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Abstract. Periodicity search in time series is a problem that has 
been investigated by mathematicians in various areas, such as sta-
tistics, economics, and digital signal processing. For large data-
bases of time series data, scalability becomes an issue that tradi-
tional techniques fail to address. In existing time series mining 
algorithms for detecting periodic patterns, the period length is user-
specified. This is a drawback especially for datasets where no pe-
riod length is known in advance. We propose an algorithm that 
extracts a set of candidate periods featured in a time series that 
satisfy a minimum confidence threshold, by utilizing the autocor-
relation function and FFT as a filter. We provide some mathemati-
cal background as well as experimental results.12 

1 INTRODUCTION 

Periodicity is a particularly interesting feature that could be used 
for understanding time series data and predicting future trends. 
However, little attention has been paid on the study of the periodic 
behavior of a temporal attribute. In real world data, rarely a pattern 
is perfectly periodic (according to the strict mathematical definition 
of periodicity) and therefore an almost periodic pattern can be 
considered as periodic with some confidence measure. Partial 
periodic patterns are patterns that are periodic over some but not all 
the points in it.  

Early work in time-series data mining addresses the pattern 
matching problem. Agrawal et al. in the early 90’s developed 
algorithms for pattern matching and similarity search in time series 
databases [1, 2, 3]. Mannila et al. [4] introduce an efficient solution 
to the discovery of frequent patterns in a sequence database. Chan 
et al. [5] study the use of wavelets in time series matching and 
Faloutsos et al. in [6] and Keogh et al. in [7] propose indexing 
methods for fast sequence matching using R* trees, the Discrete 
Fourier Transform and the Discrete Wavelet Transform. Toroslu et 
al. [8] introduce the problem of mining cyclically repeated patterns. 
Han et al. [9] introduce the concept of partial periodic patterns and 
propose a data structure called the Max-subpattern Hit Set for 
finding partial periodic patterns in a time series. Aref et al. in [10] 
extend this work by introducing algorithms for incremental, on-line 
and merge mining of partial periodic patterns. 

The algorithms proposed in the above articles discover partial 
periodic patterns for a user-defined period length. If the period 
length is not known in advance, then these algorithms are not 
directly applicable. One would have to exhaustively apply them for 
each possible period length, which is impractical. In other words, it 
is assumed that the period is known in advance thus making the 
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process essentially ad-hoc, since unsuspected periodicities will be 
missed. 

Our contribution in this paper is a new algorithm for detecting 
all the periodicities in a time series without any previous 
knowledge of the nature of the data. The time series is considered 
as a character sequence. The algorithm follows a filter-refine 
paradigm. In the filter step, the algorithm utilizes the Fast Fourier 
Transform to compute a Circular Autocorrelation Function that 
provides us with a conservative set of candidate period lengths for 
every letter in the alphabet of our time series. In the refine step, the 
algorithm applies Han’s algorithm [9] for each candidate period 
length to find partial periodic patterns, if any, within this candidate 
period length. The complexity of our algorithm is O(ANlogN), 
where A is the size of the alphabet and N the size of the time 
series. The algorithm speeds up linearly both to the number of time 
points and the size of the alphabet. 

The rest of this paper proceeds as follows: the next section we 
contains notation and definitions for the problem. In section 3 we 
outline the steps of the algorithm we propose and we explain how 
it works in detail. We provide some theoretical background and we 
discuss the computational complexity of the algorithm. In section 4 
we test our algorithm with various data sets, produce some 
experimental results and verify them using Han’s algorithm. In the 
last section we conclude this paper and suggest some directions for 
further research. 

2 NOTATION 

A pattern is a string s = s1…sp over an alphabet L
�

{*  }, where 
the letter *  stands for any single symbol from L. A pattern s’  = 
s1’…sp’  is a subpattern of another pattern s if for each position i, 

ii ss �
�

 or �
�
is * . For example, ab*d is a subpattern of abcd. 

Assume that a pattern is periodic in a time series S of length N with 
a period of length p. Then, S can be divided into 

� �
pN /  

segments of size p. These segments are called periodic segments. 
The frequency count of a pattern is the number of the periodic 
segments of the time series that match this pattern. The confidence 
of a pattern is defined as the division of its frequency count by the 
number of period segments in the time series (

� �
pN / ). For 

example, in the series abcdabddabfcccba, the pattern ab**  is 
periodic with a period length of 4, a frequency count of 3, and a 
confidence of 3/4. 

According to the Apriori property on periodicity discussed in 
[9] “each subpattern of a frequent pattern of period p is itself a 
frequent pattern of period p” . For example, assume that ab**  is a 
periodic pattern with a period of 4, then a***  and *b**  are also 
periodic with the same period. Conversely, knowing that a***  and 
*b**  are periodic with period 4 does not necessarily imply that 
ab**  is periodic with period 4.  
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3 OUR APPROACH 

Based on the Apriori property described in the previous section, we 
present a new algorithm that generates a set of candidate periods 
for the symbols of a time series. The filter/refine paradigm is a 
technique that has been used in several contexts, e.g., in spatial 
query processing  [11]. The filter phase reduces the search space by 
eliminating those objects that are unlikely to contribute to the final 
solution. The refine phase, which is CPU-intensive, involves 
testing the candidate set produced at the filter step in order to 
verify which objects fulfil the query condition.  

The filter/refine paradigm can be applied in various search 
problems such as the search for periodicity in a time series. We use 
the circular autocorrelation function as a tool to filter out those 
periods that are definitely not valid.  

We outline the major steps performed by our algorithm. The 
explanation of the steps is given further down in this section. 
1. Scan the time series once and create a binary vector of size N 

for every symbol in the alphabet of the time series. 
2. For each symbol of the alphabet, compute the circular 

autocorrelation function vector over the corresponding binary 
vector. This operation results in an output autocorrelation 
vector that contains frequency counts. 

3. Scan only half the autocorrelation vector (maximum possible 
period is N/2) and filter out those values that do not satisfy the 
minimum confidence threshold and keep the rest as candidate 
periods. 

4. Apply Han’s algorithm to discover periodic patterns for the 
candidate periods produced in the previous step. 
Steps 1—3 correspond to the filter phase while Step 4 

corresponds to the refine phase, which uses Han’s Max-subpattern 
Hit Set Algorithm that mines for partial periodic patterns in a time 
series database. It builds a tree, called the Max–Subpattern tree, 
whose nodes represent a candidate frequent pattern for the time 
series. Each node has a count value that reflects the number of 
occurrences of the pattern represented by this node in the entire 
time series. For brevity, we refer the reader to [9] for further 
details. 

3.1 The Filter Phase 

The first phase of our method is the creation of a number of binary 
vectors. Assume we have a time series of size N. We create a 
binary vector of size N for every letter in our alphabet. An ace will 
be present for every occurrence of the corresponding letter and a 
zero for every other letter.  

The next step is to calculate the Circular Autocorrelation 
Function for every binary vector. The term autocorrelation means 
self-correlation, i.e., discovering correlations among the elements 
of the same vector. We use Autocorrelation as a tool to discover 
estimates for every possible period length.  

The computation of autocorrelation function is the sum of N dot 
products between the original signal and itself shifted every time 
by a lag k. In circular autocorrelation, the point at the end of the 
series is shifted out of the product in every step and is moved to the 
beginning of the shifting vector. Hence in every step we compute 
the following dot product for all N points: 
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This convolution-like formula calculates the discrete 1D circular 
autocorrelation function for a lag k. For our purposes we need to 
calculate the value of this function for every lag, which means for 
N lags. Therefore, the overall formula for r(k) is computed for all  
k=1 ... N. The complexity of this operation is O(N2), which is quite 
expensive, especially when dealing with very large time series. 
 Utilizing the Fast Fourier Transform (FFT) effectively reduces 
the cost down to O(NlogN). The overall procedure is depicted as 
follows: 

 

))(()(*)(
1

))(()()( xfrxFxF
N

xFRxFxf IFFTFFT �������	����
��   (2) 

In the above formula )(*)( xFxF  is the dot product of F(x) 

with its complex conjugate. The mathematical proof can be found 
in the bibliography.  
 
Example 1: Consider the series abcdabebadfcacdcfcaa of length 
20, where a is periodic with a period of 4 and a confidence of 3/4. 
We create the binary vector 10001000100010000011. The circular 
autocorrelation of this vector is given in Figure 1. 
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Figure 1.  Circular Autocorrelation Function when the length is a  
multiple of the period 

The first value of the autocorrelation vector is the dot product of 
the binary vector with itself, since the shifting lag is 0 and therefore 
the two vectors align perfectly. Thus, the resulting value is the total 
number of aces, which is the total number of occurrences of the 
letter a. The peak identified in the above chart at position 5 implies 
that there is probably a period of length 4 and the value of 3 at this 
position is an estimate of the frequency count of this period. 
According to this observation, we can extract those peaks, hence 
acquiring a set of candidate periods. Notice that a period of length 
4 also results in peaks at positions 5, 9, 13 etc.  

The user can specify a minimum confidence threshold c and the 
algorithm will simply extract those autocorrelation values that are 
greater than or equal to cN/p, where p is the current position where 
a period could exist. 

One of the most important issues one has to overcome when 
dealing with real world data is the inevitable presence of noise. The 
computation of the autocorrelation function over binary vectors 
eliminates a large number of non-periodic aces due to their 
multiplication with zeroes, and hence leaving the periodic aces to 
contribute to the resulting value. Otherwise, using autocorrelation 
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over the original signal, would cause all the non-periodic instances 
to contribute into a totally unreliable score estimate. Consequently, 
such a value could be an acceptable estimate of the frequency 
count of a period. Note that the value of the estimate can never be 
smaller than the real one. Therefore, all the valid periodicities will 
be included in the candidate set together with a number of false 
ones that are the effect of the accumulation of random, non-
periodic occurrences with the periodic ones.  

One major weakness of the circular autocorrelation is that when 
the length of the series is not an integer multiple of the period, the 
circularly shifting mechanism results in vectors with a higher 
occurrence of unexpected values. This is usually increased by the 
randomness of real world data and the presence of noise. In our 
example the length of the series is N=20, which is an integer 
multiple of the period p=4. When the length of the series is 21 
(e.g., by adding a zero at the end of the binary vector), this results 
in the circular autocorrelation given in Figure 2. 
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Figure 2.  Circular Autocorrelation Function when the length is not a 
multiple of the period 

 
Notice that although the chart is different, there is still a peak at 

position 5 implying the existence of a period of 4 with a frequency 
count of 3. Since the maximum period is theoretically equal to N/2, 
the peak at position 18 is ignored.  

Repeating the algorithm described so far, for every symbol in 
the alphabet of our time series will result in a set of possible 
periods for each one of them. Note that a letter might have more 
than one period. For every candidate period, there will be an 
estimate of its confidence, according to their autocorrelation value. 
Utilizing the Apriori property on periodicity discussed earlier in 
this article, we can create periodicity groups, that is, groups of 
letters that have the same period. Han’s algorithm [9] can be 
applied to verify the valid periods and extract the periodic patterns.  

 
Theorem: Consider a time series with N points. Also let a letter of 
that time series feature periodicity with a period p1 with a 
confidence c1. We can prove that this letter is also periodic with a 
period of p2 and confidence c2 �  c1, when p2 is a multiple of p1. 

For example, if a is periodic with a period length of 4 and a 
confidence of 75% then it is also periodic with a period of 8, 12, 16 
etc. and the corresponding confidence measures are equal to or 
greater than 0.75. Assume that b is periodic with a period of 8. 
Based on the previous theorem we know that a is also periodic 
with a period of 8 and therefore, we can create a periodicity group 

consisting of those two letters and apply Han’s algorithm to check 
whether there is a periodic pattern with a period of 8 or any of its 
multiples.  

A problem could arise when a number of successive 
occurrences of a letter are repeated periodically. 

 
Example 2: Consider the series aabaacaadacdbdbdabc, where aa* 
is repeated in 3 out of 6 periodic segments, while a**  is repeated in 
4 periodic segments.  The circular autocorrelation chart for the 
symbol a is given in Figure 3.  

A clear peak at position 4 can be seen, implying the existence of 
a period of 3. The frequency estimate according to the 
autocorrelation function is 6, which happens to be two times the 
actual frequency count, which is 3.  

The presence of noise does not affect the completeness of the 
algorithm, since it discovers all the periodicities that exist. 
However, it might also produce some non-existing periodicities, 
which are pruned in the refine phase.  
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Figure 3.  Circular Autocorrelation Function when successive periodic 
occurrences of the letter 

3.2 Analysis 

Our algorithm requires 1 scan over the database in order for the 
binary vectors to be created. Then it runs in O(NlogN) time for 
every letter in the alphabet of the series. Consequently the total run 
time depends on the size of the alphabet. Generally speaking we 
can say that this number is usually relatively small since it is a 
number of user specified classes in order to divide a range of 
continuous values. 

4 EXPERIMENTAL RESULTS 

We tested our algorithm over a number of data sets. The most 
interesting data sets we used were supermarket and power 
consumption data. The former contain sanitized data of timed sales 
transactions for some Wal-Mart stores over a period of 15 months. 
The latter contain power consumption rates of some customers 
over a period of one year and were made available through the 
CIMEG1 project. Synthetic control data taken from the Machine 
Learning Repository [12] were also used. Different runs over 
                                                             
1 CIMEG: Consortium for the Intelligent Management of the Electric Power 
Grid. helios.ecn.purdue.edu/~cimeg/Index.html. 
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different portions of the data sets showed that the execution time is 
linearly proportional to the size of the time series as well as the size 
of the alphabet. Figure 4 shows the behavior of the algorithm 
against the number of the time points in the time series.  

Figure 5 shows that the algorithm speeds up linearly to 
alphabets of different size. The size of the alphabet implies the 
number FFT computations of size N required. The times shown on 
the chart below correspond to a synthetic control data set of N = 
524288 time points. 

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

Number of Points (in thousands)

T
im

e 
(s

ec
)

Figure 4.  Run time against data sets of different size 
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Figure 5.  Run time against different alphabets  

 
As far as accuracy is concerned, our algorithm was proved to be 

complete. We tried three datasets containing the number of 
customers per hour in three Wal-Mart stores. Letter A stands for 
nearly zero transactions per hour, while F stands for high number 
of transactions per hour. The algorithm returned the one period that 
is most likely to be correct. Alternatively, instead of searching for a 
single candidate period, we could mine for a larger set of 
candidates. Table 1 summarizes the results. The “ACF”  column is 
the Autocorrelation estimate produced for the periodic occurrences 
of a letter, while the “Frequency”  column is the number of 
occurrences of each letter in the Time Series. Notice that for most 
letters in all three datasets the suggested period is 24 or a multiple 
of it (e.g. 168, 336, 504).  

Given the output of the filter step described in the previous 
experiment we tried to verify it using Han’s algorithm for the 
extraction of partially periodic patterns. For reasons of brevity we 
provide periodic patterns produced by Han’s algorithm only for the 
third data set of Table 1. We mined for patterns of period length 24 
and we set the minimum confidence threshold to 60%. Alterna-

tively, we could have mined for patterns with a period length of 
168, however we chose to verify the daily cyclic behavior of these 
data. The results are displayed in Table 2, showing that 24 is a 
valid period length. 

 
Table 1.   Results for the 3 Wal-Mart stores 

 
Data Symbols Period ACF  Frequency 

A 24 227.88 3532 
B 168 1140.5 2272 
C 24 93.76 1774 
D 336 648.17 874 
E 504 2782.02 2492 

Store 
 1 

F 4105 81.61 48 
A 24 252.43 3760 
B 168 1750.37 2872 
C 168 936.36 2199 
D 168 851.93 2093 

Store  
2 

E 1176 90 140 
A 168 2034.53 3920 
B 168 1436.71 2331 
C 168 950.68 2305 
D 336 434.05 655 
E 24 99.85 1830 

Store  
3 

F - - 23 
 

Table 2.  Verification with Han’s algorithm 

Pattern Confidence (%) 

AAAAAABBBB***********B*A 62.47288 

AAAAAA**BB************AA 72.66811 
AAAAAA***BC***********AA 60.95444 
AAAAAA***B************AA 75.70499 
AAAAAA*BB************BAA 63.34056 
AAAAAA*BBB************AA 60.95444 
AAAAAABBB************BAA 61.38828 
AAAAAABBB************B*A 69.63123 
AAAAAABBB*************AA 65.72668 
AAAAAABBBB***********B*A 62.47288 

5 CONCLUSIONS AND FURTHER WORK 

In this paper we proposed a method for efficiently discovering a set 
of candidate periods in a large time series. Our algorithm can be 
used as a filter to discover the candidate periods without any 
previous knowledge of the data along with an acceptable estimate 
of the confidence of a candidate periodicity. It is useful when 
dealing with data whose period is not known or when looking for 
unexpected periodicities. Algorithms such as Han’s described in 
[9] can be used to extract the patterns. We tried our method against 
various data sets and it proved to speed up linearly against different 
alphabets and different numbers of time points. We also verified its 
expected completeness using Han’s algorithm.  

We implemented and tested our algorithm using a main memory 
FFT algorithm, however, a disk-based FFT algorithm [13, 14] 
would be more appropriate for handling larger time series that do 
not fit in the main memory. Interesting extension of our work 
would be the development of an algorithm to perform over other 
kinds of temporal data such as distributed and fuzzy. Finally, we 
intend to investigate the application of an algorithm or a function, 
other than the circular autocorrelation, that would require a smaller 
number of FFT computations. 
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