## Improving the Accuracy of Classifiers for the Prediction of Translation Initiation Sites in Genomic Sequences

## **Experimental Results**

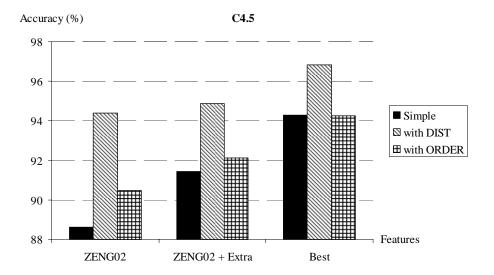
Machine Learning and Knowledge Discovery Group Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece http://mlkd.csd.auth.gr

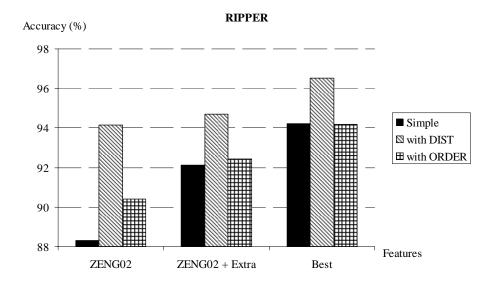
Abstract. The prediction of the Translation Initiation Site (TIS) in a genomic sequence is an important issue in biological research. Although several methods have been proposed to deal with this problem, there is a great potential for the improvement of the accuracy of these methods. Due to various reasons, including noise in the data as well as biological reasons, TIS prediction is still an open problem and definitely not a trivial task. We follow a three-step approach in order to increase TIS prediction accuracy. In the first step, we use a feature generation algorithm we developed. In the second step, all the candidate features, including some new ones generated by our algorithm, are ranked according to their impact to the accuracy of the prediction. Finally, in the third step, a classification model is built using a number of the top ranked features. We experiment with various feature sets, feature selection methods and classification algorithms and we compare with alternative methods.

This paper presents the detailed experimental results of our study on the prediction of TISs in genomic sequences.

**Table 1.** Measures of cross validation performance (TP: True Positives, FP: False Positives, TN: True Negatives, FN: False Negatives)

| Sensitivity (TP Rate) | $\frac{TP}{TP + FN}$                |
|-----------------------|-------------------------------------|
| Specificity (TN Rate) | $\frac{TN}{TN + FP}$                |
| Precision             | $\frac{TP}{TP + FP}$                |
| Accuracy              | $\frac{TP + TN}{TP + FP + TN + FN}$ |
| Adjusted Accuracy     | Sensitivity + Specificity 2         |


Table 2. The basic features considered in our study


| Features in [1] | New Features Proposed | Best Features Selected |
|-----------------|-----------------------|------------------------|
| POS3            | DOWN_IN_POS_2_T       | POS3                   |
| UP_ IN_ATG      | DOWN_IN_POS_3_C       | UP_ATG                 |
| DOWN_IN_CTG     | DOWN_IN_POS_1_G       | UP_ IN_ATG             |
| DOWN_IN_TAA     | UP_DOWN_A/G_DIF       | DOWN_IN_STOP           |
| DOWN_IN_TAG     | UP_DOWN_C/T_DIF       | DOWN_IN_POS_2_T        |
| DOWN_IN_TGA     |                       | DOWN_IN_POS_3_C        |
| DOWN_IN_GAC     |                       | DOWN_IN_POS_1_G        |
| DOWN_IN_GAG     |                       | UP_DOWN_A/G_DIF        |
| DOWN_IN_GCC     |                       | UP_DOWN_C/T_DIF        |

The following pages present a table (Table 3) and a number of graphs (Figure 1 – Figure 5) comparing the performance of the three classifiers we used. Three feature sets are included: the features proposed in [1] (denoted as ZENGO2), the features proposed in [1] along with the new features we propose (denoted as ZENGO2 + Extra) and the best features selected (denoted as ZENGO2 + Extra). The experiments were repeated, once including the distance feature (DIST), once including the order feature (ORDER) and once including none of the above two features (in the graphs is denoted as Simple).

**Table 3.** Classification accuracy of the classifiers using 10-fold cross validation for a window length of 189 nucleotides and the features presented in Table 2

| Features                    | Algorithm   | Sensitivity | Specificity | Precision | Adj. Accuracy | Accuracy |
|-----------------------------|-------------|-------------|-------------|-----------|---------------|----------|
| ZENG02                      | C4.5        | 93.78       | 72.79       | 91.38     | 83.29         | 88.63    |
|                             | RIPPER      | 92.52       | 75.36       | 92.03     | 83.94         | 88.31    |
|                             | Naïve Bayes | 85.77       | 83.49       | 94.11     | 84.63         | 85.21    |
| ZENG02 +<br>Extra           | C4.5        | 94.95       | 80.64       | 93.78     | 87.80         | 91.44    |
|                             | RIPPER      | 94.83       | 83.74       | 94.72     | 89.29         | 92.11    |
|                             | Naïve Bayes | 85.75       | 91.17       | 96.76     | 88.46         | 87.08    |
| Best                        | C4.5        | 97.09       | 85.65       | 95.42     | 91.37         | 94.28    |
|                             | RIPPER      | 96.66       | 86.77       | 95.74     | 91.71         | 94.23    |
|                             | Naïve Bayes | 90.58       | 90.32       | 96.64     | 90.45         | 90.52    |
| ZENCO2 ·                    | C4.5        | 96.33       | 88.48       | 96.26     | 92.40         | 94.40    |
| ZENG02 +<br>DIST            | RIPPER      | 95.83       | 88.95       | 96.39     | 92.39         | 94.14    |
| ואום                        | Naïve Bayes | 87.49       | 87.52       | 95.57     | 87.50         | 87.50    |
| ZENG02 +<br>Extra +<br>DIST | C4.5        | 96.73       | 89.11       | 96.47     | 92.92         | 94.86    |
|                             | RIPPER      | 96.15       | 90.23       | 96.80     | 93.19         | 94.70    |
|                             | Naïve Bayes | 85.73       | 91.54       | 96.89     | 88.63         | 87.15    |
| Best +<br>DIST              | C4.5        | 98.07       | 93.07       | 97.75     | 95.57         | 96.84    |
|                             | RIPPER      | 97.62       | 93.08       | 97.75     | 95.35         | 96.51    |
|                             | Naïve Bayes | 89.41       | 90.65       | 96.71     | 90.03         | 89.72    |
| ZENG02 +<br>ORDER           | C4.5        | 95.08       | 76.29       | 92.50     | 85.69         | 90.47    |
|                             | RIPPER      | 94.89       | 76.56       | 92.57     | 85.72         | 90.39    |
|                             | Naïve Bayes | 85.40       | 87.77       | 95.55     | 86.59         | 85.98    |
| ZENG02 +                    | C4.5        | 95.71       | 81.12       | 93.98     | 88.42         | 92.14    |
| Extra +                     | RIPPER      | 95.34       | 83.55       | 94.69     | 89.44         | 92.45    |
| ORDER                       | Naïve Bayes | 85.56       | 91.20       | 96.76     | 88.38         | 86.94    |
| Best +<br>ORDER             | C4.5        | 97.04       | 85.63       | 95.41     | 91.34         | 94.24    |
|                             | RIPPER      | 96.56       | 86.89       | 95.77     | 91.72         | 94.19    |
|                             | Naïve Bayes | 87.59       | 90.23       | 96.50     | 88.91         | 88.24    |





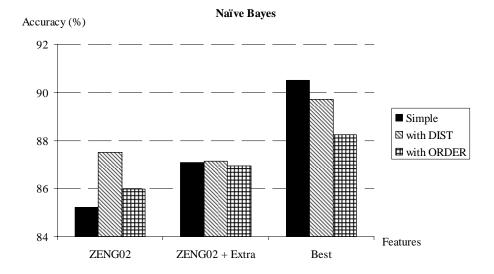
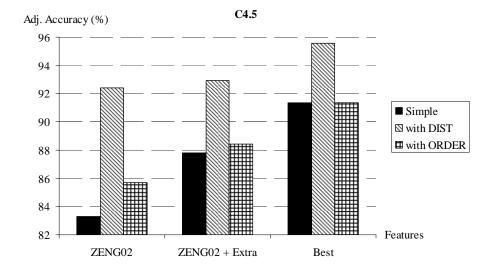
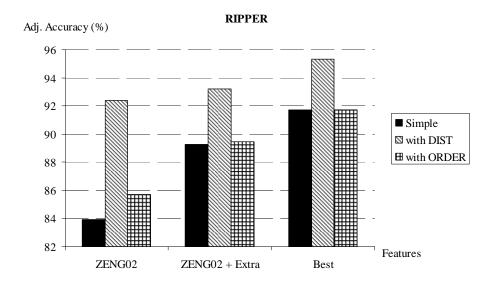
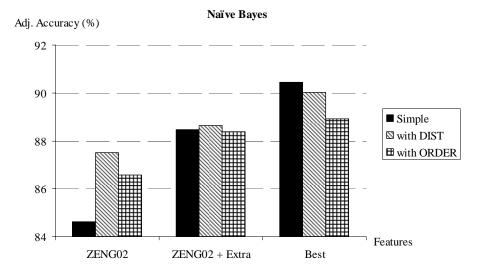
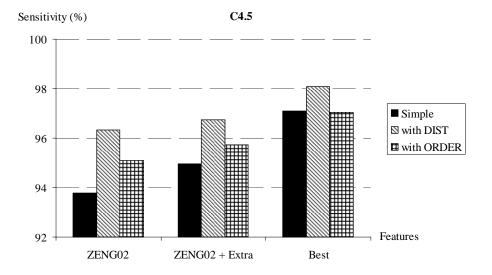
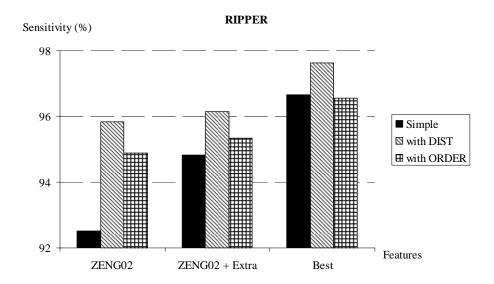
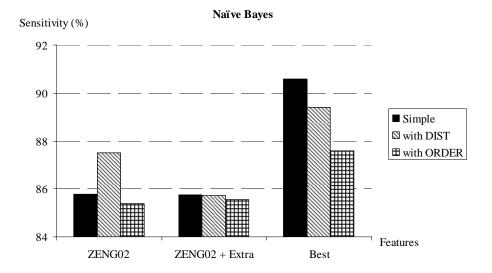
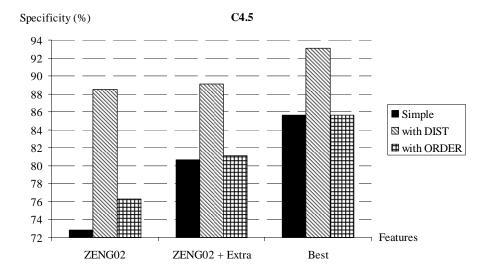




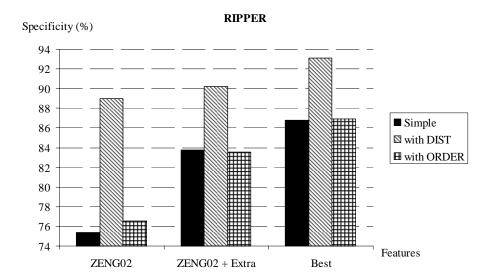

Figure 1. The accuracy graphs







Figure 2. The adjusted accuracy graphs








**Figure 3.** The sensitivity graphs





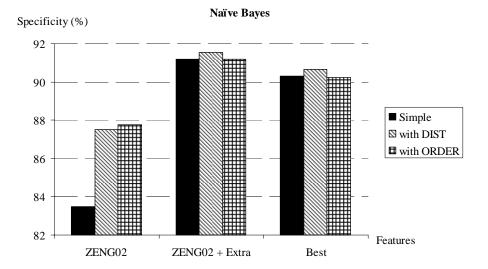
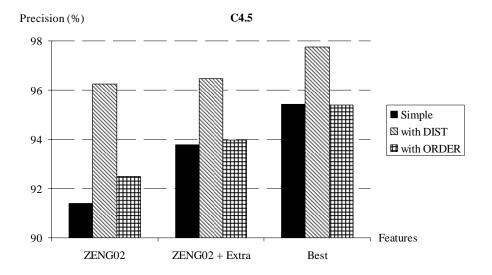
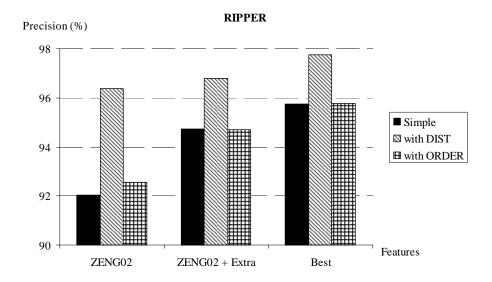





Figure 4. The specificity graphs





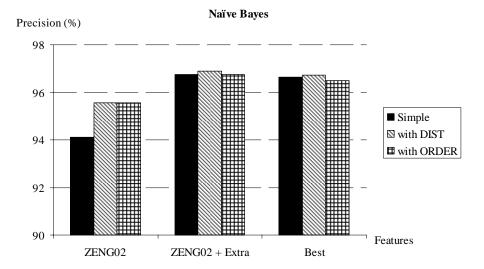



Figure 5. The precision graphs

## References

1. Zeng F., Yap H., Wong, L.: Using Feature Generation and Feature Selection for Accurate Prediction of Translation Initiation Sites. In Proceedings of the 13th International Conference on Genome Informatics, Tokyo, Japan (2002) 192-200