
1

Visualizing RDF Documents

Aris Athanassiades1, Efstratios Kontopoulos2 and Nick Bassiliades2

1 Dept. of Business Administration, Univ. of Macedonia, GR-54006, Thessaloniki, Greece

mis0620@uom.gr
2Dept. of Informatics, Aristotle Univ. of Thessaloniki, GR-54124 Thessaloniki, Greece

{skontopo, nbassili}@csd.auth.gr

Abstract. The Semantic Web (SW) is an extension to the current Web, enhancing
the available information with semantics. RDF, one of the most prominent stan-
dards for representing meaning in the SW, offers a data model for referring to ob-
jects and their interrelations. Managing RDF documents, however, is a task that
demands experience and expert understanding. Tools have been developed that al-
leviate this drawback and offer an interactive graphical visualization environment.
This paper studies the visualization of RDF documents, a domain that exhibits
many applications. The most prominent approaches are presented and a novel
graph-based visualization software application is also demonstrated.

1. Introduction

The Semantic Web [1] (SW) attempts to improve the current Web, by making Web
content “understandable” not only to humans but to machines as well. One of the
fundamental SW technologies is XML (eXtensible Markup Language) that allows
the representation of structured documents via custom-defined vocabulary. How-
ever, since XML cannot semantically describe the meaning of information, RDF
[2] (Resource Description Framework), an XML-based statement model, was in-
troduced that captures the semantics of data through metadata representation.

The management of XML-based RDF documents is a task easily handled by
machines that can easily process large volumes of structured data. For humans,
however, the same objective is highly cumbersome and demands experience and
expert understanding [3]. Software tools have been developed that alleviate this
drawback, hiding the technical low-level syntactical and structural details and of-
fering a graphical visualization interactive environment. This way, a human-user
can easily create new documents or modify their structure and content.

The most substantial requirement for these software tools is the efficient visu-
alization of RDF metadata [4]. The three most prominent RDF visualization ap-

2

proaches are: display-at-once, where the graph representing the document is dis-
played all at once, navigational-centric, where a chosen resource serves as the
start-point for the rest of the graph, and centric-graph-at-once, a combination of
the previous two. This paper studies thoroughly these approaches and demon-
strates RDFViz++, a novel graph-based visualization software. The tool offers an
alternative visualization approach that fulfills the needs unsatisfied by the avail-
able tools.

In the rest of the paper, section 2 gives some insight on RDF, followed by a
section that focuses on visualizing RDF documents, presenting the three dominant
visualization approaches. Section 4 presents RDFViz++, elaborating on its most
distinctive features as well as its visualization algorithm. The paper is concluded
with the final remarks and directions for future work.

2. RDF – A Common Information Exchange Model in the SW

RDF is a common information data exchange model describing SW resources. It
consists of a number of statements, each being a resource-property-value triple:
resources are the objects we refer to, properties describe attributes of resources or
relations between resources and values can be either resources or simply literals.
An example of a statement is: <#john> <#age> <26>, which declares that a
specific person (named John) is 26 years old. Here “#john” is the resource (or
subject), “#age” is the property (or predicate) and the value (or object) is “26”.

In XML, RDF statements can be represented by an rdf:Description ele-
ment. The subject is referred to in the rdf:about attribute, the predicate is used
as a tag and the object is the tag content. Furthermore, namespaces provide a
mechanism for resolving name clashes, when more than one document is im-
ported. The element names are defined, using a prefix and a local name that is
unique within the base URI. Additionally, external namespaces are expected to be
RDF documents defining resources, used by the importing document. This allows
reuse of resources, resulting in distributed collections of knowledge.

3. Visualizing RDF Documents

Since RDF is based on XML, human interaction with RDF documents becomes
cumbersome, especially in rich, detailed domains with vast numbers of statements.
Dedicated software utilities bring the solution: statement visualization through
simple, two-dimensional shapes. A graph is usually the final result, where nodes
represent resources and arrows represent predicates. Visualizing the whole docu-
ment, nevertheless, is more complicated, as many resources, properties and values
must be combined in one display [5]. Also, each RDF document, demands a dif-

3

ferent visualization approach, depending on its characteristics. A categorization of
the available visualization implementations leads to three main approaches:

• Display-at-once: After analyzing the whole RDF document, a graph is pro-
duced that includes every single triplet. Resources are represented as rectangu-
lar or oval shapes and predicates as arrows directed from subjects towards ob-
jects. Resources involved in many statements are drawn only once; thus,
multiple connections between the same resources are dealt with extended use of
arrows. The greatest advantage of this approach is that it offers a complete as-
pect of the RDF document. However, as the document size increases, the visual
result becomes unsatisfactory, due to the vast number of shapes and multiple
crossings. An implementation paradigm that applies display-at-once is the well-
known tool IsaViz [6]. An interesting feature is the zoom-in/zoom-out function
in coalition with the overview map that provides the capability of better utiliz-
ing the display panel. The result is quite clear when the RDF document is not
very complicated; however, complex graphs quickly become incomprehensible.

• Navigational-centric (or navigational): It is based on a chosen resource that
serves as the centric node. The graph displays all the triplets, for which this
node is the subject. The expansion of the rest of the graph can be interactively
controlled – every object node that belongs to the already displayed statements
can be chosen for further expansion. The navigational approach offers flexibil-
ity in RDF graph deployment, since it provides total control on the graph,
eliminating the handicap of the display-at-once approach in visualizing “heavy”
RDF documents. This is the recommended visualization approach for volumi-
nous, complex documents and for the discovery of a specific knowledge path
inside a document. However, it is not possible to have a full graph at once, a
need that appears often in small and medium-sized RDF documents. An inter-
esting implementation of this approach is the HP Node-centric RDF Graph
Visualization [7] utility, where the navigational methodology is extended with
special features like navigation range and backward expansion.

• Centric-graph-at-once: It is a combination of the previous two: all statements
are displayed at once starting from a central node that is randomly or explicitly
chosen. Arrows are designed starting from the central node; each ends at an ob-
ject node, which also expands if it participates in further statements. Centric-
graph-at-once has a major improvement over display-at-once: every resource
that occurs in more than one RDF statements, is drawn again for every repeti-
tion. Thus, contrary to display-at-once, arrow crossings are eliminated and the
result is far more legible. The method performs well on small and medium-
sized RDF documents; however, as the size of the document increases, more
space and processing power is needed. As a result, users can see only a part of
the complete graph; the rest is displayed after interacting on the display panel.
Fentwine [8] is an implementation based on centric-graph-at-once. It allows the
user to choose a part of the graph and then zooms out the rest. This assists the
user in focusing on the part he is interested in, while the application takes ad-
vantage of the rest of the screen to display as many nodes as possible.

4

4. RDFViz++

The most important factors in visualizing RDF are the document size and com-
plexity. This causes different performances for different documents by the same
application – every tool follows a particular non-flexible algorithm that does not
adapt to document characteristics. RDFViz++ is an alternative RDF visualization
approach that faces this weakness; instead of enforcing one graph style, it com-
bines the three previous visualization techniques, preserving the advantages from
each. The software offers various layouts, but even when none of them proves to
be efficient enough, a random algorithmic graph layout can be executed as many
times as needed, until the final result is acceptable.

The interface consists of the toolbar, the subjects list, the display panel and the
status bar. Almost all functions can be executed from the toolbar at the top of the
window. The central node of the graph is chosen from the subjects list on the left
that contains all the subject resources of the RDF document. The rest of the screen
is used for displaying the graph, except from a narrow lane at the bottom, which
serves as the status bar. A snapshot of RDFViz++ is shown in Fig. 1.

Fig. 1. RDFViz++ user interface

4.1. Visualization Algorithm

RDFViz++ features a recursion-based algorithm for graph construction. The visu-
alization commences by choosing a centric node and continues dynamically, via
two user-defined parameters: Expansion Range and Node/Level Distance. Expan-
sion Range defines the expansion depth. Level distance is the space between dif-
ferent depths. Node distance is the space between each node that resides inside the

5

node group of the same level. Upon choosing the initial node, the first centric
graph is constructed around it, according to the parameters above.

The central node resource is passed as a parameter to a procedure that loads all
RDF statements, for which this resource is the subject. For each statement, its
predicate and object are isolated and drawn as an arrow and a new node, respec-
tively. After visualizing each statement, the system prevents re-expansion of an-
other instance of the same resource. Nevertheless, a resource may be present more
than once in a graph by following a strict constraint: it must be displayed only
once as a subject and as many times as needed as an object.

The above process accepts a node and draws all adjacent nodes. If the expan-
sion range is set to 1, then a single execution of this process gives the resulting
graph. If the range is set to a greater value, then the procedure calls itself recur-
sively. Every object that comes up from expanding the initial node becomes the
procedure parameter and another call is performed. If any of the objects that arise
has already been expanded as a subject before, then it is just omitted. Finally, if
the range is set to 0, recursion occurs until no more objects are able to expand.

Except from the automatic graph generation, RDFViz++ also provides manual
expansion via user interaction. When the initial graph is built, any visible object
can be expanded, unless it has been already expanded as a subject at previous lev-
els. Also, the RDF statements, where the resource participates as subject, must be
available. If these constraints are satisfied, then the selected object is passed as a
parameter to the main procedure, which is executed recursively. The number of
recursive executions is equal to the number of objects that arise from the levels,
which in their turn are defined by expansion range.

4.2. Graph Layouts

Document complexity does not depend only on the number of statements. One of
the most significant characteristics is concentration, namely, the phenomenon of
having only a few specific resources participate repeatedly in a vast number of
statements. RDFViz++ provides a variety of graph layouts; the most appropriate
can be chosen, according to the document visualization requirements. The layout
can even be dynamically modified –the whole graph with the chosen layout is
simply redrawn. Thus, experimentation can often lead to the best-suited configura-
tion for each document. The available layouts are:

• West/East/North/South Tree: West Tree is one of the most efficient layouts, po-
sitioning the central node at the leftmost part and maintaining a left-to-right
flow. In East Tree the flow is inversed. North and South Tree layouts have the
same arrangement, but start deployment from the top and bottom, respectively.

• North/West Compact: Variations of the North and West Tree layouts that im-
prove node placement, aiming at efficiently distributing the available space.

6

• Radial Tree: The initial centric point is the center for all levels, which are
drawn as concentric circles with a greater radius than the previous levels.

• Organic: Uses a randomized algorithm for calculating positions.

5. Conclusions and Future Work

The paper reported on RDF document visualization, presenting the three most
prominent visualization approaches. Each is suitable for specific document types,
while no single methodology can handle all documents. This was the primary mo-
tivation behind RDFViz++, the RDF visualization tool presented in this work. The
software adjusts to the peculiarities of the document to be visualized, offering an
adequate array of available layouts and providing the possibility of choosing the
most suitable approach each time. Conclusively, the software offers a more inclu-
sive RDF visualization. Expansion range, customized level and node distances and
the various graph layouts add up to a flexible interactive application.

As for future work, the software could be enhanced with various controls like
zoom-in/zoom-out, inversing the flow of the arrows (from objects to subjects),
overview controls etc. Furthermore, it could be enhanced with authoring capabili-
ties; the potential of introducing, modifying or removing statements from an RDF
document would transform the tool into an integrated RDF development environ-
ment. Finally, the software could also be extended with RDF Schema representa-
tion and authoring capabilities, becoming, thus, an RDF Schema ontology editor.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American,
284(5), pp. 34-43 (2001)

2. Herman, I., Swick, R., Brickley, R.: Resource Description Framework (RDF).
http://www.w3.org/RDF/, last accessed: 4 November 2008

3. DeFanti, T. A., Brown, M. D., McCormick, B. H.: Visualization: Expanding Scientific
and Engineering Research Opportunities. IEEE Computer, 22 (8), pp. 12-25 (1989)

4. Deligiannidis, L., Kochut, K. J., Sheth, A. P.: RDF Data Exploration and Visualization.
Proc. ACM First Workshop on Cyberinfrastructure: Information Management in E-
Science (CIMS '07), Lisbon, Portugal, ACM, New York, pp. 39-46 (2007)

5. Frasincar, F., Telea, A., Houben, G. J.: Adapting Graph Visualization Techniques for
the Visualization of RDF Data. Visualizing the Semantic Web, pp. 154-171 (2006)

6. Pietriga, E.: IsaViz: A Visual Environment for Browsing and Authoring RDF Models.
Proc. 11th World Wide Web Conference (Developer’s day), Hawaii, USA (2002)

7. Sayers, C.: Node-Centric RDF Graph Visualization. Technical Report HPL-2004-60,
HP Laboratories, Palo Alto (2004)

8. Fallenstein, B.: Fentwine: A Navigational RDF Browser and Editor. Proc. 1st Work-
shop on Friend of a Friend, Social Networking and the Semantic Web, Galway (2004)

