causal; for example, if someone eats salty peanuts and then drinks 
beer, there is probably a causal relationship. On the other hand, it is unlikely that a 
crowing rooster causes the sun to rise”.  

We believe that using association rules for prediction, when we can push inter-
transactional temporal information into frequent itemsets, is of no obvious use, especially 
when causality is not a notion we really try to mine here. The inter-transaction frequent 
itemsets contain all the information required, without the risk of erroneously implying a 
causal relationship.  

Frequent itemset mining is an inherently unsupervised procedure, which aims to 
discover informative knowledge from data in exploratory fashion. Embedding inter-
transactional dimensional (temporal) information into those co-occurrence patterns can 
be a useful tool to discover prediction-related information, in cases where the data 
collected are far from Gaussian, even multimodal. Consider now a typical inter-
transactional association rule, such as A(t1)→X(tn), where X(tn) is the target event, 
A(t1...tk) is a set of extended items (events occurring at time points t1..tk) and tn>tk. In the 
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proposed approach we perform prediction using the frequent extended itemsets derived 
from the prediction periods of X. Since we are interested only in the rules that have X in 
the consequent, extracting only the frequent extended itemsets from the monitoring 
windows would be enough for predicting the target event. This makes the whole process 
simpler and faster. 

4.   Implementation and Performance Results 

We implemented our algorithm in C++ and tested it against a number of data sets of 
different sizes. There were two types of data, real world and synthetic. The real world 
data were meteorological, containing the hourly measurements of temperature, humidity 
and THI (temperature-humidity index) from 1954 until 1998. The synthetic datasets were 
used for uniformly measuring the run time of PREVENT and verifying its completeness.  

In some contexts, the search for exact pattern matches could be considered as a 
drawback, because minor distortions, such as dilation, cannot be captured. Very often, 
especially in real world sequences, such as meteorological, such effects are common and 
those patterns missed by exact matching algorithms could result in loss of valuable 
knowledge. As a result, “loser” patterns, which have a frequency near the user specified 
minimum threshold, might be possible “winners” if those patterns that are similar to them 
could somehow be considered to their overall frequency count. We suggest two solutions 
to this problem that we plan to investigate in the near future. 

One approach to this problem is to adopt a different pattern space, using time 
intervals instead of time points. This way we could utilize the 13 temporal relationships 
between two intervals defined in [17] (e.g. during, contains, starts, etc.). For example, 
assume that we have r=<A**B*C>, a possible winner pattern (“*” stands for “any single 
literal”) and the search algorithm encounters a pattern s =<AIJKBLMC>. In our case, s 
would be ignored in the frequency count, although it contains <A***B**C>, which could 
be considered as a distorted instance of r. However, according to Allen’s temporal 
interval relationships this can be captured by the relationship “r starts s”. Therefore, 
enabling our algorithm to use such conditions could provide a solution to this problem. 
The work in [22, 23] are examples of using intervals in pattern mining.  

Another solution to the same problem would be considering not only the exact 
matches but also the patterns that are similar to each other under a certain distance metric. 
Sequence similarity has been extensively studied in terms of time series mining (discrete 
or continuous) and within the field of molecular biology (e.g. protein sequence 
similarity). In the previous example, patterns r and s are similar, under some distance 
measure. Various distance measures among those proposed in the literature can be used, 
depending on the domain of application.  

4.1.   Synthetic Data Experiments 

The synthetic data were generated with MATLAB, according to a set of probabilistic 
pseudo-random parameters, such as the frequency of the rare event, the Monitoring and 
the Warning Time. The performance of the algorithm depends on the size of the 
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monitoring window, the number of different items and the frequency of the target event. 
Below, we present an experimental setup that has the following configuration: There are 
eleven different items in the database, including the target item. The Monitoring Time 
was set to 6 and the Warning Time to 2, which means that, according to the m-w+1 
formula, the size of the Monitoring Window is 5. Therefore, the transformed database 
contains 55 different extended items. The target event frequency was set between 9% and 
10%, therefore, the transformed database contained approximately 0.1*DatabaseSize 
Mega Transactions. The experiments were taken on a Pentium 4, 2.6 GHz computer with 
512MB of RAM and a SCSI hard disk. The apriori implementation we used was taken 
from [32]. For both approaches, the times measured include only the production of the 
frequent itemsets, not the association rules. Figure 5 illustrates the performance of our 
algorithm with respect to the number of Mega Transactions of the transformed database.  

Table 1 Experimental results on synthetic data 

 
 

 

Fig. 5. Run time against the number of Mega Transactions 

Our approach is complete due to the completeness of FP-Growth. In our 
experimental setup, a frequent extended itemset starting from time point 0 and ending at 

Run Time (seconds) DB Size  
(transactions) 

Mega Transactions 
PREVENT Apriori-based 

10000 923 0.39 0.33 

50000 4457 1.082 1.21 

100000 8943 1.761 2.18 

500000 44715 7.46 11.12 

1000000 89430 14.24 24.43 
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time point 4 can predict an event that will happen at time point 6. For example, given that 
the target item is x, a frequent extended itemset such as {a0, b1, b2, d4} can be used for the 
prediction of x at time point 6 with some level of support. 

 

4.2.   Real World Data Experiments 

In our experiments we used two real world datasets, one meteorological (heatwaves) and 
one for electrical energy consumption.  

The first dataset contains the hourly measurements of temperature, humidity and THI 
from 1954 until 1998 in the area of Thessaloniki, Greece. THI expresses the discomfort 
that people feel during a heat wave. The data were kindly provided by Prof. T. Karacostas 
of the Department of Meteorology and Climatology of Aristotle University of 
Thessaloniki, Greece. There are five THI levels [13]: 

Table 2 Temperature-Humidity Index levels 

THI Class Description 
69 ≤ THI < 75 Mild Few people feel uncomfortable 
75 ≤ THI < 80 Moderate About one half of all people feel uncomfortable 
80 ≤ THI < 84 Serious Nearly everyone feels uncomfortable 
84 ≤ THI < 92 Severe Rapidly decreasing work efficiency 

        THI ≥ 92 Extreme Extreme danger 

 
We tried a number of different setups, according to some general guidelines provided 

by the meteorologists. The target event is the occurrence of a Serious, Severe or Extreme 
heat wave. The hourly data were grouped in 6 hour period averages and discretized into 
3-5 classes. The temperature (T) is in degrees Celsius and the monitoring window starts 
14 6-hour periods before the heat wave and ends 2 6-hour periods before. There were 172 
serious (or worse) heat waves in a period of approximately 44 years (approximately 1% 
probability). Regarding the usefulness of the produced patterns, although preliminary, the 
domain experts empirically evaluated them as quite interesting and worth investigating. 
Unfortunately, the domain is too hard to model, especially when only two attributes are 
available (temperature T and humidity H), so the patterns were not particularly 
informative. Below we provide a sample of the patterns produced, with reference to the 
target event, which occurs at time point 0.  

 
(i) (T > 27, 5 periods before), (T > 27, 3 periods before), support=0.91  
(ii)  (50 ≤ H ≤ 75, 5 periods before), (T > 27, 5 periods before), (T > 27, 3 periods 

before), support=0.77  
(iii)  (40≤H≤65, 5 periods before), (T>27, 5 periods before), (T>27, 3 periods before), 

support=0.75  
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TruePositives
Sensitivity

TruePositives FalseNegatives
=

+

Like other pattern mining approaches, PREVENT involves search for local patterns 
instead of global models. In association rules and pattern mining the notion of accuracy is 
substituted by other statistics that express strength or interestingness of a pattern, such as 
the confidence (which is here defined accordingly). However, in event prediction it is 
always expected to measure the effectiveness of a technique in terms of prediction 
accuracy. In highly imbalanced datasets, metrics such as the specificity and the sensitivity 
are considered more appropriate than accuracy. These two metrics are popular in medical 
research but lately they are also gaining popularity in machine learning [33, 34]. 
Sensitivity, also known as “recall” in Information Retrieval, and Specificity are defined 
as follows: 

 
 

 
 
 
 
The second dataset contains daily electric energy production measurements (KWhs) 

from 6 different sources: Hydroelectric, Nuclear, Coal, Petroleum, Alternative sources 
(eolic, solar, etc). The measurements were taken in Spain, for the whole year 2003 [52]. 
The predicted variable is the average cost of the KWh in euros. The data were 
preprocessed (discretized) in order to transform the continuous domain into discrete. All 
7 variables were discretized using the “unsupervised.attribute.Discretize” class of the 
WEKA machine learning library; the 6 input variables were split into 3 bins 
(high/medium/low) while the class variable was divided into 2 bins (high/low). The 
following table contains the bins that each input variable was divided and the letters that 
were assigned to them. Our goal is to predict when to expect a high KWh cost. There 
were 32 days that the cost of the KWh was high. For the evaluation we performed a 
standard 10-fold cross validation procedure. 

Table 3 Variable discretization for the electric energy dataset 

Hydroelectric 

a=(-inf-87266.2] b=(87266.2-146650.6] c=(146650.6-inf) 

Nuclear 

d=(-inf-138875] e=(138875-162990] f=(162990-inf) 

Carbon 
g=(-inf-100635.666667] h=(100635.666667-167734.333333] i=(167734.333333-inf) 

Petroleum 
j=(-inf-22662.166667] k=(22662.166667-45324.333333] l=(45324.333333-inf) 

Natural gas 
o=(-inf-28150.733333] p=(28150.733333-56301.466667] q=(56301.466667-inf) 

Alternative 

r=(-inf-8990.333333] s=(8990.333333-12673.666667] t=(12673.666667-inf) 

TrueNegatives
Specificity

TrueNegatives FalsePositives
=

+

(3) 

(4) 



Christos Berberidis and Ioannis Vlahavas 
 
16 

 

Table 4 Predictive patterns for the electric energy dataset 

 Pattern Sensitivity Specificity 

1 carbon_1 = h and petroleum_3 = h and alternative_3 = h, cost_3 = h 0,666667 0,990385 

2 petroleum_3 = h and alternative_3 = h, cost_3 = h 0,666667 0,980769 

3 carbon_1 = h and petroleum_3 = h, cost_3 = h 0,666667 0,971154 

4 nuclear_2 = h and gas_2 = l and hydro_3 = l, cost_3 = h 0,666667 0,971154 

5 petroleum_3 = h, cost_3 = h 0,666667 0,961538 

 
In order to measure the effectiveness of PREVENT we measure the sensitivity and 

specificity of each pattern. Table 4 summarizes the results, displaying the best patterns, 
according to their specificity and sensitivity scores. The sensitivity and specificity 
minimum thresholds were set to 65% and 95% correspondingly and PREVENT returned 
the 5 rules shown in Table 4. The letters h, m and l stand for high, medium and low 
values correspondingly, while the numbers 1, 2 and 3 indicate the first, second and third 
day of the prediction window. One can see the very high levels of specificity achieved 
(96%-99%) that show the very low false positive rate, while the moderately good values 
of sensitivity (66,7%) means that some true positives might be missed. In other words, in 
this case study, PREVENT is very unlikely to falsely classify a low cost KWh day while 
it is possible to miss some of the high cost ones.  
 

5.   Conclusions and Further Research 

In this paper we proposed PREVENT, a novel data mining approach for predicting rare 
events in transaction databases in a fast and explicit manner. Our approach is based on 
the inter-transactional association rules framework and utilizes a state-of-the-art 
algorithm for classical association rules mining, namely FP-Growth, in order to produce 
predictive patterns. It involves a database transformation in order to extract only the 
required information before mining for the predictive patterns. We formulated the 
problem, proposed a novel algorithm and conducted experiments to test and verify its 
performance and effectiveness. Our synthetic data experiments showed that it is faster 
than apriori-based algorithms. However, the synthetic and meteorological datasets were 
not appropriate for testing its effectiveness, so we experimented with another, publicly 
available, real world dataset in order to test PREVENT’s sensitivity and specificity. It is 
within our plans to further experiment and evaluate the heat waves data, in a closer 
collaboration with the meteorologists. 

PREVENT features low computational cost, since it requires only one scan over the 
original database, and two scans over the transformed database, which is considerably 
smaller. Additionally it is also memory efficient as it uses small memory based 
structures, except from the FP-tree, which in extreme cases can be relatively large. 
However, the FP-tree approach is a well established, complete and one of the most 
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efficient approaches in the literature, which is the reason it was selected. The overall 
approach is complete due to the completeness of the frequent itemset algorithm. 

For future research, a priority issue is improving the sensitivity of our approach. 
Then, we plan to investigate the idea of dealing with dilation and/or translation effects in 
sequences, which are very common in sequences such as the meteorological ones. Such 
effects can be discovered by interval-based approaches [22, 23]. Additionally, we 
consider conducting a large series of real world experiments on various meteorological 
data, and extend our approach for distributed databases, such as web databases. 
Moreover, we are currently experimenting on biological data, namely the prediction of 
the Translation Initiation Sites in genome sequences [30].  

Finally, we would like to kindly thank the three anonymous reviewers for their 
valuable comments and their insightful contribution on this work. 
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