Learning to play Monopoly:
A Reinforcement Learning approach

Panagiotis Bailis and Anestis Fachantidis and Ioannis Vlahavas !

Abstract. Reinforcement Learning is a rather popular machine
learning paradigm which relies on an agent interacting with an en-
vironment and learning through trial and error to maximize the cum-
mulative sum of rewards received by it. In this paper, we are propos-
ing a novel representation of the famous board game Monopoly as
a Markov Decision Process and a Reinforcement Learning agent ca-
pable of playing and learning winning strategies. The conclusions
drawn from the experiments are particularly positive, since the pro-
posed agent demonstrated intelligent behavior and high win rates
against different types of agent-players.

1 Introduction

cation in a variety of fields, including video and board games

[6]. Reinforcement Learning is a Machine Learning paradigm
in which an agent learns an action policy in a sequential decision
problem by maximizing a scalar reward received from the environ-
ment. Monopoly is one of the most famous board games, played by
millions of people worldwide and was originally designed to illus-
trate an economic principle, namely the Georgist concept of a single
land value tax. Despite the all-time popularity of the game, to the
best of our knowledge, an RL approach for agents learning to play
Monopoly, has not been discussed (there are some older attempts to
model Monopoly as Markov Process including [1]). Monopoly rep-
resentation as a Markov decision Process (MDP) poses a series of
challenging problems such as the large state space size and a highly
stochastic transition function.

This work uses the RL approach of modelling the Monopoly board
game as a MDP allowing RL agents to play and learn winning strate-
gies. We implement the corresponding environment and a basic Q-
Learning agent for it. Moreover we compare its performance with
two -baseline- agents, one using a random policy and one with a
fixed, rule-based policy.

The main contributions of this work are i) a novel MDP represen-
tation and modelling of the game; ii) the implementation of the cor-
responding Reinforcement Learning environment for the Monopoly
game, suitable for RL agents and finally; iii) a Q-Learning RL agent
for the game.

In recent years, Reinforcement Learning (RL) [5] has found appli-

2 Background
2.1 Reinforcement Learning

Reinforcement Learning (RL) addresses the problem of how an agent
can learn a behaviour through trial-and-error interactions with a dy-
namic environment [5]. In a RL task the agent, at each time step ¢,

1 Department of Informatics, Aristotle University of Thessaloniki, Greece,
email: {pmpailis, afa, vlahavas} @csd.auth.gr

receives an observation of the environment’s state, s; € .S, where
S is the set of possible states, and selects an action a; € A(st) to
execute, where A(s) is the finite set of possible actions in state s;.
The agent then receives a reward, 711 € R, and moves to a new
state s¢+1. The general goal of the agent is to maximize the expected
return, where the return, Ry, is a function of the reward sequence.

A policy function 7 (s, a), expresses the probability of taking ac-
tion a in state s. For any policy 7, the state-value function, V' (s),
denotes the expected discounted return, if the agent starts from s and
follows policy 7 thereafter.

Similarly, the action-value function, Q™ (s, a), under a policy 7 is
defined as the expected discounted return for executing a in state s
and thereafter following 7.

The optimal policy, 7*, is the one that maximizes the value,
V7 (s), for all states s, or the state-action value, Q™ (s, a), for all
state-action pairs.

A widely used algorithm for finding the optimal policy is the Q-
learning algorithm [7] which approximates the Q™ function with the
following form:

Q(st,a1) + Q(s¢, ar) +a(re1 +VH§}XQ(St+17 a') = Q(st, ar)).

3 Monopoly as a Reinforcement Learning Task

In the following, we attempt to model Monopoly as a single-agent
RL task. Despite the non-stationarity of the multi-player Monopoly
game invalidating most of the single-agent RL theoretical guarantees,
single-agent RL algorithms have been extensively used in the liter-
ature in natively multi-agent settings (e.g. Q-Learning) [2, 4] with
successful results and are considered suitable for a first approach on
modelling Monopoly as a RL task.

3.1 Modeling Monopoly as an MDP
3.1.1 State Space

To represent Monopoly as a MDP we first represent the full set of
knowledge a real human player would have, as the (observed) state
of the agent. We formulate the state s; as a 3-dimensional vector of
objects containing information about the game’s area, position and
finance current status at time .

The area object, contains information about the game’s proper-
ties, meaning the properties possessed from the current player and
his opponents at time ¢. More specifically, it is a 10 x 2 matrix where
the first column represents the agent-player, the second the rest of
its opponents and each row corresponds to one of the game’s colour-
groups (8 property groups, the group of all utilities and the group of
all rail-roads) . Each element (x,y) specifies the percentage that the
player y owns from group x, where value 0 indicates that the player
does not own anything and 1 that at least one hotel has been built.

‘£, MONOPOLY

Figure 1. Graphical User Interface for Monopoly displaying detailed
information for the state variable values, also providing the basic framework
for real human players to participate

More specifically, the domain of the parameter x can be described as
follows :

e 0, player does not own anything from the current group

e <z < % player possesses at least one property of the current
group

° % player has all the properties of the current group but has not
built anything

° % < x < 1 player has built at least one house in at least one of
the current group’s properties

where 12 being the least common multiple of 2,3 and 4 (the number
of properties a monopoly colour group can have) representing the
full ownership of all the properties in a group. Adding up to that 5,
the maximum built houses on a property, we obtain 17 as the denom-
inator of the threshold.

The position variable determines the player’s current position on
the board in relation to its colour-group, scaled to [0,1] e.g. If the
player is in the fourth colour group this value would be 0.4.

The finance vector consists of 2 values, specifying the current
player’s number of properties in comparison to those of his op-
ponents’ as well as a calculation of his current amount of money.
Specifically concerning the first value, given players a, b and ¢ and
the number of properties they own as pq,, pp, pc it will be m.
For the second value, since the maximum amount of money owned
by a player, x, varies significantly, the corresponding variable is
transformed to a bounded one with the use of the sigmoid function
@) = .

A sample state s at a given time ¢ would be as follows :

st = {0.3529,0,0,0.2352,0,0, ..., 0,0.6543, 0.3319, 0.3432}

where the first 20 values represent the area vector, the next one the
player’s position on board and the last 2 the player’s current financial
status. In this specific example, the player has completed 0.3529%
of the maximum available development (building) in area 0, and his
current financial status is equal to 0.3432.

3.1.2 Action Space

The action set A available in the proposed Monopoly RL environ-
ment is applicable to a group of properties. Specifically each action
is a vector whose elements represent an action for each of the 10
colour-groups of the game from the following:

e Spend: The spending action can be described as every possible
action that decreases the player’s money, with the following or-

Algorithm 1 Bidding algorithm

1: if The agent’s current position is a property without an owner
then

end if
: If there is only one player left declare him winner of the bid

2: Initialize m , the amount of markup

3: while More than one player wants to buy this property do
4 bid = property_value x m

5 Check every player’s action for current bid

6: m=m+0.2

7: end while

8:

9

der: building a hotel or house, unmortgaging a property and last,
buying an unowned property (if the other two are not applicable).
e Sell: This action, drives the player to find a source to earn more
money and can be accomplished either by (in order of preference)
selling a hotel, a house or mortgaging an already owned property.
e Do Nothing: Do not take any action for the specific property
group.
For both actions the order in which the actual behaviours are cho-
sen can be considered a form of knowledge injection in the pro-
cess. However the specified orderings are considered natural for
Monopoly since i.e. when a human player seeks to earn money he
will first sell buildings and as a last resort will mortgage a property .

3.1.3 Reward Model

The reward signal of the environment is designed so that its output
is bounded, provides discriminant ability between positive and neg-
ative pairs of states-actions and considers most of the information
available to the players. Therefore, a sigmoid function as described
previously, is considered suitable since its output values are bounded
in [-1,1]. The proposed reward model is represented by the following
equation :

Lxe 1
r:piJrf*m,
L+[Z*cl p

where:

e p is the number of players

e cis a smoothing factor

e v is a quantity representing the player’s total assets value and is
calculated by adding the value of all the properties in the posses-
sion of the player, minus the properties of all of his opponents

e m is a quantity representing the player’s finance and is equal to the
percentage of the money the player has to the sum of all players’
money

We should emphasize here that v and m are values computed each
time the agent interacts with the environment and represent the
agent’s financial status considering all of the other players as well.

From the reward signal equation presented here it can be inferred
that the reward signal attributes more importance to the total property
than to the players’ money since in Monopoly, the amount of money
a player has may vary significantly due to random or uncontrolled
events (such as decision cards).

3.2 Bidding and Distance Metrics for Monopoly

Following the original rules of Monopoly 2, a bidding contest was de-
signed and implemented within the proposed environment. The bid-
ding process, takes place every time a player lands on an unowned

2 The special get out jail cards have been removed from the game in order to
simplify the case where a player is send to prison.

property and does not decide to buy it. The algorithm that implements
this procedure is described in Algorithm 1.

Since the state variables, take values from a continuous space there
is a significant need for a state similarity metric that neglects slight
state differences, assisting therefore the value function approxima-
tion. The scheme we propose in this paper uses threshold values for
the 3 state object described earlier in this text, to determine whether
two different states could be considered as the same. More specifi-
cally two states s; and s2 can be considered as equal when all of the
following statements are true:

e [(areal0, jls, —areal0, jls,) + (areall, j]s, —areall, jls;)| <
0.1,0<35<9

e |finances, — finances,| < 0.1

e |positions, — positions,| =0

4 Experiments and Results

In order to evaluate the proposed representation and environment,
three types of players were implemented®. First, a random player
whose actions are selected randomly ignoring the state signal. A
fixed-policy player whose action selection is based on the money he
possesses. He sells if he has less than 150, buys when he has more
than 350 and does nothing between. These thresholds were tuned
appropriately for his best performance. Finally an RL agent with ac-
tion selection based on the e-greedy algorithm. For the visualization
of the experiments a simple Graphical User Interface for Monopoly
was developed (see Figure 3), displaying the state variables detailed
information and also providing the basic framework for real human-
players to participate. In the following we describe the series of ex-
periments conducted in the proposed novel Monopoly RL environ-
ment.

4.1 Random vs Fixed Policy

We first compare the two baseline players discussed above. From
the experiments it was clearly shown that a player with even a simple
empirical policy can have almost a perfect win ratio against a random
agent. Specifically the win ratio in 1000 games was 97% to 3% in
favor of the fixed-policy agent, rendering him a suitable opponent
for the RL agent.

4.2 Training a RL agent

This experiment represents the main training procedure, and assisted
on tuning the parameters of the learning algorithm. The modelling of
the agent is based on [5] and relies on the use of the Q(A)-learning
algorithm [3]. Since the state space is continuous, it necessitates the
need for function approximation. A 3-layer back propagation neural
network was used for that purpose, estimating the Q values for each
state experienced. Agents with different number of neurons in the
hidden layer were tested in order to find the best possible equilibrium
between efficiency and computational cost.

After conducting several experiments to tune the RL agent, his
best performance was achieved using the following parameters :
learning rate a = 0.2,y = 0.95, the NN learning rate o = 0.2 and
A = 0.85.

In Fig. 2 we can see the avg. performance of 25 trials for 1000
episodes with the Q-Learning agent training against a random policy
agent. After 1000 episodes the RL agent shows 100% win ratio

3 The implementation of the Monopoly environment and the agents are avail-
able at: https://github.com/pmpailis/rimonopoly

100 T T
Random policy agent wins

Q-Learning agent wins
Draw -

% of outcome

-)) -
400 600 800 1000
Training Episodes

L
0 200

Figure 2. Win percentage of RL agents trained for a different number of
episodes versus a random player

4.3 RL Agent vs Fixed Policy vs Random Policy

Finally, the trained agent’s performance was compared to that of the
fixed-policy and random policy players discussed earlier. The results
displayed in Table 1, show that the RL agent performs significantly
better than a player whose decision making process is based solely
on a fixed empirical policy with an avg. win percentage of 69.4%.
The RL agent demonstrated the ability to change his strategy and
appropriately react to rapid changes in the game’s environment in
order to win.

Player Number of games won | Percentage
Random 20 2%
Fixed Policy 286 28.6%
RL agent 694 69.4%
Total 1000 100%

Table 1. Number of wins for each agent over 1000 games

5 Conclusions and Future work

A novel reinforcement learning approach for the Monopoly game
was presented. The results of the experiments indicate that the pro-
posed representation was successful allowing a simple RL agent ac-
companied with a NN function approximator to learn winning strate-
gies against a fixed policy player and a random one. The RL agent
demonstrated several times an intelligent behaviour of sacrificing
some of his temporary wealth in order to invest and secure a more
prosperous future. Future work includes adopting a multi-agent ap-
proach for the learning algorithms of the RL agents and a perfor-
mance comparison to existing Monopoly video games and/or human
players.

REFERENCES

[1] Robert B Ash and Richard L Bishop, ‘Monopoly as a markov process’,
Mathematics Magazine, 45(1), 26-29, (1972).

[2] AG Barto and RH Crites, ‘Improving elevator performance using rein-
forcement learning’, Advances in neural information processing systems,
8, 1017-1023, (1996).

[3] Jing Peng and Ronald J Williams, ‘Incremental multi-step g-learning’,
Machine Learning, 22(1-3), 283-290, (1996).

[4] Sandip Sen, Ip Sen, Mahendra Sekaran, and John Hale, ‘Learning to co-
ordinate without sharing information’, in In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pp. 426431, (1994).

[5] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, An
Introduction, MIT Press, 1998.

[6] Nees Jan van Eck and Michiel van Wezel, ‘Application of reinforcement
learning to the game of othello’, Computers & Operations Research,
35(6), 1999-2017, (2008).

[7] Christopher JCH Watkins and Peter Dayan, ‘Q-learning’, Machine learn-
ing, 8(3), 279-292, (1992).

